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Abstract

Randomly connected recurrent neural circuits have proweelbet very powerful
models for online computations when a trained memoryleadaet function is
appended. SucReservoir Computing (RC) systems are commonly used in two
flavors: with analog or binary (spiking) neurons in the reeut circuits. Previous
work showed a fundamental difference between these twarnatans of the RC
idea. The performance of a RC system built from binary nesismems to depend
strongly on the network connectivity structure. In netwoif analog neurons
such dependency has not been observed. In this article wstigate this appar-
ent dichotomy in terms of the in-degree of the circuit nodesr analyses based
amongst others on the Lyapunov exponent reveal that thepreassition between
ordered and chaotic network behavior of binary circuitsligat@vely differs from
the one in analog circuits. This explains the observed @see computational
performance of binary circuits of high node in-degree. FRemnore, a novel
mean-field predictor for computational performance isadtrced and shown to
accurately predict the numerically obtained results.

1 Introduction

In 2001, Jaeger [1] and Maass [2] independently introdubedidea of using a fixed, randomly
connected recurrent neural network of simple units as afdesis filters (operating at the edge-of-
stability where the system has fading memory). A memoryleadout is then trained on these basis
filters in order to approximate a given time-invariant targgerator with fading memory [2]. Jaeger
used analog sigmoidal neurons as network units and nameddHtel Echo State Network (ESN).
Maass termed the idea Liquid State Machine (LSM) and mosteofelated literature focuses on net-
works of spiking neurons or threshold units. Both ESNs anlfls @re special implementations of a
concept now generally termed Reservoir Computing (RC) iwkidosumes the idea of using general
dynamical systems (e.g. a network of interacting opticapléiars [3]) — the so-called reservoirs
— in conjunction with trained memoryless readout functiasscomputational devices. These RC
systems have already been used in a broad range of applisétifien outperforming other state-of-
the-art methods) such as chaotic time-series predictiprsidgle digit speech recognition [5], and
robot control [6].

Although ESNs and LSMs are based on very similar ideas (aagatications it seems possible to
switch between both approaches without loss of perform@riyen apparent dichotomy exists in
the influence of the reservoir’s topological structure @cibmputational performance. The perfor-
mance of an ESN using analog, rate-based neurons, is gglyldamdependent of the sparsity of the



network [8] or the exact network topology such as small-diant scale-free connectivity graphs
For LSMs, which consist of spiking or binary units, the oppoeffect has been observed. For the
latter systems, the influence of introducing e.g. smalllvor biologically measured lamina-specific
cortical interconnection statistics [9] clearly leads toiacrease in performance. In the results of
[10] it can be observed (although not specifically statedehtihat for networks of threshold units
with a simple connectivity topology of fixed in-degree peuran, an increase in performance can
be found for decreasing in-degree. None of these effectbeaaproduced using ESNs.

In order to systematically study this fundamental differemetween binary (spiking) LSMs and
analog ESNs, we close the gap between them by introducingdn Ba class of models termed
guantized ESNs. The reservoir of a quantized ESN is definednaswork of discrete units, where
the number of admissible states of a single unit is conulolg a parameter called quantization
level. LSMs and ESNs can be interpreted as the two limitirgesaf quantized ESNs for low and
high quantization level respectively. We numerically sttite influence of the network topology in
terms of the in-degree of the network units on the computatiperformance of quantized ESNs for
different quantization levels. This generalizes and syg&tes previous results obtained for binary
LSMs and analog ESNSs.

