
Workshop track - ICLR 2017

MULTIPLICATIVE LSTM FOR SEQUENCE MODELLING

Ben Krause, Iain Murray & Steve Renals
School of Informatics, University of Edinburgh
Edinburgh, Scotland, UK
{ben.krause,i.murray,s.renals}@ed.ac.uk

Liang Lu
Toyota Technological Institute at Chicago
Chicago, Illinois, USA
{llu}@ttic.edu

ABSTRACT

We introduce multiplicative LSTM (mLSTM), a novel recurrent neural network
architecture for sequence modelling that combines the long short-term memory
(LSTM) and multiplicative recurrent neural network architectures. mLSTM is
characterised by its ability to have different recurrent transition functions for each
possible input, which we argue makes it more expressive for autoregressive density
estimation. We demonstrate empirically that mLSTM outperforms standard LSTM
and its deep variants for a range of character level modelling tasks, and that this
improvement increases with the complexity of the task. This model achieves a
test error of 1.19 bits/character on the last 4 million characters of the Hutter prize
dataset when combined with dynamic evaluation.

1 INTRODUCTION

Recurrent neural networks (RNNs) are powerful sequence density estimators that can use long
contexts to make predictions. They have achieved tremendous success in (conditional) sequence
modelling tasks such as language modelling, machine translation and speech recognition. Generative
models of sequences can apply factorization via the product rule to perform density estimation of the
sequence x1:T = {x1, . . . , xT },

P (x1, . . . , xT) = P (x1)P (x2|x1)P (x3|x2, x1) · · ·P (xT |x1 . . . xT−1). (1)

RNNs can model sequences with the above factorization by using a hidden state to summarize past
inputs. The hidden state vector ht is updated recursively using the previous hidden state vector ht−1

and the current input xt as
ht = F(ht−1, xt), (2)

where F is a differentiable function with learnable parameters. In a vanilla RNN, F multiplies its
inputs by a matrix and squashes the result with a non-linear function such as a hyperbolic tangent
(tanh). The updated hidden state vector is then used to predict a probability distribution over the next
sequence element, using function G. In the case where x1:T consists of mutually exclusive discrete
outcomes, G may apply a matrix multiplication followed by a softmax function:

P (xt+1) = G(ht). (3)

Generative RNNs can evaluate log-likelihoods of sequences exactly, and are differentiable with respect
to these log-likelihoods. RNNs can be difficult to train due to the vanishing gradient problem (Bengio
et al., 1994), but advances such as the long short-term memory architecture (LSTM) (Hochreiter &
Schmidhuber, 1997) have allowed RNNs to be successful. Despite their success, generative RNNs
(as well as other conditional generative models) are known to have problems with recovering from
mistakes (Graves, 2013). Each time the recursive function of the RNN is applied and the hidden state
is updated, the RNN must decide which information from the previous hidden state to store, due to its
limited capacity. If the RNN’s hidden representation remembers the wrong information and reaches a
bad numerical state for predicting future sequence elements, for instance as a result of an unexpected
input, it may take many time-steps to recover.

We argue that RNN architectures with hidden-to-hidden transition functions that are input-dependent
are better suited to recover from surprising inputs. Our approach to generative RNNs combines LSTM
units with multiplicative RNN (mRNN) factorized hidden weights, allowing flexible input-dependent

1

Workshop track - ICLR 2017

Figure 1: Diagram of hidden states of a generative RNN as a tree, where x(n)t denotes which of N
possible inputs is encountered at timestep t. Given ht, the starting node of the tree, there will be a
different possible ht+1 for every x(n)t+1. Similarly, for every ht+1 that can be reached from ht, there is
a different possible ht+2 for each x(n)t+2, and so on.

transitions that are easier to control due to the gating units of LSTM . We compare this multiplicative
LSTM hybrid architecture with other variants of LSTM on a range of character level language
modelling tasks. Multiplicative LSTM is most appropriate when it can learn parameters specifically
for each possible input at a given timestep. Therefore, its main application is to sequences of discrete
mutually exclusive elements, such as language modelling and related problems.

