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note that a,b,c and A,B,C do not depend on X,Y,x,y or z

0.1 basic formulae

A(B + C) = AB + AC (1a)

(A + B)T = AT + BT (1b)

(AB)T = BTAT (1c)

if individual inverses exist (AB)−1 = B−1A−1 (1d)

(A−1)T = (AT )−1 (1e)

0.2 trace, determinant and rank

|AB| = |A||B| (2a)

|A−1| = 1
|A|

(2b)

|A| =
∏

evals (2c)

Tr [A] =
∑

evals (2d)

if the cyclic products are well defined,
Tr [ABC . . .] = Tr [BC . . .A] = Tr [C . . .AB] = . . . (2e)

rank [A] = rank
[
ATA

]
= rank

[
AAT

]
(2f)

condition number = γ =

√
biggest eval
smallest eval

(2g)

derivatives of scalar forms with respect to scalars, vectors, or matricies are
indexed in the obvious way. similarly, the indexing for derivatives of vectors
and matrices with respect to scalars is straightforward.
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0.3 derivatives of traces

∂Tr [X]
∂X

= I (3a)

∂Tr [XA]
∂X

=
∂Tr [AX]

∂X
= AT (3b)

∂Tr
[
XTA

]
∂X

=
∂Tr

[
AXT

]
∂X

= A (3c)

∂Tr
[
XTAX

]
∂X

= (A + AT )X (3d)

∂Tr
[
X−1A

]
∂X

= −X−1ATX−1 (3e)

0.4 derivatives of determinants

∂|AXB|
∂X

= |AXB|(X−1)T = |AXB|(XT )−1 (4a)

∂ ln |X|
∂X

= (X−1)T = (XT )−1 (4b)

∂ ln |X(z)|
∂z

= Tr
[
X−1∂X

∂z

]
(4c)

∂|XTAX|
∂X

= |XTAX|(AX(XTAX)−1 + ATX(XTATX)−1) (4d)

0.5 derivatives of scalar forms

∂(aTx)
∂x

=
∂(xTa)
∂x

= a (5a)

∂(xTAx)
∂x

= (A + AT )x (5b)

∂(aTXb)
∂X

= abT (5c)

∂(aTXTb)
∂X

= baT (5d)

∂(aTXa)
∂X

=
∂(aTXTa)

∂X
= aaT (5e)

∂(aTXTCXb)
∂X

= CTXabT + CXbaT (5f)

∂
(
(Xa + b)TC(Xa + b)

)
∂X

= (C + CT )(Xa + b)aT (5g)
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the derivative of one vector y with respect to another vector x is a matrix
whose (i, j)th element is ∂y(j)/∂x(i). such a derivative should be written as
∂yT /∂x in which case it is the Jacobian matrix of y wrt x. its determinant
represents the ratio of the hypervolume dy to that of dx so that

∫
f(y)dy =∫

f(y(x))|∂yT /∂x|dx. however, the sloppy forms ∂y/∂x, ∂yT /∂xT and
∂y/∂xT are often used for this Jacobain matrix.

0.6 derivatives of vector/matrix forms

∂(X−1)
∂z

= −X−1∂X
∂z

X−1 (6a)

∂(Ax)
∂z

= A
∂x
∂z

(6b)

∂(XY)
∂z

= X
∂Y
∂z

+
∂X
∂z

Y (6c)

∂(AXB)
∂z

= A
∂X
∂z

B (6d)

∂(xTA)
∂x

= A (6e)

∂(xT )
∂x

= I (6f)

∂(xTAxxT )
∂x

= (A + AT )xxT + xTAxI (6g)

0.7 constrained maximization

the maximum over x of the quadratic form:

µTx− 1
2
xTA−1x (7a)

subject to the J conditions cj(x) = 0 is given by:

Aµ+ ACΛ, Λ = −4(CTAC)CTAµ (7b)

where the jth column of C is ∂cj(x)/∂x

0.8 symmetric matrices

have real eigenvalues, though perhaps not distinct and can always be diag-
onalized to the form:

A = CΛCT (8)
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where the columns of C are (orthonormal) eigenvectors (i.e. CCT = I) and
the diagonal of Λ has the eigenvalues

0.9 block matrices

for conformably partitioned block matrices, addition and multiplication is
performed by adding and multiplying blocks in exactly the same way as
scalar elements of regular matrices
however, determinants and inverses of block matrices are very tricky; for 2
blocks by 2 blocks the results are:∣∣∣∣A11 A12

A21 A22

∣∣∣∣ = |A22| · |F11| = |A11| · |F22| (9a)[
A11 A12

A21 A22

]−1

=
[

F−1
11 −A−1

11 A12F−1
22

−F−1
22 A21A−1

11 F−1
22

]
(9b)

=
[
A−1

11 + A−1
11 A12F−1

22 A21A−1
11 −F−1

11 A12A−1
22

−A−1
22 A21F−1

11 A−1
22 + A−1

22 A21F−1
11 A12A−1

22

]
where

F11 = A11 −A12A−1
22 A21 F22 = A22 −A21A−1

11 A12

for block diagonal matrices things are much easier:∣∣∣∣A11 0
0 A22

∣∣∣∣ = |A11||A22| (9d)[
A11 0
0 A22

]−1

=
[
A−1

11 0
0 A−1

22

]
(9e)

0.10 matrix inversion lemma (sherman-morrison-woodbury)

using the above results for block matrices we can make some substitutions
and get the following important results:

(A + XBXT )−1 = A−1 −A−1X(B−1 + XTA−1X)−1XTA−1 (10)

|A + XBXT | = |B||A||B−1 + XTA−1X| (11)

where A and B are square and invertible matrices but need not be of the
same dimension. this lemma often allows a really hard inverse to be con-
verted into an easy inverse. the most typical example of this is when A is
large but diagonal, and X has many rows but few columns
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