In Sec. 3 the empirical results are analyzed by studying yfa@iinov exponent of quantized ESNSs,
which exhibits a clear relation to the computational perfance [11]. It is shown that for ESNs

with low quantization level, the chaos-order phase tramsis significantly more gradual when the

networks are sparsely connected. It is exactly in this ftexmsregime that the computational power
of a Reservoir Computing system is found to be optimal [1HisTeffect disappears for ESNs with

high quantization level. A clear explanation of the influerd the in-degree on the computational
performance can be found by investigating the rank measesepted in [11]. This measure charac-
terizes the computational capabilities of a network asdetraff between the so-called kernel quality
and the generalization ability. We show that for highly cectied reservoirs with a low quantization

level the region of an efficient trade-off implying high peminance is narrow. For sparser networks
this region is shown to broaden. Consistently for high gization levels the region is found to be

independent of the interconnection degree.

In Sec. 4 we present a novel mean-field predictor for commutat power which is able to reproduce
the influence of the topology on the quantized ESN model. i¢leted to the predictor introduced
in [10], but it can be calculated for all quantization leyed®id can be determined with a signifi-
cantly reduced computation time. The novel theoreticalsugamatches the experimental and rank
measure findings closely.

2 Online Computations with Quantized ESNs

We consider networks a¥ neurons with the state variabtgt) = (21 (t),...,znx(t)) € [—1, +1]V

in discrete timet € Z. All units have an in-degree dk’, i.e. every unit; receives input fromik’
other randomly chosen units with independently identycdistributed (iid.) weights drawn from a
normal distribution\ (0, o%) with zero mean and standard deviation (SED)The network state is
updated according to:

N
ni(t+1) = (W0 g) | Do wiga () +u®) |

whereg = tanh is the usual hyperbolic tangent nonlinearity andenotes the input common to all
units. At every time step, the inputu(¢) is drawn uniformly from{—1, 1}. The functiony,,, (-) is
called quantization function for. bits as it maps fronf—1, 1) to its discrete rang§,,, of cardinality
2m:

22 Yz +1)] +1
Ym 1 (=1,1) = Sp, Ym(2) 1= : (2m ) -

Here |z | denotes the integer part of Due toy,, the variables;(t) are discrete (“quantized”) and
assume values i, = {(2k+1)/2™—1]k =0,...,2™—1} C (—1,1). The network defined above

1.

1Shown by results of unpublished experiments which have also beerigdy the lab of Jaeger through
personal communication.
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Figure 1: The performanceg..,(C,PAR;) for three different quantization levels = 1,3,6 is
plotted as a function of the network in-degrée and the weight STDr. The networks size is
N = 150, the results have been averaged over 10 circuijtgitial conditions and randomly drawn
input time series of length0?* time steps. The dashed line represents the numericallyndieted
critical line.

was utilized for online computations on the input strea). We consider in this article tasks where
the binary target output at timedepends solely on theinput bitsu(t—7—1), ..., u(t—7—n) for

a given delay parameter> 0, i.e., itis given byfr(u(t — 7 —1),...,u(t — 7 — n)) for a function
fre{fIf:{-1,1}" — {—1,1}}. In order to approximate the target output, a linear classdf
the formsign(Zf\L1 a,;2;(t) +b) is applied to the instantaneous network stetg. The coefficients
«; and the bia$ were trained via a one-shot pseudo-inverse regressionométh The RC system
consisting of the network and the linear classifier is ca#leplantized ESN of quantization level

in the remainder of this paper.

We assessed the computational capabilities of a given metvesed on the numerically determined
performance on an example task, which was chosen to be-ttedayed parity function ofi bits
PAR,, -, i.e. the desired output at timés PAR,, - (u,t) = [[;—, u(t — 7 — i) foradelayr > 0 and

n > 1. A separate readout classifier is trained for each comluinadf » andr, all using the same
reservoir. We define.,,, quantifying the performance of a given circditon thePAR,, task as:

o0

Pexp(C,PAR,,) := Y k(C,PAR,,,), 1)
7=0

wherex(C, PAR,, ;) denotes the performance of circditon thePAR,, ; task measured in terms
of Cohen’s kappa coefficieht The performance results f®AR,, can be considered representative
for the general computational capabilities of a ciralitas qualitatively very similar results were
obtained for theAND,, task ofrn bits and random Boolean functions:obit (results not shown).