1.1 INPUT-DEPENDENT TRANSITION FUNCTIONS

RNNs learn a mapping from previous hidden state ht−1 and input xt to hidden state ht. Let ĥt denote
the input to the next hidden state before any non-linear operation:

ĥ(t) =Whhht−1 +Whxxt, (4)

where Whh is the hidden-to-hidden weight matrix, and Whx is the input-to-hidden weight matrix.
For problems such as language modelling, xt is a one-hot vector, meaning that the output of Whxxt
is a column in Whx, corresponding to the unit element in xt.

The possible future hidden states in an RNN can be viewed as a tree structure, as shown in Figure 1.
For an alphabet of N inputs and a fixed ht−1, there will be N possible transition functions between
ht−1 and ĥt. The relative magnitude of Whhht−1 to Whxxt will need to be large for the RNN to be
able to use long range dependencies, and the resulting possible hidden state vectors will therefore
be highly correlated across the possible inputs, limiting the width of the tree and making it harder
for the RNN to form distinct hidden representations for different sequences of inputs. However, if
the RNN has flexible input-dependent transition functions, the tree will be able to grow wider more
quickly, giving the RNN the flexibility to represent more probability distributions.

In a vanilla RNN, it is difficult to allow inputs to greatly affect the hidden state vector without
erasing information from the past hidden state. However, an RNN with a transition function mapping
ĥt ← ht−1 dependent on the input would allow the relative values of ht to vary with each possible
input xt, without overwriting the contribution from the previous hidden state, allowing for more
long term information to be stored. This ability to adjust to new inputs quickly while limiting
the overwriting of information should make an RNN more robust to mistakes when it encounters
surprising inputs, as the hidden vector is less likely to get trapped in a bad numerical state for making
future predictions.

1.2 MULTIPLICATIVE RNN

The multiplicative RNN (mRNN) (Sutskever et al., 2011) is an architecture designed specifically to
allow flexible input-dependent transitions. Its formulation was inspired by the tensor RNN, an RNN
architecture that allows for a different transition matrix for each possible input. The tensor RNN

2

Workshop track - ICLR 2017

features a 3-way tensor W 1:N
hh , which contains a separately learned transition matrix Whh for each

input dimension. The 3-way tensor can be stored as an array of matrices

W
(1:N)
hh = {W (1)

hh , ...,W
(N)
hh }, (5)

where superscript is used to denote the index in the array, and N is the dimensionality of xt. The
specific hidden-to-hidden weight matrix W (xt)

hh used for a given input xt is then

W
(xt)
hh =

N∑
n=1

W
(n)
hh x

(n)
t . (6)

For language modelling problems, only one unit of xt will be on, and W (xt)
hh will be the matrix in

W
(1:N)
hh corresponding to that unit. Hidden-to-hidden propagation in the tensor RNN is then given by

ĥ(t) =W
(xt)
hh ht−1 +Whxxt. (7)

The large number of parameters in the tensor RNN make it impractical for most problems. mRNNs
can be thought of as a tied-parameter approximation to the tensor RNN that use a factorized hidden-
to-hidden transition matrix in place of the normal RNN hidden-to-hidden matrix Whh, with an
input-dependent intermediate diagonal matrix diag(Wmxxt). The input-dependent hidden-to-hidden
weight matrix, W (xt)

hh is then

W
(xt)
hh =Whmdiag(Wmxxt)Wmh. (8)

An mRNN is thus equivalent to a tensor RNN using the above form for W (xt)
hh . For readability, an

mRNN can also be described using intermediate state mt as follows:

mt = (Wmxxt)� (Wmhht−1) (9)

ĥt =Whmmt +Whxxt. (10)

mRNNs have improved on vanilla RNNs at character level language modelling tasks (Sutskever
et al., 2011; Mikolov et al., 2012), but have fallen short of the more popular LSTM architecture, for
instance as shown with LSTM baselines from (Cooijmans et al., 2016). The standard RNN units in
an mRNN do not provide an easy way for information to bypass its complex transitions, resulting in
the potential for difficulty in retaining long term information.

1.3 LONG SHORT-TERM MEMORY

LSTM is a commonly used RNN architecture that uses a series of multiplicative gates to control
how information flows in and out of internal states of the network (Hochreiter & Schmidhuber,
1997). There are several slightly different variants of LSTM, and we present the variant used in our
experiments.

