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Reservoir computing (RC) systems are powerful models for online
computations on input sequences. They consist of a memoryless readout
neuron that is trained on top of a randomly connected recurrent neural
network. RC systems are commonly used in two flavors: with analog
or binary (spiking) neurons in the recurrent circuits. Previous work
indicated a fundamental difference in the behavior of these two imple-
mentations of the RC idea. The performance of an RC system built from
binary neurons seems to depend strongly on the network connectivity
structure. In networks of analog neurons, such clear dependency has
not been observed. In this letter, we address this apparent dichotomy by
investigating the influence of the network connectivity (parameterized
by the neuron in-degree) on a family of network models that interpolates
between analog and binary networks. Our analyses are based on a novel
estimation of the Lyapunov exponent of the network dynamics with the
help of branching process theory, rank measures that estimate the kernel
quality and generalization capabilities of recurrent networks, and a novel
mean field predictor for computational performance. These analyses
reveal that the phase transition between ordered and chaotic network
behavior of binary circuits qualitatively differs from the one in analog
circuits, leading to differences in the integration of information over short
and long timescales. This explains the decreased computational perfor-
mance observed in binary circuits that are densely connected. The mean
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field predictor is also used to bound the memory function of recurrent
circuits of binary neurons.

1 Introduction

The idea of using a randomly connected recurrent neural network for on-
line computations on an input sequence was independently introduced in
Jaeger (2001) and Maass, Natschläger, and Markram (2002). In these papers
the network activity is regarded as an “echo” of the recent inputs, and a
memoryless readout device is then trained in order to approximate from this
echo a given time-invariant target operator with fading memory (see Maass
et al., 2002), whereas the network itself remains untrained. Jaeger used ana-
log sigmoidal neurons as network units and named the model echo state
network (ESN). Maass termed the idea liquid state machine (LSM), and
most of the related literature focuses on networks of spiking neurons or
threshold units. Both ESNs and LSMs are special implementations of a con-
cept now generally called reservoir computing (RC), which subsumes the
idea of using general dynamical systems—for example, a network of inter-
acting optical amplifiers (Vandoorne et al., 2008) or an analog VLSI cellular
neural network chip (Verstraeten et al., 2008), the so-called reservoirs—in
conjunction with trained memoryless readout functions as computational
devices. These RC systems have been used in a broad range of applica-
tions (often outperforming other state-of-the-art methods) such as chaotic
time series prediction and nonlinear wireless channel equalization (Jaeger
& Haas, 2004), speech recognition (Verstraeten, Schrauwen, Stroobandt, &
Campenhout, 2005; Jaeger, Lukoševičius, Popovici, & Siewert, 2007), move-
ment analysis (Legenstein, Markram, & Maass, 2003), and robot control
(Joshi & Maass, 2005).

Although ESNs and LSMs are based on very similar ideas—and in appli-
cations it seems possible to switch between both approaches without loss
of performance (Verstraeten, Schrauwen, D’Haene, & Stroobandt, 2007), an
apparent dichotomy exists regarding the influence of the reservoir’s connec-
tivity on its computational performance. The performance of an ESN using
analog, rate-based neurons is largely independent of the sparsity of the
network (Jaeger, 2007) or the exact network topology such as small-world
or scale-free connectivity graphs.1 For LSMs, which consist of spiking or
binary units, a profoundly different effect has been observed: introducing
small-world or biologically measured lamina-specific cortical intercon-
nection statistics (Häusler & Maass, 2007) clearly leads to an increase

1Shown by results of unpublished experiments that have been reported by the lab of
Jaeger through personal communication. Of course, drastic topological changes such as
disconnecting all network units influence performance. Further, a specific class of (non-
normal) connectivity matrices with advantageous memory properties for linear systems
was characterized in Ganguli, Huh, and Sompolinsky (2008).
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in performance. Further, in the results of Bertschinger and Natschläger
(2004), it can be observed (although not specifically stated there) that
for networks of threshold gates with a simple connectivity topology of
fixed in-degree per neuron, an increase in performance can be found for
decreasing in-degree. None of these effects can be reproduced using ESNs.

In order to systematically study this fundamental difference between
binary (spiking) LSMs and analog ESNs in a unified framework, we close
the gap between these models by introducing in section 2 a class of models
termed quantized ESNs (qESNs). The reservoir of a quantized ESN is de-
fined as a network of discrete-valued units, where the number of admissible
states of a single unit is controlled by a parameter called state resolution,
which is measured in bits. A binary network (where the units have bi-
nary outputs) has a state resolution of 1, whereas high-resolution networks
(where the units provide high-resolution outputs) have high state resolu-
tions. LSMs and ESNs can thus be interpreted as the two limiting cases of
quantized ESNs for low and high state resolution, respectively. We briefly
describe the dynamics of qESNs, which exhibit ordered and chaotic be-
havior separated by a phase transition. Further, the concept of Lyapunov
exponents is discussed in the context of qESNs, and an approach to approx-
imately compute them for qESNs is introduced based on branching process
theory.

In section 3 we numerically study the influence of the network connec-
tivity parameterized by the in-degree of the network units on the computa-
tional performance of quantized ESNs for different state resolutions. This
generalizes and systemizes previous results obtained for binary LSMs and
analog ESNs.

In section 4 the empirical results are analyzed by studying the Lyapunov
exponent of qESNs, which exhibits a clear relation to the computational
performance (Legenstein & Maass, 2007a). We show that for binary qESNs,
the chaos-order phase transition is significantly more gradual when the
networks are sparsely connected. It is exactly in this transition regime that
the computational power of an RC system is found to be optimal (Legenstein
& Maass, 2007a). This effect disappears for high-resolution ESNs.

A clear explanation of the influence of the network connectivity on the
computational performance can be found by investigating the rank measure
presented in Legenstein and Maass (2007a). This measure characterizes
the computational capabilities of a network as a trade-off between the so-
called kernel quality and the generalization ability. We show that for highly
connected binary reservoirs, the region of an efficient trade-off implying
high performance is narrow. For sparser networks, this region is shown to
broaden. Consistently, for high-resolution networks, the region is found to
be independent of the interconnection degree.

In section 5 we present a novel mean field predictor for computational
power that is able to reproduce the influence of the connectivity on the qESN
model. This predictor is based on an estimation of the input separation
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property of a network, and it is a generalization of the predictor introduced
in Bertschinger and Natschläger (2004) as it can be calculated for general
(not just binary) qESNs and it can be determined with a significantly
reduced computation time. This enables us to study computational power
based on state separation for recurrent networks of nearly analog nonlinear
neurons. The novel theoretical measure matches the experimental and rank
measure findings closely. It describes high performance as an interplay
between input separation on different timescales revealing important
properties of RC systems necessary for good computational capabilities.