In Fig. 1 the performancee.,(C, PARs) is shown averaged over 10 circuifsfor three different
quantization levelsn = 1,3,6. pex,(C,PAR5) is plotted as a function of the network in-degree
K and the logarithri of the weight STDo. Qualitatively very similar results were obtained for
different network graphs with e.g. Poisson or scale-fragrithiuted in-degree with averagé (results
not shown). A numerical approximation of the critical liries. the order-chaos phase transition,
is also shown (dashed line), which was determined by theabat estimation of the Lyapunov
coefficient. The critical line predicts the zone of optimal performameall for m = 1, but is less
accurate for ESNs withh = 3, 6. One can see that for ESNs with low quantization levels£ 1, 3),
networks with a small in-degre& reach a significantly better peak performance than thode wit

2 is defined agc — ¢;)/(1 — ;) wherec is the fraction of correct trials ang is the chance level. The sum
in eq. (1) was truncated at= 8, as the performance was negligible for higher delays 8 for the network
size N = 150.

3All logarithms are taken to the basis 10, ileg = log,, if not stated otherwise.

“The Lyapunov coefficienh was determined in the following way. After 20 initial simulation steps the
smallest admissible (fan) state difference,(m) = 2'~™ was introduced in a single network unit and the
resulting state differenc&after one time step was measured averaged tetrials with randomly generated
networks, initial states and input streams. The initial states of all neurersiwd. uniformly overS,,,. A was
then determined by = In(§/d0(m)).
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Figure 2: Phase transitions in binary networks £ 1) differ from phase transition in high resolu-
tion networks {n = 6). An empirical estimate\ of the Lyapunov exponent is plotted as a function
of the STD of weights for in-degreeds = 3 (solid), K = 12 (dashed), and = 24 (gray line). In
order to facilitate comparison, the plot for eakhis centered arounibg (o) whereoy is the STD

of weights for which)\ is zero (i.e.,o is the estimated criticat value for thatK’). The transition
sharpens with increasing for binary reservoir§A), whereas it is virtually independent &f for
high resolution reservoir).

high in-degree. The effect disappears for a high quantindgvel (n = 6). This phenomenon is
consistent with the observation that network connectisttycture is in general an important issue
if the reservoir is composed of binary or spiking neuronslbes important if analog neurons are
employed. Note that fom = 3,6 we see a bifurcation in the zones of optimal performance lwhic
is not observed for the limiting cases of ESNs and LSMs.