The LSTM hidden state receives inputs from the input layer xt and the previous hidden state ht−1:

ĥt =Whxxt +Whhht−1. (11)

The LSTM network also has 3 gating units – input gate i, output gate o, and forget gate f – that have
both recurrent and feed-forward connections:

it = σ(Wixxt +Wihht−1) (12)
ot = σ(Woxxt +Wohht−1) (13)
ft = σ(Wfxxt +Wfhht−1), (14)

where σ is the logistic sigmoid function. The input gate controls how much of the input to each
hidden unit is written to the internal state vector ct, and the forget gate determines how much of
the previous internal state ct−1 is preserved. This combination of write and forget gates allows the
network to control what information should be stored and overwritten across each time-step. The
internal state is updated by

ct = ft � ct−1 + it � ĥt. (15)

3

Workshop track - ICLR 2017

The output gate controls how much of each unit’s activation is preserved. It allows the LSTM cell to
keep information that is not relevant to the current output, but may be relevant later. The final output
of the hidden state is given by

ht = tanh(ct � ot). (16)
This is slightly different from the typical LSTM variant, where the output gate is applied after the
tanh. LSTM’s ability to control how information is stored in each unit has proven generally useful.

1.4 COMPARING LSTM WITH MRNN

The LSTM and mRNN architectures both feature multiplicative units, but these units serve different
purposes. LSTM’s gates are designed to control the flow of information through the network, whereas
mRNN’s gates are designed to allow transition functions to vary across inputs. LSTM gates receive
input from both the input units and hidden units, allowing multiplicative interactions between hidden
units, but also potentially limiting the extent of input-hidden multiplicative interaction. LSTM gates
are also squashed with a sigmoid, forcing them to take values between 0 and 1, which makes them
easier to control, but less expressive than mRNN’s linear gates. For language modelling problems,
mRNN’s linear gates do not need to be controlled by the network because they are explicitly learned
for each input. They are also placed in between a product of 2 dense matrices, giving more flexibility
to the possible values of the final product of matrices.

2 MULTIPLICATIVE LSTM

Since the LSTM and mRNN architectures are complimentary, we propose the multiplicative LSTM
(mLSTM), a hybrid architecture that combines the factorized hidden-to-hidden transition of mRNNs
with the gating framework from LSTMs. The mRNN and LSTM architectures can be combined
by adding connections from the mRNN’s intermediate state mt (which is redefined below for
convenience) to each gating units in the LSTM, resulting in the following system:

mt = (Wmxxt)� (Wmhht−1) (17)

ĥt =Whxxt +Whmmt (18)
it = σ(Wixxt +Wimmt) (19)
ot = σ(Woxxt +Wommt) (20)
ft = σ(Wfxxt +Wfmmt). (21)

We set the dimensionality of mt and ht equal for all our experiments. We also chose to share mt

across all LSTM unit types, resulting in a model with 1.25 times the number of recurrent weights as
LSTM for the same number of hidden units.

The goal of this architecture is to combine the flexible input-dependent transitions of mRNNs with
the long time lag and information control of LSTMs. The gated units of LSTMs could make it easier
to control (or bypass) the complex transitions in that result from the factorized hidden weight matrix.
The additional sigmoid input and forget gates featured in LSTM units allow even more flexible
input-dependent transition functions than in regular mRNNs.

3 RELATED APPROACHES

Many recently proposed RNN architectures use recurrent depth, which is depth between recurrent
steps. Recurrent depth allows more non-linearity in the combination of inputs and previous hidden
states from every time step, which in turn allows for more flexible input-dependent transitions.
Recurrent depth has been found to perform better than other kinds of non-recurrent depth for
sequence modelling (Zhang et al., 2016). Recurrent highway networks (Zilly et al., 2016) use a more
sophisticated recurrent depth that carefully controls propagation through layers using gating units.
The gating units also allow for a greater deal of multiplicative interaction between the inputs and
hidden units. While adding recurrent depth could improve our model, we believe that maximizing
the input-dependent flexibility of the transition function is more important for expressive sequence
modelling. Recurrent depth can do this through non-linear layers combining hidden and input
contributions, but our method can do this independently of depth.