We investigate the relation of the mean field predictor to the memory
function of qESNs in section 6 and show that the latter is bounded by
a function of the input separation property. To our best knowledge, this
represents the first computationally feasible bound on the memory function
of nonlinear networks, since such bounds were previously derived only for
linear networks (White, Lee, & Sompolinsky, 2004; Jaeger, 2002; Ganguli
et al., 2008). Further, we investigate the scaling of the memory capacity and
the temporal capacity of binary qESNs with the network size yielding a
logarithmic dependence.

The numerical and theoretical finding that for binary qESNs the optimal
performance is observed for sparse connectivity is compared to experi-
mental results regarding the connectivity of neocortical microcircuits in
section 7 revealing an apparent discrepancy between the optimal parameter
values of the binary qESN model and experimental observations. Sparse
network activity, which is ubiquitous in biological spiking networks but
absent in the qESN model, is proposed as a possible mechanism that can
resolve this discrepancy.

2 Quantized ESNs and Their Dynamics

In this section the network model is defined that will later serve as the
dynamic reservoir for qESNs. The networks are reminiscent of random
Boolean networks (see Shmulevich, Dougherty, Kim, & Zhang, 2002) and
Kauffman networks (see Kauffman, 1969; Derrida & Stauffer, 1986) and ex-
hibit just like the latter two distinct dynamical regimes, the chaotic and the
ordered regime, depending on the choice of parameters. These two “phases”
are separated by an order-chaos (also termed order-disorder) phase transi-
tion (for general information on phase transitions, see Zinn-Justin, 2003).

2.1 Definition of the Network Model. We consider networks of N units
with the state variable x(t) = (x1(t), . . . , xN(t)) ∈ [−1,+1]N in discrete time
t ∈ Z. All units have an in-degree of K , that is, every unit i receives input
from K other randomly chosen units with independently and identically
distributed (i.i.d.) weights wi j drawn from a normal distribution N (0, σ 2)
with zero mean and standard deviation (STD) σ . All remaining weights
are defined as zero. Sample weight matrices (wi j )i, j∈{1,...,N} (constituting
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A B C

Figure 1: The quantized activation function ψm ◦ g for state resolutions m = 1
(A), m = 3 (B), and m = 6 (C). Networks with the m = 1 activation function,
which just assumes two different values, are termed binary reservoirs, whereas
networks with large m (here m = 6) are termed high-resolution reservoirs as
their units possess a large state space of 2m states. The discretization schema
was chosen such that states are equidistant and

∑2m

i=1 si p(si ) = 0 as well as∑2m

i=1 |si |p(si ) = 1/2 independent of the state resolution m assuming a uniform
distribution over the single unit state space p(si ) = 2−m.

concrete networks or circuits) from this distribution will be denoted by C .
The network state is updated according to

xi (t + 1) = (ψm ◦ g)

⎛
⎝ N∑

j=1

wi j x j (t) + u(t)

⎞
⎠ , (2.1)

where g = tanh is the usual hyperbolic tangent nonlinearity and u denotes
the input sequence common to all units. At every time step t, the input
u(t) is drawn uniformly from {−1, 1}. The function ψm is called quantiza-
tion function for m bits as it maps from (−1, 1) to its discrete range Sm of
cardinality 2m:

ψm : (−1, 1) → Sm, ψm(x) := 2�2m−1(x + 1)� + 1
2m

− 1.

Here �x� denotes the integer part of x. Due to ψm, the variables xi (t) are dis-
crete (quantized) and assume values in the state space Sm = {s1, . . . , s2m} ⊂
(−1, 1) with sk := (2k − 1)/2m − 1. Three examples of the quantized activa-
tion function ψm ◦ g for state resolutions m = 1, 3, 6 are shown in Figure 1.

Depending on the parameters m, K , and σ , the system defined by
equation 2.1 shows two qualitatively different behaviors, ordered and
chaotic dynamics, which are separated in the parameter space by a sharp
boundary, often called the critical line, where a phase transition takes place.
The ordered (also called “frozen”) and chaotic regimes are defined via the
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average damage spreading properties (sensitivity to perturbations of initial
conditions) of the networks (Derrida & Pomeau, 1986; Derrida & Stauffer,
1986; Bertschinger & Natschläger, 2004). One considers the temporal evolu-
tion of the average distance H(t) = 〈‖x1(t) − x2(t)‖〉C,u between two states
x1(t) and x2(t) at time t evolving from initial conditions that differ in a single
unit at time 0. Here ‖ · ‖ denotes some norm in R

N; for example, the p-1
norm ‖ · ‖1 and 〈·〉C,u denotes the average over networks C (with the same
parameters m, σ, K ), initial perturbations and input sequences u. A set of
parameters m, K , σ is in the ordered phase if limt→∞ H(t) =: H∗ = 0, that is,
if perturbations in the initial conditions H(0) eventually die out. Parameter
sets with H∗ > 0 are in the chaotic regime where the initial “damage” H(0)
persists and influences the network state for all later times. Hence H∗ can
be considered an order parameter of the phase transition as it is zero in one
phase and larger than zero in the other. Examples for the behavior of H∗

for state resolutions m = 1, 3, 6 and varying parameters σ and K are shown
in Figure 2, exhibiting the characteristic behavior of a phase transition.

The state distance H(t) also allows the introduction of a heuristic measure
for the speed of divergence of trajectories in discrete time and discrete
state-space systems. We term this measure Lyapunov exponent λ as it is
reminiscent of the maximal Lyapunov exponent in systems with continuous
(see Katok & Hasselblatt, 1995) and binary state space (see Luque & Solé,
2000). It is defined by

λ = lim
T→∞

1
T

ln
(

H(T)
H(0)

)
. (2.2)

In the ordered regime, we have λ < 0, while λ > 0 holds for chaotic dynam-
ics. The above definition of λ makes sense only for infinitely large systems.

In finite size systems, we characterize the speed of divergence of nearby
trajectories by a numerical estimation λexp of the Lyapunov exponent that
was determined in the following way. After 20 initial simulation steps, the
smallest admissible (for m) state difference δ0(m) = 21−m was introduced in
a single network unit, and the resulting state difference δ after one time step
was measured averaged over 105 trials with randomly generated networks
and initial states. The initial states of all neurons were i.i.d. uniformly over
Sm. The estimation λexp was then determined by λexp = ln(δ/δ0(m)). This
one-step approximation of λ is expected to produce accurate results for large
networks with sparse connectivity where all “damages” spread indepen-
dently through the network. It is shown below that even at a network size
of N = 150, λ and λexp agree well for a large regime of network parameters.