3 Phase Transitions in Binary and High Resolution Networks

Where does the difference between binary and high resoluéieervoirs shown in Fig. 1 originate
from? It was often hypothesized that high computational grow recurrent networks is located in
a parameter regime near the critical line, i.e., near thesgli@nsition between ordered and chaotic
behavior (see, e.g., [12] for a review; compare also thegperince with the critical line in Fig.
1). Starting from this hypothesis, we investigated whethemetwork dynamics of binary networks
near this transition differs qualitatively from the one dglmresolution networks. We estimated the
network properties by empirically measuring the Lyapungpanent\ with the same procedure as
in the estimation of the critical line in Fig. 1 (see text abpvHowever, we did not only determine
the critical line (i.e., the parameter values where thenggtied Lyapunov exponent crosses zero), but
also considered its values nearby. For a given in-degiea can then be plotted as a function of
the STD of weightsr (centered at the critical valug, of the STD for thatK). This was done for
binary (Fig. 2A) and high resolution networks (Fig. 2B) aiod K = 3,12, and24. Interestingly,
the dependence of on the STDo near the critical line is qualitatively quite different leten the
two types of networks. For binary networks the transitioedraes much sharper with increasing
K which is not the case for high resolution networks. How cas ¢harp transition explain the
reduced computational performance of binary ESNs with lgtlegreeK? The tasks considered
in this article require some limited amount of memory whiasho be provided by the reservoir.
Hence, the network dynamics has to be located in a regimeennemory about recent inputs is
available and past input bits do not interfere with that mgmntuitively, an effect of the sharper
phase transition could be stated in the following way. Fer o(i.e., in the ordered regime), the
memory needed for the task is not provided by the reservainwA increase, the memory capacity
increases, but older memories interfere with recent onegjmg it hard or even impossible to extract
the relevant information. This intuition is confirmed by aralysis which was introduced in [11] and
which we applied to our setup. We estimated two measureseafetbervoir, the so called “kernel-
quality” and the “generalization rank”, both being the rasfka matrix consisting of certain state
vectors of the reservoir. To evaluate the kernel-qualitthefreservoir, we randomly dre = 150
input streamsi (+), ..., un(-) and computed the rank of th€ x N matrix whose columns were
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Figure 3: Kernel-quality and generalization rank of quzedi ESNs of sizéV = 150. Upper plots
are for binary reservoirsif = 1bit), lower plots for high resolution reservoirsi(= 6 bit). A) The
difference between the kernel-quality and the generatimatank as a function of the log STD of
weights and the in-degrek. B) The kernel-quality (solid), the generalization rank (debhand
the difference between both (gray line) f&f = 3 as a function ofog(c). C) Same as panel B,
but for an in-degree o’ = 24. In comparison to panel B, the transition of both measuresuish
steeper.D,E,F) Same as panels A, B, and C respectively, but for a high résalueservoir. All
plotted values are means over 100 independent runs wittoralyddrawn networks, initial states,
and input streams.

the circuit states resulting from these input stredmatuitively, this rank measures how well the
reservoir represents different input streams. The geizatain rank is related to the ability of the
reservoir-readout system to generalize from the trainiaig do test data. The generalization rank is
evaluated as follows. We randomly dreW input streamsi; (+), ..., ax(-) such that the last three
input bits in all these input streams were identftalhe generalization rank is then given by the
rank of theN x N matrix whose columns are the circuit states resulting frbesé input streams.
Intuitively, the generalization rank with this input didtion measures how strongly the reservoir
state at time is sensitive to inputs older than three time steps. The rasésures calculated here
will thus have predictive power for computations which regqunemory of the last three time steps
(see [11] for a theoretical justification of the measures).géneral, a high kernel-quality and a
low generalization rank (corresponding to a high abilitytied network to generalize) are desirable.
Fig. 3A and D show the difference between the two measuresiascéion oflog(o) and the in-
degreeK for binary networks and high resolution networks respetyiv The plots show that the
peak value of this difference is decreasing wikhin binary networks, whereas it is independent
of K in high resolution reservoirs, reproducing the observetim the plots for the computational
performance. A closer look for the binary circuit &t = 3 and K = 24 is given in Figs. 3B and
3C. When comparing these plots, one sees that the transitiootlo measures is much steeper for
K = 24 than forK' = 3 which leads to a smaller difference between the measuremtéfpret this
finding in the following way. For' = 24, the reservoir increases its separation power very fast as
log(o) increases. However the separation of past input diffeieimeaeases likewise and thus early
input differences cannot be distinguished from late ondgs feduces the computational power of
binary ESN with large/X’ on such tasks. In comparison, the corresponding plots fr résolution
reservoirs (Figs. 3E and 3F) show that the transition skiftewer weight STDs> for larger K,
but apart from this fact the transitions are virtually ideat for low and highK values. Comparing

5The initial states of all neurons were iid. uniformly ow8f,. The rank of the matrix was estimated by
singular value decomposition on the network states after 15 time steps dagonu

®First, we drew each of the last three bit§13), . . ., 4(15) independently from a uniform distribution over
{—1,1}. For each input strear; (1), ..., u;(15) we drewa;(1),...,4;(12) independently from a uniform
distribution over{ —1, 1} and seti;(¢) = @(¢t) fort = 13,...,15.
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Figure 4: Mean-field predictas,, for computational power for different quantization leveisas a
function of the STDy of the weights and in-degre€. A) m = 1. B) m = 3. C) m = 6. Compare
this result to the numerically determined performapgg, plotted in Fig. 1.