4

Workshop track - ICLR 2017

architecture test set error (bits/char)
mRNN (Mikolov et al., 2012) 1.41
multiplicative integration RNN (Wu et al., 2016) 1.39
LSTM (Cooijmans et al., 2016) 1.38
mLSTM 1.35
batch normalized LSTM (Cooijmans et al., 2016) 1.32
zoneout RNN (Krueger et al., 2016) 1.30
hierarchical multiscale LSTM (Chung et al., 2016) 1.27
2-layer norm hyperLSTM (Ha et al., 2016) 1.22

Table 1: Test set error (bits/char) on Penn Treebank dataset for mLSTM compared with past work.

Another approach, multiplicative integration RNNs (Wu et al., 2016), use Hadamard products instead
of addition when combining contributions from input and hidden units. When applying this to LSTM,
this architecture achieves impressive sequence modelling results. The main difference between
multiplicative integration LSTM and mLSTM is that mLSTM applies the Hadamard product between
the multiplication of two matrices. In the case of LSTM, this allows for the potential for greater
expressiveness, without significantly increasing the size of the model.

4 EXPERIMENTS

4.1 SYSTEM SETUP

Our experiments compared the performance of mLSTM with regular LSTM for different character-
level language modelling tasks of varying complexity1. Gradient computation in these experiments
used truncated backpropagation through time on sequences of length 100, only resetting the hidden
state every 10 000 timesteps to allow networks access to information far in the past. All experiments
used a variant of RMSprop, (Tieleman & Hinton, 2012), with normalized updates in place of a
learning rate. All unnormalized update directions v∗, computed by RMSprop, were normalized to
have length `, where ` was decayed exponentially over training:

v ← `√
vT∗ v∗

v∗. (22)

We found that this allowed for fast convergence with larger batch sizes, allowing for greater paral-
lelization during training without hurting performance.

We compared mLSTM to previously reported regular LSTM, stacked LSTM, and RNN character-level
language models. The stacked LSTMs were all 2-layer, and both LSTM layers contained direct
connections from the inputs and to the outputs. We used the Penn Treebank dataset (Marcus et al.,
1993) to test small scale language modelling, the processed and raw versions of the Wikipedia text8
dataset (Hutter, 2012) to test large scale language modelling and byte level language modelling
respectively, and the European parliament dataset (Koehn, 2005) to investigate multilingual fitting.

4.2 PENN TREEBANK

The Penn treebank dataset is relatively small, and consists of only case insensitive English characters,
with no punctuation. It is one of the most widely used language modelling bench mark tasks. Due to
its small size, the main bottleneck for performance is overfitting.

We fitted an mLSTM with 700 hidden units to the Penn Treebank dataset, with no regularization
other than early stopping. We used a slightly different version of this dataset, where the frequently
occurring token <unk> was replaced by a single character, shortening the file by about 4%. To make
our results comparable to other results on this dataset, we computed the total cross entropy of the test
set file and divided this by the number of characters in the original test set. The results are shown in

1Code to replicative our large scale experiments on the Hutter prize dataset is available at https://
github.com/benkrause/mLSTM.

5

https://github.com/benkrause/mLSTM
https://github.com/benkrause/mLSTM

Workshop track - ICLR 2017

architecture test set error (bits/char)
small LSTM (Zhang et al., 2016) 1.65
small LSTM (ours) 1.64
small deep LSTM (best) (Zhang et al., 2016) 1.63
small mLSTM 1.59
mRNN (Mikolov et al., 2012) 1.54
multiplicative integration RNN (Wu et al., 2016) 1.52
skipping RNN (Pachitariu & Sahani, 2013) 1.48
multiplicative integration LSTM (Wu et al., 2016) 1.44
LSTM (Cooijmans et al., 2016) 1.43
mLSTM 1.40
batch normalised LSTM (Cooijmans et al., 2016) 1.36
hierarchical multiscale LSTM (Chung et al., 2016) 1.30

Table 2: Text8 dataset test set error in bits/char. Architectures labelled with small used a highly
restrictive hidden dimensionality (512 for LSTM, 450 for LSTM)

Table 1, where it can be seen that mLSTM achieved 1.35 bits/char test set error, compared with 1.38
bits/char for an unregularized LSTM (Cooijmans et al., 2016).