2.2 Lyapunov Exponents via Branching Processes. Besides estimating
the Lyapunov exponent defined in equation 2.2 using the scheme for finite
size systems described above, it can be calculated for infinitely large systems



1278 L. Büsing, B. Schrauwen, and R. Legenstein

A m = 1 B m = 3 C m = 6

D ordered E critical F chaotic

Figure 2: Phase transitions in randomly connected networks with dynamics
defined by equation 2.1. (A–C) Shown is the fixed point H∗/N of the normalized
distance H(t)/N between two states evolving from different initial conditions in
networks with N = 500 units for three state resolutions m = 1, 3, 6 and varying
in-degree K and weight standard deviation σ . The abrupt change in the values of
H∗ for different parameters is characteristic for a phase transition. Shown results
are averages over 500 circuits (with a single random input sequence each). The
initial perturbation H(0) was chosen as the smallest admissible perturbation (for
the specific m) in a single unit, and H∗ was measured after 100 update steps.
(D–F) Evolution of the state xi (t) of 75 out of N = 500 units from a network
with m = 3 and K = 3 for log(σ ) = −0.5 (D), log(σ ) = 0 (E), and log(σ ) = 0.5
(F) showing ordered, critical, and chaotic dynamics respectively.

N → ∞ under the annealed approximation (AA) using results from the
theory of multitype branching processes (see Athreya & Ney, 1972). In the
AA that was introduced in Derrida and Pomeau (1986), one assumes that
the circuit connectivity and the corresponding weights are drawn i.i.d. at
every time step. Although being a drastic simplification, the AA has been
shown in various studies (see Derrida & Pomeau, 1986; Bertschinger &
Natschläger, 2004; White et al., 2004) to be a powerful tool for investigating
network dynamics yielding accurate results for large system sizes N;
hence, its application is well justified in the limit N → ∞ considered
here. Branching process theory has already been applied in theoretical
neuroscience to describe the temporal and spatial dynamics of neural
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activity (see Beggs & Plenz, 2003; Vogels, Rajan, & Abbott, 2005). Here we
propose a novel approach by applying branching process theory to study
the evolution of perturbations of network states, allowing the approximate
evaluation of the Lyapunov spectrum of the network model defined above.

Let Sm = {s1, . . . , s2m} denote the single unit state space with a state
resolution m. Consider two states x1(t) and x2(t) of the same infinitely
large network (that evolved from different initial conditions). We say
that there is a perturbation of type si → s j at time t (of x1(t) relative to
x2(t)) if there is a network unit, with some index l ∈ N, which is in the
state si in x1(t) and in the state s j in x2(t), that is, x1

l (t) = si and x2
l (t) = s j .

Assuming the AA, the neuron indices can be permuted arbitrarily (as
the weight matrix is regenerated at every time step), and hence the
difference between the two states x1(t) and x2(t) is fully described by
counting the perturbations of all types. Now let x1(t) and x2(t) differ in n
coordinates, which can, without loss of generality, be assumed to be the
first n coordinates, that is, x1

i (t) = sai �= x2
i (t) = sbi with ai , bi ∈ {1, . . . , 2m}

for i = 1, . . . , n and x1
i (t) = x2

i (t) for i > n. These n perturbations of types
sa1 → sb1 , . . . , san → sbn at time t cause perturbations in the next time
step t + 1. Because of the finite in-degree K and the infinite system size
N = ∞, these n perturbations give rise to descendant perturbations at
t + 1 independently. Therefore this system is equivalent to a multitype
branching process with 2m · (2m − 1) types (diagonal perturbations sa → sa

do not contribute), a mathematical model that has been extensively studied
(see Athreya & Ney, 1972). The multitype branching process describing the
perturbation spreading in the considered network is fully specified by pα,β

i, j
for α, β, i, j = 1, . . . , 2m denoting the probability of a sα → sβ perturbation
to cause a si → s j perturbation per outgoing link in the next time step which
can be explicitly calculated using the AA (see appendix A). When the results
from branching theory (see Athreya & Ney, 1972) are applied, the maximal
Lyapunov exponent λ defined in equation 2.2 is given by the logarithm
of the largest eigenvalue (being the Perron root) of the matrix M, whose
entries Mα+2mβ,i+2m j = K · pα,β

i, j denote the mean number of descendants of
type si → s j caused by a sα → sβ perturbation. Branching processes with
λ < 0 are called subcritical, corresponding to ordered dynamics, implying
that all perturbations eventually die out with probability 1, whereas the
case λ > 0 is termed supercritical, corresponding to chaotic dynamics,
implying exponential growth of the number of perturbations on average.
For m > 1, there is more than one eigenvalue of M giving rise to a Lyapunov
spectrum λi for i = 1, . . . , 2m−1(2m − 1) with λi ≥ λi+1 and λ1 = λ.

In Figure 3 the numerically determined Lyapunov exponent λexp (for
N = 150), the largest Lyapunov exponent λ as well as the second largest
one λ2 (for m �= 1) obtained by branching process theory are plotted as a
function of the weight STD σ for K = 24 and three different state resolutions
m = 1, 3, 6. It can be observed that as long as λ2 < 0, the branching process
exponent λ predicts well the numerically determined exponent λexp. For
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A m = 1 B m = 3 C m = 6

Figure 3: The numerically determined Lyapunov exponent λexp (for N = 150),
the largest and second-largest Lyapunov exponents λ and λ2 (for m �= 1) ob-
tained by branching process theory, are plotted as a function of the weight scale
σ for K = 24 and three different state resolutions: m = 1, 3, 6. If λ2 < 0, λ and
λexp agree well, whereas λexp is larger than λ for weight scales σ with λ2 > 0.
This can be explained by the fact that λexp measures the total rate of perturbation
growth, which is governed by all positive Lyapunov exponents, in particular
by λ and λ2.

λ2 > 0, λexp is larger than λ, as in this case, λ2 also contributes to the total
growth rate of the number of perturbations, which is numerically estimated
by λexp. Hence it can be concluded that the Lyapunov spectrum determined
by branching process theory using the AA characterizes the perturbation
dynamics in the case of finite-size systems quite accurately.

3 Online Computations with Quantized ESNs

In this section we numerically investigate the capabilities of the networks
defined in section 2 for online computations on the binary input sequence u
using the RC approach; the networks are augmented by a trainable readout
device, which in our context is a simple linear classifier. In this letter we con-
sider tasks where the binary target output at time t depends solely on n input
bits in the recent past, that is, on the n input bits u(t − τ − 1), . . . , u(t − τ − n)
for given n ≥ 1 and delay parameter τ ≥ 0. More precisely, the target out-
put is given by fT (u(t − τ − 1), . . . , u(t − τ − n)) for a function fT ∈ { f | f :
{−1, 1}n → {−1, 1}}. In order to approximate the target output at time t, a
linear classifier with the output sign(

∑N
i=1 αi xi (t) + b) at time t is applied to

the instantaneous network state x(t). The coefficients αi and the bias b were
trained via a pseudo-inverse regression method (see Jaeger, 2001). The RC
system consisting of a network defined by equation 2.1 with parameters
m, K , σ and a linear classifier is called a quantized ESN (qESN) of state
resolution m in the remainder of this letter.