Fig. 3D with Fig. 1C, one sees that the rank measure does natately predict the whole region
of good performance for high resolution reservoirs. It alses not predict the observed bifurcation
in the zones of optimal performance, a phenomenon that iedeped by the mean-field predictor
introduced in the following section.

4 Mean-Field Predictor for Computational Performance

The question why and to what degree certain non-autonomgnsntical systems are useful de-
vices for online computations has been addressed thealigtiomongst others in [10]. There, the

computational performance of networks of randomly cone@threshold gates was linked to their
separation property (for a formal definition see [2]): It v&dmwn that only networks which exhibit

sufficiently different network states for different instas of the input stream, i.e. networks that
separate the input, can compute complex functions of the istpeam. Furthermore, the authors in-
troduced an accurate predictor for the computational céipebfor the considered type of networks

based on the separation capability which was quantified gimple mean-field approximation of

the Hamming distance between different network states.

Here we aim at extending this approach to a larger class ofarks, the class of quantized ESNs
introduced above. However a severe problem arises wheatlgi@pplying the mean-field theory
developed in [10] to quantized ESNs with a quantizationlleve> 1: Calculation of the important
guantities becomes computationally infeasible as the sfadéce of a network grows exponentially
with m. Therefore we introduce a modified mean-field predictor Wwitan be efficiently computed
and which still has all desirable properties of the one ithiied in [10].

Suppose the target output of the network at timeis a function fr € F =

{fIf : {-1,1}" — {-1,1}} of then bits u(t — 7 — 1),...,u(t — 7 — n) of the input stream
u(-) with delay 7 as described in Sec. 2. In order to exhibit good performancearo arbitrary

fr € F, pairs of inputs that differ in at least one of thebits have to be mapped by the network
to different states at timé Only then, the linear classifier is able to assign the inpaitdiffer-

ent function values. In order to quantify this so-calledasegion property of a given network, we
introduce the normalized distandgk): It measures the average distance between two networks
statesx!(t) = (z}(t),..., 25 () andx?(t) = (23(¢),...,2%(t)) arising from applying to the
same network two input streams(-) andu? %) which only differ in the single bit at time— &, i.e.

u?(t — k) = —ul(t — k). Formally we defin

(k) = (%' () - (1))

The average.) is taken over all inputs!(-), u?(-) from the ensemble defined above, all initial
conditions of the network and all circuits. However, a good separation of thebits, i.e.d(k) >

0, 7 < k < n+ 7, is a necessary but not a sufficient condition for the abitythe network
to calculate the target function. Beyond this, it is desitleat the network “forgets” all (for the

"For vectorsx = (1,72, ...) € RY we use the Manhattan norix ||, := SN | |z
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Figure 5: Contributiong(2) (dotted) andi(oc) (solid gray) to the mean-field predictpg, (dashed
line) for different quantization levels: € {1, 6} and different in-degree& € {3, 24} as a function
of STD ¢ of the weights. The plots show slices of the 2d plots FAyahdC for constanti. A) For

m = 1 it can be seen that the regionlisg(c)-space with highi(2) and lowd(oo) is significantly
larger for K = 3 than for K’ = 24. B) Form = 6 this region is roughly independent of K except a
shift.

target function) irrelevant bita(t — k), ¥ > n + 7 of the input sufficiently fast, i.ed(k) ~ 0
for k > n + 7. We use the limit/(co) = limy_. d(k) to quantify this irrelevant separation which
signifies sensitivity to initial conditions (making the eegoir not time invariant). Hence, we propose
the quantityp., as a heuristic predictor for computational power:

Poo = max {d(2) — d(c0),0} .