4.3 TEXT8 DATASET

Text8 contains 100 million characters of English text taken from Wikipedia in 2006, consisting
of just the 26 characters of the English alphabet plus spaces. This dataset can be found at http:
//mattmahoney.net/dc/textdata. This corpus has been widely used to benchmark RNN
character level language models, with the first 90 million characters used for training, the next 5
million used for validation, and the final 5 million used for testing. The results of these experiments
are shown in Table 2.

The first set of experiments we performed were designed to be comparable to those of Zhang et al.
(2016), who benchmarked several deep LSTMs against shallow LSTMs on this dataset. The shallow
LSTM had a hidden state dimensionality of 512, and the deep versions had reduced dimensionality to
give them roughly the same number of parameters. Our experiment used an mLSTM with a hidden
dimensionality of 450, giving it slightly fewer parameters than the past work, and our own LSTM
baseline with hidden dimensionality 512. mLSTM showed an improvement over our baseline and the
previously reported best deep LSTM variant.

We ran additional experiments to compare a large mLSTM with other reported experiments. We
trained an mLSTM with hidden dimensionality of 1900 on the text8 dataset. mLSTM was able to fit
the training data well and achieved a competitive performance; however it was outperformed by other
architectures that are less prone to over-fitting.

4.4 HUTTER PRIZE DATASET

We performed experiments using the raw version of the Wikipedia dataset, originally used for the
Hutter Prize compression benchmark (Hutter, 2012). This dataset consists mostly of English language
text and mark-up language text, but also contains text in other languages, including non-Latin
languages. The dataset is modelled using a UTF-8 encoding, and contains 205 unique bytes.

We compared mLSTMs and 2-layer stacked LSTMs for varying network sizes, ranging from about
3–20 million parameters. These results all used RMS prop with normalized updates, stopping after
4 epochs, with test performance measured on the last 5 million bytes. Hyperparameters for each
mLSTM and stacked LSTM were kept constant across all sizes, and were reused from the previous
experiment using the text8 dataset. The results, shown in Figure 2, show that mLSTM gives a modest
improvement across all network sizes.

We hypothesized that mLSTM’s superior performance over stacked LSTM was in part due to its
ability to recover from surprising inputs. To test this we looked at each network’s performance after
viewing surprising inputs that occurred naturally in the test set by creating a set of the 10% characters

6

http://mattmahoney.net/dc/textdata
http://mattmahoney.net/dc/textdata

Workshop track - ICLR 2017

of parameters (millions)
0 5 10 15 20

bi
ts

/c
ha

r

1.4

1.45

1.5

1.55

1.6

1.65

1.7 stacked LSTM
mLSTM

Figure 2: Hutter prize validation performance
in bits/char plotted against number of network
parameters for mLSTM and stacked LSTM.

timesteps after surprise
1 2 3 4

bi
ts

/c
ha

r

1.4

1.6

1.8

2

2.2

2.4 stacked LSTM
mLSTM

Figure 3: Cross entropy loss for mLSTM and
stacked LSTM immediately proceeding a
surprising input

with the largest average loss taken by mLSTM and stacked LSTM. Both networks perform roughly
equally on this set of surprising characters, with mLSTM and stacked LSTM taking losses of 6.27
bits/character and 6.29 bits/character respectively. However, stacked LSTM tended to take much
larger losses than mLSTM in the timesteps immediately following surprising inputs. One to four
time-steps after a surprising input occurred, mLSTM and stacked LSTM took average losses of (2.26,
2.04, 1.61, 1.51) and (2.48, 2.25, 1.79, 1.67) bits per character respectively, as shown in Figure 3.
mLSTM’s overall advantage over stacked LSTM was 1.42 bits/char to 1.53 bits/char; mLSTM’s
advantage over stacked LSTM was greater after a surprising input than it is in general.