We assessed the computational capabilities of a given network C based
on the numerically determined performance on an example task, which
was chosen to be the τ -delayed parity function of n bits PARn,τ , that is, the
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desired output at time t is PARn,τ (u, t) = ∏n
i=1 u(t − τ − i) for a delay τ ≥ 0

and n ≥ 1. A separate readout classifier is trained for each combination of
n and τ , all using the same network C as reservoir. We define pexp, which
quantifies the experimentally determined computational performance of a
given circuit C on the PARn task, as

pexp(C, PARn) :=
∞∑

τ=0

κ(C, PARn,τ ). (3.1)

Here κ(C, PARn,τ ) ∈ [0, 1] denotes the performance of circuit C on the
PARn,τ task measured in terms of Cohen’s kappa coefficient (where 0 cor-
responds to chance and 1 to optimal performance).2 To facilitate intuition,
in Figure 13 in appendix B, the dependence of Cohen’s kappa coefficient
on the delay τ and the network size N is illustrated for two different pa-
rameter settings. According to its definition, the performance measure pexp

sums up the kappa coefficients for all delays τ . For example, a network C
that operates optimally for delays τ = 0, . . . , 2 on a given TASKn and at
chance level for other delays will have pexp(C, TASKn) = 3. Extensive nu-
merical experiments indicate that the performance results for PARn can be
considered quite representative of the general computational capabilities
of a circuit C of the considered type, as qualitatively very similar results
were obtained for numerous classification tasks with two classes as well as
for pexp(C, RANDn) denoting the performance averaged over 50 randomly
chosen functions fT of n bits.

In Figure 4 the performances pexp(C, PAR3), pexp(C, PAR5) averaged over
20 circuits C , and pexp(C, RAND5) averaged over 50 circuits C , and random
tasks for three different state resolutions m = 1, 3, 6 are shown. The results
are plotted as functions of the network in-degree K and the logarithm of the
weight STD σ .3 Qualitatively very similar results were obtained for network
graphs with binomial or scale-free distributed in-degree with average K
(results not shown). The critical line (i.e., the location of the order-chaos
phase transition) is also shown (dashed black line), which was determined
by the root of the largest Lyapunov exponent λ given by the branching
process approach outlined in the previous section. Further, the root of the
second largest Lyapunov exponent λ2 is plotted (dashed white line). The
critical line predicts the zone of optimal performance well for m = 1 but is
less accurate for ESNs with m = 3, 6. The root of λ2 gives a quite reliable
upper bound for the weight STD σ , that is, all networks with a σ for which
λ2 > 0 are too chaotic to exhibit good performance measures pexp. One can

2κ is defined as (c − cl )/(1 − cl ) where c is the fraction of correct trials and cl is the
chance level. The sum in equation 3.1 was truncated at τ = 15, as the performance was
negligible for higher delays τ > 15 for the network size N = 150.

3All logarithms are taken to the basis 10 (log = log10) if not stated otherwise.
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Figure 4: The performance pexp(C, PAR3) (top row), pexp(C, PAR5) (middle row),
and pexp(C, RAND5) (bottom row) for three different state resolutions m = 1
(column A), m = 3 (column B), and m = 6 (column C) is plotted as a function of
the network in-degree K and the weight STD σ . Further, the zero crossing of the
largest Lyapunov exponent λ (the critical line, black dashed line) as well as of
the second largest one λ2 (for m �= 1, white dashed line) are shown. The network
size is N = 150, the results pexp(C, PAR5) have been averaged over 20 circuits
C , initial conditions, and randomly drawn input time series of length 104 time
steps. For pexp(C, RAND5), results have been averaged over 50 random tasks
of 5 bit, circuits C , initial conditions, and randomly drawn input time series of
length 104 time steps.
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see that for ESNs with low state resolutions (m = 1, 3), networks with a
small in-degree K reach a significantly better peak performance than those
with high in-degree. The effect disappears for a high state resolution (m =
6). This phenomenon is consistent with the observation that the network
connectivity structure is in general an important issue if the reservoir is
composed of binary or spiking neurons but less important if analog neurons
are employed. The performance landscapes for analog networks (m = ∞)
exhibit qualitatively the same key feature as the ones of high-resolution
networks (high performance can be found for all in-degrees by scaling σ )
but differ quantitatively from the latter (the region of high performance
is generally broader; results not shown). Note that for m = 3, 6, we see a
bifurcation in the zones of optimal performance that is not observed for the
limiting cases of ESNs and LSMs.

4 Phase Transitions in Quantized ESNs

In this section, we examine the phase transition between ordered and
chaotic dynamics in quantized ESNs in order to explain the difference
between binary and high-resolution reservoirs shown in Figure 4. It
was often hypothesized that systems with high computational power in
recurrent networks are located in a parameter regime near the critical line,
that is, near the phase transition between ordered and chaotic behavior
(see, e.g., Legenstein & Maass, 2007b, for a review; compare also the perfor-
mance with the critical line in Figure 4). Starting from this hypothesis, we
investigated whether the network dynamics of binary networks near this
transition differs qualitatively from the one of high-resolution networks.
We analyzed the network properties by considering the Lyapunov expo-
nent λ approximated by the branching process approach introduced above.
However, we not only determined the critical line (i.e., the parameter
values where the estimated Lyapunov exponent crosses zero), but also
considered its values nearby. For a given in-degree K , λ can then be plotted
as a function of the STD of weights σ (centered at the critical value σ0 of
the STD for that K ). This was done for binary (m = 1; see Figure 5A) and
high-resolution networks (m = 6; see Figure 5B) with in-degrees K = 3, 12,

and 24. Interestingly, the dependence of λ on the STD σ near the critical
line is qualitatively quite different between the two types of networks.
For binary networks, the transition becomes much sharper with increasing
in-degree K , which is not the case for high-resolution networks. These
observations are confirmed by investigation of the numerically determined
Lyapunov exponent λexp (plotted as dotted lines in Figure 5), which agrees
accurately with λ in the considered parameter regime.