As the first contribution t@., we chosed(2) as it reflects the ability of a network to perform a
combination of two mechanisms: In order to exhibit a highuedbrd(2) the network has to separate
the inputs at the time step- 2 and to sustain the resulting state distance via its recud@mmics

in the next time step— 1. We therefore considef(2) to be a measure for input separation on short
time-scales relevant for the target functign, is calculated using a mean-field model similar to the
one presented in [10] which itself is rooted in the anneafgat@ximation (AA) introduced in [13].

In the AA one assumes that the circuit connectivity and theesponding weights are drawn iid.
at every time step. Although being a drastic simplificatitthe AA has been shown to yield good
results in the large system size limif — oo. The main advantage @f,, over the the predictor
defined in [10] (the NM-separation) is that the calculatiérpg only involves taking the average
over one input stream (as thé(-) is a function ofu!(-)) compared to taking the average over two
independent inputs needed for the NM-separation, resyiltira significantly reduced computation
time.

In Fig. 4 the predictop., is plotted as a function of the ST® of the weight distribution and the
in-degreeK for three different values of the quantization level € {1,3,6}. When comparing
these results with the actual network performapgg (PAR) on thePAR-task plotted in Fig. 1 one
can see thap., serves as a reliable predictor fpg,,, of a network for sufficiently smalin. For
larger values ofn the predictop,, starts to deviate from the true performance. The domindetef
of the quantization level on the performance discussed in Sec. 2 is well reproduced byFor

m = 1 the in-degreek” has a considerable impact, i.e. for larfemaximum performance drops
significantly. Form > 2 however, for larger values df there also exists a region in the parameter
space exhibiting maximum performance.

The interplay between the two contributioi®) andd(co) of p., delivers insight into the depen-
dence ofpex, 0N the network parameters. A high valuedi®) corresponds to a good separation
of inputs on short time scales relevant for the target tagitpperty that is found predominantly in
networks that are not strongly input driven. A small valuelfo) guarantees that inputs on which
the target function assumes the same value are mapped toynestwork states and thus a linear
readout is able to assign them to the same class irresplgativineir irrelevant remote history. For
m = 1, as can be seen in Fig. 5 the regioriag(c) space where both conditions for good perfor-
mance are present decreases for growihgn contrast, forn > 2 a reverse effect is observed: for
increasingK the parameter range ferfulfilling the two opposing conditions for good performance
grows moderately resulting in a large region of high for high in-degreek’. This observation is
in close analogy to the behavior of the rank measure disduesgec. 3. Also note that,, predicts
the novel bifurcation effect also observed in Fig. 1.



5 Discussion

By interpolating between the ESN and LSM approaches to RE€wbrk provides new insights into
the question of what properties of a dynamical system leadpooved computational performance:
Performance is optimal at the order-chaos phase transaioth the broader this transition regime,
the better will the performance of the system be. We have ©oafl this hypothesis by several
analyses, including a new theoretical mean-field predittarcan be computed very efficiently. The
importance of a gradual order-chaos phase transition cexpthin why ESNs are more often used
for applications than LSMs. Although they can have very Emperformance on a given task
[7], it is significantly harder to create a LSM which operatéghe edge-of-chaos: the excitation
and inhibition in the network need to be finely balanced bsedtere tends to be a very abrupt
transition from an ordered to a epileptic state. For ESNsdwaw there is a broad parameter range
in which they perform well. It should be noted that the effefofjuantization cannot just be emulated
by additive or multiplicative iid. or correlated Gaussiasise on the output of analog neurons. The
noise degrades performance homogeneously and the difisen the influence of the in-degree
observed for varying quantization levels cannot be repcedu The finding that binary reservoirs
have superior performance for low in-degree stands in st@nitrast to the fact that cortical neurons
have very high in-degrees of ovép*. This raises the interesting question which properties and
mechanisms of cortical circuits not accounted for in thigchr contribute to their computational
power. In view of the results presented in this article, smathanisms should tend to soften the
phase transition between order and chaos.
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