We also tested our largest mLSTM and stacked LSTM models using dynamic evaluation, where the
network’s weights are adapted to fit recent sequences (Graves, 2013). Dynamic evaluation can be
thought of as a type of fast weights memory structure (Ba et al., 2016) that draws the network towards
regularities that recently occurred in the sequence, causing the network to assign higher probabilities
to these regularities occurring again soon. Unlike other approaches to fast weights where the network
learns to control the weights, dynamic evaluation uses the error signal and gradients to update the
weights, which potentially increases its effectiveness, but also limits its scope to conditional generative
modelling, when the outputs can be observed after they are predicted. Rather than performing fully
online dynamic evaluation, we adapted incrementally to short sequences, allowing for gradients to be
passed back over longer time scales. Thus, we divided the test set into sequences of length 50 in order
of occurrence. After predicting a sequence and incurring a loss, we trained the RNN for a single
iteration on that sequence, using RMSprop (with a learning rate, as normalized updates no longer
make sense in a stochastic setting), and weight decay. After updating the RNN, we recomputed the
forward pass through this sequence to update the final hidden state. The updated RNN was then used
to predict the next sequence of 50 elements, and this process was repeated. Dynamic evaluation was
applied to a test set of the last 4 million bytes (instead of last 5 million) to be comparable with the
only other dynamic evaluation result (Graves, 2013).

The best results for stacked LSTM and mLSTM are given in Table 3, alongside results from the
literature. mLSTM performs at near state-of-the-art level when evaluated statically, and greatly
outperforms the best static models and other dynamic models when evaluated dynamically.

4.5 MULTILINGUAL LEARNING

Character-level RNNs are able to simultaneously model multiple languages using shared parameters.
These experiments compared the relative ability of LSTM and mLSTM at fitting a dataset in a single
language and a combined dataset with two separate languages. We used the first 100 million characters
of the English and Spanish translations of the European parliament dataset to make an English dataset
and a Spanish dataset. Each dataset was split 90-5-5 for training, validation, and testing. We created
a third Spanish-English hybrid dataset by combining the Spanish and English datasets, resulting in a
dataset twice as large. These datasets were left in their raw form, containing punctuation and both

7

Workshop track - ICLR 2017

architecture test error (bits/char)
7-layer stacked LSTM (Graves, 2013) 1.67
gf-LSTM (Chung et al., 2015) 1.58
2-layer stacked LSTM (ours) 1.53
grid LSTM (Kalchbrenner et al., 2015) 1.48
multiplicative integration LSTM (Wu et al., 2016) 1.44
mLSTM 1.42
hierarchical multiscale RNNs (Chung et al., 2016) 1.40
recurrent memory array structures (Rocki, 2016a) 1.40
feedback LSTM (Rocki, 2016b) 1.39*
feedback LSTM + zoneout (Rocki, 2016b) 1.37*
layer norm hyperLSTM (Ha et al., 2016) 1.34
7-layer stacked LSTM (dynamic) (Graves, 2013) 1.33*
bytenet decoder (Kalchbrenner et al., 2016) 1.33
2-layer stacked LSTM (ours, dynamic) 1.32*
recurrent highway networks (Zilly et al., 2016) 1.32
mLSTM (dynamic) 1.19*

Table 3: Raw wikipedia dataset validation error in bits/char. Results labelled with * use the error
signal to update the hidden state, and architectures labelled with (dynamic) use gradient descent
based fitting to recent sequences to perform this adjustment.

architecture English only test error Spanish only test error Spanish-English test error
LSTM 1.13 1.01 1.14
mLSTM 1.05 0.95 1.04

Table 4: European parliament test error in bits/char for LSTM and mLSTM on English only, Spanish
only, and mixed English-Spanish.

upper-case and lower-case letters. The LSTMs in these experiments had a hidden dimensionality of
2200, and the mLSTMs had a hidden dimensionality of 1900. All experiments were run for 4 epochs.

mLSTM generally outperformed LSTM at this task, as shown in Table 4. However, there also seemed
to be an interaction effect with the number of languages. Increasing the complexity of the task by
forcing the RNN to learn 2 languages instead of 1 presented a larger fitting difficulty for LSTM than
for mLSTM.

5 DISCUSSION

This work combined the mRNN’s factorized hidden weights with the LSTM’s hidden units for
generative modelling of discrete multinomial sequences. This mLSTM architecture was motivated by
its ability to have both controlled and flexible input-dependent transitions, to allow for fast changes
to the distributed hidden representation without erasing information. In a series of character-level
language modelling experiments, mLSTM showed improvements over LSTM and its deep variants.
This relative improvement increased with the complexity of the task, and provides evidence that
mLSTM has a more powerful fitting ability for character-level language modelling than regular
LSTM and its common deep variants. mLSTM performed competitively at large scale character-
level language modelling, and achieved dramatic improvement over the state of the art with 1.19
bits/character on the Hutter prize dataset when combined with dynamic evaluation, motivating further
investigation of dynamic evaluation for RNN sequence modelling.