How can this sharp transition between ordered and chaotic dynamics
of binary ESNs with high in-degree K explain their reduced computa-
tional performance? The tasks considered in this letter require some limited
amount of memory, which has to be provided by the reservoir. Hence,
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Figure 5: Phase transitions in binary networks (m = 1) differ from phase tran-
sitions in high-resolution networks (m = 6). The branching process approx-
imation λ of the largest Lyapunov exponent is plotted as a function of the
STD of weights σ for in-degrees K = 3 (light gray), K = 12 (gray), and K = 24
(dark gray). Further, the corresponding finite-size estimations λexp (evaluated
for N = 150) are shown (dotted black). In order to facilitate comparison, the
plot for each K is centered around log(σ0), where σ0 is the STD of weights for
which λ is zero (i.e., σ0 is the estimated critical σ value for that K ). The transi-
tion sharpens with increasing K for binary reservoirs (A), whereas it is virtually
independent of K for high-resolution reservoirs (B).

the network dynamics has to be located in a regime where memory about
recent inputs is available and past input bits do not interfere with that mem-
ory. Intuitively, an effect of the sharper phase transition could be stated in
the following way. For low σ (i.e., in the ordered regime), the memory
needed for the task is not provided by the reservoir. With increasing σ , the
memory capacity increases, but older memories interfere with recent ones,
making it more difficult for the readout to extract the relevant information.
This intuition is confirmed by an analysis introduced in Legenstein and
Maass (2007a) that we applied to our setup. We estimated two measures of
the reservoir, the so-called kernel quality and the generalization rank, both
being the rank of a matrix consisting of certain state vectors of the reservoir.
These two measures quantify two complementary properties of a reservoir
with respect to the target function to be learned by the readout. For both
measures, one defines N different input streams u1(·), . . . , uN(·) and com-
putes the rank of the N × N matrix, the state matrix, whose columns are
the circuit states resulting from these input streams. The difference between
the kernel quality and the generalization rank arises from the choice of the
input streams. For the kernel quality, one chooses input streams that differ
strongly with respect to the target function (e.g., streams that belong to
different target classes). Since different input streams can be separated by
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a readout only if they are represented by the reservoir in a diverse manner,
it is desirable for the rank of the state matrix to be high in this case. For the
generalization rank, one chooses similar input streams (again with respect
to the target function). The rank of this state matrix should be small. The
generalization rank can be related via the VC-dimension (Vapnik, 1998) to
the ability of the reservoir-readout system to generalize from the training
data to test data of the system (see Legenstein & Maass, 2007a, for details).
In general, a high kernel quality and a low generalization rank (correspond-
ing to a high ability of the network to generalize) are desirable. A network
in the ordered regime will, however, have low values on both measures,
while a chaotic network will have high values on both measures. By the use
of these two separate measures, one can gain some insight into the different
factors that determine the computational power of a reservoir system, as
we will see below.

To evaluate the kernel quality of the reservoir, we randomly drew
N = 150 input streams u1(·), . . . , uN(·) and computed the rank of the N × N
matrix whose columns were the circuit states resulting from these input
streams.4 Intuitively, this rank measures how well the reservoir represents
different input streams. The generalization rank was evaluated as follows.
We randomly drew N input streams ũ1(·), . . . , ũN(·) such that the last three
input bits in all of these input streams were identical.5 The generalization
rank is then given by the rank of the N × N matrix whose columns are
the circuit states resulting from these input streams. Intuitively, the gen-
eralization rank with this input distribution measures how strongly the
reservoir state at time t is sensitive to inputs older than three time steps.
The rank measures calculated in this way thus have predictive power for
computations, which require memory of the last three time steps.

Figures 6A and 6D show the difference between the two measures as
a function of log(σ ) and K for binary networks and high-resolution net-
works, respectively. The plots show that the peak value of this difference
is decreasing with K in binary networks, whereas it is independent of K
in high-resolution reservoirs, reproducing the observations in the plots for
the computational performance in Figure 4. A closer look at the binary
circuit at K = 3 and K = 24 is given in Figures 6B and 6C. A comparison
of these plots shows that the transition of both measures is much steeper
for K = 24 than for K = 3, in agreement with the observed sharper phase
transition illustrated in Figure 5, which leads to a smaller difference between

4The initial states of all neurons were i.i.d. uniformly over Sm. The rank of the matrix
was estimated by singular value decomposition on the network states after 15 time steps
of simulation.

5First, we drew each of the last three bits ũ(13), . . . , ũ(15) independently from a uniform
distribution over {−1, 1}. For each input stream ũi (1), . . . , ũi (15), we drew ũi (1), . . . , ũi (12)
independently from a uniform distribution over {−1, 1} and set ũi (t) = ũ(t) for t =
13, . . . , 15.
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Figure 6: Kernel-quality and generalization rank of quantized ESNs of size
N = 150. Upper plots are for binary reservoirs (m = 1), lower plots for high-
resolution reservoirs (m = 6). (A) The difference between the kernel quality and
the generalization rank as a function of the log STD of weights and the in-
degree K . (B) The kernel quality (red), the generalization rank (blue), and the
difference between both (black) for K = 3 as a function of log(σ ). (C) Same as
B, but for an in-degree of K = 24. In comparison to B, the transition of both
measures is much steeper. (D, E, F) Same as A, B, and C , respectively, but for
a high-resolution reservoir. All plotted values are means over 100 independent
runs with randomly drawn networks, initial states, and input streams.

the measures. We interpret this finding in the following way. For K = 24,
the reservoir increases its separation power very fast as log(σ ) increases.
However, the separation of past input differences increases likewise, and
thus early input differences cannot be distinguished from later ones. This
reduces the computational power of binary ESNs with large K on the con-
sidered tasks. In comparison, the corresponding plots for high-resolution
reservoirs (see Figures 6E and 6F) show that the transition shifts to lower-
weight STDs σ for larger K , but apart from this fact, the transitions are
virtually identical for low and high K values. Comparing Figure 6D with
Figure 4C, one sees that the rank measure does not accurately predict the
whole region of good performance for high-resolution reservoirs. It also
does not predict the observed bifurcation in the zones of optimal perfor-
mance, a phenomenon reproduced by the mean field predictor introduced
in the following section.

5 Mean Field Predictor for Computational Performance

The question why and to what degree certain nonautonomous dynamical
systems are useful devices for online computations has been addressed the-
oretically, among others, in Bertschinger and Natschläger (2004). There, the
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computational performance of networks of randomly connected threshold
gates was linked to their separation property (for a formal definition, see
Maass et al., 2002). It was shown that only networks that exhibit sufficiently
different network states for different instances of the input stream (i.e.,
networks that separate the input), can compute complex functions of the
input stream. Furthermore, the authors introduced an accurate predictor of
the computational capabilities for the considered type of binary networks
based on the separation capability. The latter was numerically evaluated
by a simple mean field approximation of the Hamming distance between
different network states evolving from different input sequences.6

Here we aim at constructing a mean field predictor of computational
performance for qESNs, extending the approach of Bertschinger and
Natschläger (2004), which was viable only for binary networks. We use the
term predictor of computational power to indicate a quantity that strongly
correlates with experimental measures of computational power (e.g., pexp)
for varying parameters K and σ at fixed m. A predictor in the above sense
can be used to efficiently identify the dependence of the computational
power on the network parameters and gain theoretical insight into this
dependence.

Instead of a straightforward generalization of the predictor presented
in Bertschinger and Natschläger (2004), we make a somewhat different
ansatz for two reasons. First, we wish to simplify the form of the mean
field predictor. Second, a straightforward generalization turned out to be
computationally too expensive for quantized ESNs with a state resolution
m > 1. Therefore we introduce a modified mean field predictor, which can
be computed more efficiently and still has all desirable properties of the one
introduced in Bertschinger and Natschläger.

Suppose the target output of the network at time t is a function fT ∈
F = { f | f : {−1, 1}n → {−1, 1}} of the n bits u(t − τ − 1), . . . , u(t − τ − n) of
the input sequence u with delay τ as described in section 3. In order to
exhibit good performance on an arbitrary fT ∈ F , pairs of inputs that differ
in at least one of the n bits have to be mapped by the network to different
states at time t. Only then will the linear classifier be able to assign the
inputs to different classes (function values). In order to quantify this so-
called separation property of a given network, we introduce the normalized
distance d(k). It measures the average distance between two network states
x1(t) = (x1

1 (t), . . . , x1
N(t)) and x2(t) = (x2

1 (t), . . . , x2
N(t)) arising from applying

to the same network two input sequences u1 and u2 that differ only in the
single bit at time t − k, that is, u1(t − k) = −u2(t − k) and u1(τ ) = u2(τ ) for

6The theoretical approach presented in Bertschinger and Natschläger (2004) is not a
mean field theory in the strict sense of physics literature. However, due to the AA used in
Bertschinger and Natschläger, all network units receive recurrent inputs that are drawn
(independently) from the same distribution. This is why we adopt the term mean field and
apply it to our theoretical considerations.
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all τ �= t − k. Formally we define the k-step input separation d(k):7

d(k) = 1
N

〈‖x1(t) − x2(t)‖1〉C,u1 . (5.1)

The average 〈.〉C,u1 is taken over all inputs u1 (the input u2 is simply a
function of u1), all initial conditions of the network, and all circuits C with
given network parameters N, m, σ, K . However, a good separation of the n
relevant bits—d(k) � 0 for τ < k ≤ n + τ—is a necessary but not sufficient
condition for the ability of the network to calculate the target function. Be-
yond this, it is desired that the network “forgets” all (for the target function)
irrelevant bits u(t − k), k > n + τ of the input sufficiently quickly: d(k) ≈ 0
for k > n + τ . We use the limit d(∞) = limk→∞ d(k) to quantify this irrele-
vant separation, which can be considered as noise with regard to the target
function fT . Hence, we propose the quantity p∞ as a heuristic predictor for
computational power:

p∞ = max{d(2) − d(∞), 0}. (5.2)

As the first contribution to p∞, we chose d(2) as it reflects the ability of the
network to perform a combination of two mechanisms. In order to exhibit a
high value for d(2), the network has to separate the inputs at time step t − 2
and sustain the resulting state distance via its recurrent dynamics in the
next time step, t − 1. We therefore consider d(2) to be a measure for input
separation on short timescales relevant for the target function.

The quantity p∞ is calculated using a mean field model similar to the one
presented in Bertschinger and Natschläger (2004), which itself is rooted in
the AA; the latter was described briefly in section 2. In the AA and with N →
∞, all components of the difference x1(t) − x2(t) appearing in equation 5.1
are i.i.d. Hence it is sufficient to determine the joint probability of a single
network unit to be in state si ∈ Sm in the network receiving input u1 and
being in state s j ∈ Sm in the network receiving input u2. This probability is
denoted as qi j (t, u1, u2). The diagonal elements i = j of qi j (t, u1, u2) quantify
the probability that the state of a unit is not affected by the difference in
inputs u1 and u2, whereas the off-diagonal elements i �= j quantify the
probability that the state si of a unit is “flipped” to state s j due to the
different inputs u1 and u2. The separation d(k) can be computed as

d(k) =
2m−1∑
i, j=0

qi j (k, u1, u2)|s j − s j |. (5.3)

The probabilities qi j (k, u1, u2) can be calculated iteratively using qi j (k −
1, u1, u2) as a distribution of the recurrent inputs at time step k, analogous

7For vectors x = (x1, x2, . . .) ∈ R
N we use the Manhattan norm ‖x‖1 := ∑N

i=1 |xi |.
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to the method presented in Bertschinger and Natschläger (2004). For high-
resolution networks, however, there are 22m different elements qi j (t, u1, u2).
In order to avoid this “combinatorial explosion,” we introduce an approx-
imation that we term separation approximation (SA). Consider a network
unit in the state si . The state si can be uniquely represented by the binary
tuple (B0(si ), . . . , Bm−1(si )) ∈ {0, 1}m, where B0(si ) is the most and Bm−1(si ))
the least significant bit of this binary representation. We can then define the
probability ql

α,β (k, u1, u2) for α, β ∈ {0, 1} as the probability of the lth bit Bl

to be in state α in the network receiving input u1 and Bl = β in the network
receiving input u2. The SA consists in assuming the probability of Bl (si ) to
be independent from the ones of Bn(si ) for n �= l:

qi j (k, u1, u2) ≈
m−1∏
l=0

ql
Bl (si ),Bl (s j )(k, u1, u2).

This approximation neglects the statistical dependencies between bits Bl (si )
and Bn(si ) for n �= l for the sake of computational efficiency. Trivially the
SA is exact for binary reservoirs. Numerical results suggest that for small
and intermediate state resolutions m ≤ 5, the SA is still quite accurate,
whereas for large m ≥ 5, deviations from full simulations of the network
are clearly visible. All further details of the calculation of p∞ can be found
in appendix C.

It is worth noticing that in the AA, as the weights wi j are symmetric the
following relation holds:8

qi j (t, u1, u2) = qi j (t, û1, û2),

where û1 and û2 are sequences with û1(τ )û2(τ ) = u1(τ )u2(τ ) for all τ ∈ Z.
Hence, flipping input bits in both input sequences u1 and u2 at the same
time steps leaves the input separation d(k) unaltered in the AA. Therefore,
in the AA, d(k) can be determined with a single sample sequence u1 without
the need for averaging over different inputs as indicated in equation 5.3,
where the average 〈·〉u1 does not appear. This constitutes the main advan-
tages of p∞ over the the predictor defined in Bertschinger and Natschläger
(2004), the so-called NM separation. The NM separation requires averaging
the mean field separation measure over input sequences, resulting in a
significantly larger computation time. Furthermore, the NM separation is
determined by three contributions, whereas p∞ contains only two terms,
d(2) and d(∞), making the latter more simple and intuitive.