While these results are promising, it remains to be seen how mLSTM performs at word-level language
modelling and other discrete multinomial generative modelling tasks, and whether mLSTM can be
formulated to apply more broadly to tasks with continuous or non-sparse input units. We also hope this
work will motivate further exploration in generative RNN architectures with flexible input-dependent
transition functions.

8

Workshop track - ICLR 2017

REFERENCES

J. Ba, G. E. Hinton, V. Mnih, J. Z. Leibo, and C Ionescu. Using fast weights to attend to the recent
past. arXiv preprint arXiv:1610.06258, 2016.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. Neural Networks, IEEE Transactions on, 5(2):157–166, 1994.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Gated feedback recurrent neural networks. In
Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 2067–
2075, 2015.

J. Chung, S. Ahn, and Y. Bengio. Hierarchical multiscale recurrent neural networks. arXiv preprint
arXiv:1609.01704, 2016.

T. Cooijmans, N. Ballas, C. Laurent, and A. Courville. Recurrent batch normalization. arXiv preprint
arXiv:1603.09025, 2016.

A. Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

D. Ha, A. Dai, and Q. Lee. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9:1735–1780,
1997.

M. Hutter. The human knowledge compression contest. URL http://prize.hutter1.net, 2012.

N. Kalchbrenner, I. Danihelka, and A. Graves. Grid long short-term memory. arXiv preprint
arXiv:1507.01526, 2015.

N. Kalchbrenner, L. Espeholt, K. Simonyan, A. Oord, A. Graves, and K. Kavukcuoglu. Neural
machine translation in linear time. arXiv preprint arXiv:1610.10099, 2016.

P. Koehn. Europarl: A parallel corpus for statistical machine translation. In MT Summit, volume 5,
pp. 79–86, 2005.

D. Krueger, T. Maharaj, J. Kramár, M. Pezeshki, N. Ballas, N. R. Ke, A. Goyal, Y. Bengio,
H. Larochelle, A. Courville, et al. Zoneout: Regularizing RNNs by randomly preserving hidden
activations. arXiv preprint arXiv:1606.01305, 2016.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of English:
The Penn Treebank. Computational linguistics, 19(2):313–330, 1993.

T. Mikolov, I. Sutskever, A. Deoras, H. Le, S. Kombrink, and J. Cernocky. Subword language
modeling with neural networks. preprint (http://www.fit.vutbr.cz/ imikolov/rnnlm/char.pdf), 2012.

M. Pachitariu and M. Sahani. Regularization and nonlinearities for neural language models: when
are they needed? arXiv preprint arXiv:1301.5650, 2013.

K. Rocki. Recurrent memory array structures. arXiv preprint arXiv:1607.03085, 2016a.

K. Rocki. Surprisal-driven feedback in recurrent networks. arXiv preprint arXiv:1608.06027, 2016b.

I. Sutskever, J. Martens, and G. E. Hinton. Generating text with recurrent neural networks. In
Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 1017–
1024, 2011.

T. Tieleman and G. E. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for Machine Learning, 4(2), 2012.

Y. Wu, S. Zhang, Y. Zhang, Y. Bengio, and R. Salakhutdinov. On multiplicative integration with
recurrent neural networks. In NIPS, 2016. arXiv preprint arXiv:1606.06630.

S. Zhang, Y. Wu, T. Che, Z. Lin, R. Memisevic, R. Salakhutdinov, and Y. Bengio. Architectural com-
plexity measures of recurrent neural networks. In NIPS, 2016. arXiv preprint arXiv:1602.08210.

J. G. Zilly, R. K. Srivastava, J. Koutnı́k, and J. Schmidhuber. Recurrent highway networks. arXiv
preprint arXiv:1607.03474, 2016.

9

	Introduction
	Input-dependent transition functions
	Multiplicative RNN
	Long short-term memory
	Comparing LSTM with mRNN

	Multiplicative LSTM
	Related approaches
	Experiments
	System Setup
	Penn Treebank
	Text8 dataset
	Hutter prize dataset
	Multilingual learning

	Discussion