In Figure 7 two examples of the evolution of d(k) for state resolutions
m = 1, 3, 6 with the parameters log(σ ) = −0.45 and K = 3, 24 are shown.
With this choice of σ , the network with in-degree K = 3 is in the ordered
regime for all state resolutions m ∈ {1, 3, 6}, and the network with in-degree

8We call a random variable z symmetric if and only if p(z) = p(−z).
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A m = 1 B m = 3 C m = 6

Figure 7: The k-step input separation measure d(k) defined in equation 5.1 for
networks with N = 150 units and log σ = −0.45 with in-degree K = 3 (dark
gray) corresponding to ordered dynamics and K = 24 (light gray) correspond-
ing to chaotic dynamics determined by explicit simulations of the networks.
The mean field approximation of d(k) is plotted as a dotted line showing good
agreement for low state resolutions m = 1, 3 (A,B) and larger deviations for high
state resolutions (m = 6, C).

Figure 8: Mean field predictor p∞ for computational power for different state
resolutions m = 1 (A), m = 3 (B), and m = 6 (C) as a function of the STD σ of the
weights and in-degree K . Compare this result to the numerically determined
performance pexp plotted in Figure 4.

K = 24 is in the chaotic regime. The mean field approximations of d(k) are
in quite good agreement for m = 1, 3, with the values for d(k) determined
by explicitly simulating the networks. For high-resolution networks (here
m = 6), visible errors occur due to the AA and the SA.

In Figure 8 the predictor p∞ is plotted as a function of the weight STD
σ and the in-degree K for three different values of the state resolution
m ∈ {1, 3, 6}. When comparing these results with the actual network
performance pexp plotted in Figure 4, one can see that p∞ serves as a
reliable predictor for pexp of a network for sufficiently small m. For larger
values of m, the predictor p∞ starts to deviate from the true performance
while still capturing the interesting features of the performance landscape
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Figure 9: The contributions d(2) (dotted line), d(∞) (light gray) of the mean
field predictor p∞ and their difference (dashed black line) for different state
resolutions m = 1, 6 as a function σ . The plots show slices of the 2D plots in
Figures 8A and 8C for constant K = 3, 24. (A) For m = 1 the region in log(σ )-
space with high d(2) and low d(∞) is significantly larger for K = 3 than for
K = 24. (B) For m = 6, this region is roughly independent of K except a shift
toward lower σ -values.

qualitatively. The dominant effect of the state resolution m on the perfor-
mance discussed in section 3 is well reproduced by p∞. For m = 1 the
in-degree K has a considerable impact: for large K , maximum performance
drops significantly. For high state resolutions, however, there exists a region
in the parameter space exhibiting high performance for all values of K .

The interplay between the two contributions d(2) and d(∞) of p∞ deliv-
ers insight into the dependence of the computational performance on the
network parameters. A high value of d(2) corresponds to a good separation
of inputs on short timescales relevant for the target task, a property found
predominantly in networks that are not strongly input driven—networks
with relatively strong recurrent connection (large weight STD σ ). A small
value of d(∞) is a necessary condition for different inputs on which the
target function assumes the same value to be mapped to nearby network
states. Only then is a linear readout able to assign them to the same class
regardless of their irrelevant remote history. This condition is met for small
weight STD σ . For m = 1, as can be seen in Figure 9, the region in log(σ )
space where both conditions for good performance are present, the region
of intermediate σ , decreases for growing K . In contrast, for m > 2, a reverse
effect is observed: for increasing K , the parameter range for σ fulfilling the
two opposing conditions for good performance grows moderately, resulting
in a large region of high p∞ for high in-degree K . This observation is in close
analogy to the behavior of the rank measure discussed in section 4. Also
note that p∞ predicts the novel bifurcation effect also observed in Figure 4.

6 An Annealed Approximation of the Memory Function
for Binary qESNs

A quantity that has extensively been studied (White et al., 2004; Mayor &
Gerstner, 2005) in order to characterize the ability of a given network to
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store information is the memory function defined in Jaeger, 2002; see also
Ganguli et al., 2008, for a novel alternative definition. In this section we
show that the memory function for qESNs is tightly linked to the k-step
separation d(k) defined in equation 5.1. More precisely, the separation d(k)
can be used to formulate an upper bound on the memory function. For
binary (m = 1) qESNs in the ordered regime, this upper bound turns out
be very close to the true memory function while being computationally
cheap to evaluate, especially for networks with large system size N.

The memory function m(k) defined in Jaeger (2002), which assumes val-
ues in [0, 1], measures the ability of a network in conjunction with a lin-
ear readout to reconstruct the input signal u(t − k) that was presented k
time steps ago, where m(k) = 1 corresponds to a perfect reconstruction and
m(k) = 0 to a readout output that is uncorrelated with the input u(t − k).
More precisely, the memory function is defined as

m(k) := cov(y(t), yT (t))2

var(y(t))var(yT (t))
. (6.1)

Here var(·) denotes the variance, and cov(·, ·) denotes the covariance of the
arguments. The quantity y(t) = (

∑N
i=1 αi xi (t) + b) is the output of the linear

readout at time t with weights α = (α1, . . . , αN) and bias b and yT (t) =
u(t − k) is the target output. The weights and the bias are learned by linear
regression. According to definition 6.1, the memory function measures the
overlap between the readout output y(t) and the target output yT (t). The
memory function m(k) is often numerically evaluated from the identity (see
Jaeger, 2002; White et al., 2004)

m(k) = pT
k A−1 pk . (6.2)

The matrix A with elements Ai j = cov(xi (t), xj (t)) denotes the covariance
matrix of the network state, and pk = cov(x(t), yT (t)) is the covariance vec-
tor between the network state and the target output. For networks with
linear (thus analog) units, many properties of the memory function can be
characterized explicitly in terms of the connectivity matrix (see Jaeger, 2002;
White et al., 2004). However, for networks of nonlinear units, little is known
about the memory function. In general it has to be determined numerically
by evaluating equation 6.2, which requires simulating the full network in
order to estimate A and pk .

For the special case of a binary input sequence u with p(u(t) = +1) =
p(u(t) = −1), as assumed in this letter, the memory function can be bounded
by using the k-step separation d(k). The following relation is derived in
appendix D:

m(k) ≤ min
{

N2

4
‖A−1‖2 d(k)2, 1

}
, (6.3)
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A linear readout B linear classifier

Figure 10: The computational capabilities of binary qESNs scale logarithmi-
cally with the network size N. The networks have the parameters K = 3 and
log(σ ) = 0.2 and are thus close to the critical line. (A) Scaling of the temporal ca-
pacity kC (N) (light gray) and the memory capacity MC(N) (dashed). According
to the definition of the memory function, a linear readout was used to recon-
struct the target signal. (B) Scaling of the experimental performance measures
pexp(C, PAR5) (dashed) and pexp(C, RAND5) (dotted). Further, the performance
pexp(C, SHIFT) for the SHIFT task (solid line) is shown that consists of recon-
structing the past input with a linear classifier. The experimental performance
measures where determined as described in the caption of Figure 4.

where ‖ · ‖2 is the operator norm induced by the standard Euclidean norm.
The upper bound presented in the equation is striking, as it links the mem-
ory function m(k) with the dynamical property of k-step input separation
d(k), allowing us to draw conclusions about m(k) from the behavior of d(k).
As observed in numerical simulations, d(k) approximately decays expo-
nentially9 in the ordered regime, implying also that m(k) decays (at least)
exponentially with a time constant that is half as large as the one for d(k).
This consideration also results in an upper bound for the scaling of the
temporal capacity kC (N) with the network size N. In White et al. (2004),
kC (N) is defined as the smallest k0 ∈ N such that for all k > k0, the memory
function of a network of size N is smaller than 1/2, that is, m(k) < 1/2. As
can be easily seen from equation 6.3, kC (N) = O(log(N)) given that d(k) de-
cays exponentially. Hence, the temporal capacity of all qESN networks in
the ordered regime grows only logarithmically in contrast to, for example,
linear networks with orthogonal connectivity matrices that exhibit an ex-
tensive growth kC (N) ∝ N as show in White et al. (2004). Another quantity
of interest characterizing the capabilities of a circuit to store information
is the memory capacity MC(N), which is defined as MC(N) := ∑∞

k=1 m(k)
(see Jaeger, 2002). In Figure 10A, kC (N) and MC(N) for m = 1 networks at

9It is intuitive to conjecture that d(k) should decay like exp(λk), where λ is the Lyapunov
exponent. However, this is not trivial to show. Further investigation is required that
addresses this interesting point.
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the critical line are shown to exhibit a clearly logarithmic growth with N
over 1.5 decades. In Figure 10B, the performance measure pexp is plotted
for the three different tasks PAR5, RAND5, and SHIFT as a function of N,
which also show logarithmic scaling with the system size N.10 In the chaotic
parameter regime, d(k) decays toward a nonzero baseline, and therefore in-
equality 6.3 will not yield a useful upper bound on m(k) as the latter always
decays toward zero as numerically observed.

Inequality 6.3 can also be used to numerically estimate an upper bound
for the memory function using the AA. This upper bound is computation-
ally very efficient, as its complexity is independent of the system size N,
and it turns out to be close to the true memory function. In the AA, one can
easily derive an expression for the term ‖A−1‖2 as a function of the network
connectivity parameters K and σ (see section D.2):

‖A−1‖2 = 4

(
1 −

(



(
2

K 1/2σ

)
− 


(
− 2

K 1/2σ

))2
)−1

. (6.4)

Here 
(x) denotes the cumulative probability distribution of a random vari-
able distributed normally with unit variance. Combining equations 6.3 and
6.4, one can evaluate an upper bound for the memory function assuming
that the AA is valid. However the accuracy of the mean field approxima-
tion for d(k) is of sufficient accuracy only for m = 1; hence, the memory
bound 6.3 is of practical use only for binary qESNs in the ordered regime.
Three examples for m(k) and for the upper bound 6.3 of binary qESNs with
N = 1000 units with different parameter settings in the ordered regime are
shown in Figure 11. As can be seen, the distance between the memory func-
tion m(k) and the upper bound (see equation 6.3) is varying with the weight
STD σ and the in-degree K . It was numerically observed that the upper
bound was in general closer to m(k) for networks whose parameters σ , K
are “deeper” in the ordered dynamic regime. As mentioned above, in the
chaotic regime, the inequality 6.3 does not provide any sensible information
on the memory function.

7 Sparse Network Activity and Computational Power

In the neocortex, the spiking (hence binary) neurons usually exhibit a high
in-degree around 103 up to 104 (see DeFelipe & Fariñas, 1992; Destexhe,
Rudolph, & Paré, 2003). Assuming the hypothesis that cortical circuits can
be regarded (at least partially) as RC devices, the high in-degrees observed
experimentally are in stark contrast to the findings described in the previous

10The target output for the SHIFTτ task is defined as SHIFTτ (u, t) = u(t − τ − 1), and
the performance is defined as pexp(C, SHIFT) = ∑∞

τ=0 κ(C, SHIFTτ ). In contrast to the
memory function, a linear classifier is used to reconstruct the target signal.
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Figure 11: The memory function for three binary qESNs with N = 1000 units
evaluated according to equation 6.2 is shown (light gray). Further, the upper
bound given by equation 6.3 with the AA expression (see equation 6.4) for
‖A−1‖2 is plotted (dashed). The qESNs were generated with the parameters
log(σ ) = 0.0, K = 3 (A), log(σ ) = −0.5, K = 10 (B) and log(σ ) = −0.6, K = 20
(C). As can be seen, the distance between m(k) and the upper bound varies
depending on the network parameters. In general, the more “ordered” the
network dynamics are, the “tighter” the upper bound (see equation 6.3) gets.

sections. As discussed above, we would expect reservoirs consisting of
binary units to be of low average in-degree as computational performance
in the RC sense is best in this parameter regime. In the following section,
we show that this apparent inconsistency can be resolved by introducing
sparse network activity into the binary qESN model.

A characteristic property of the neural activity in the neocortex is that
spikes are scarce events in time. Assuming that the refractory period of cor-
tical neurons is in the millisecond range, they could in principle emit spikes
with a frequency of 100 Hz and more. However, the observed average firing
rate of a cortical neuron is well below 10 Hz. It has often been suggested that
this sparse activity is due to metabolic cost and energy constrains (see Levy
& Baxter, 1996; Laughlin, de Ruyter van Steveninck, & Anderson, 1998;
Lennie, 2003). The binary qESNs introduced above, however, are symmet-
ric in the states +1/2 and −1/2, yielding equal probabilities to be in these
two states. In order to mimic sparse network activity, we augment the input
u(t) in the state update equation, 2.1, with a bias b < 0; we replace u(t) by
u(t) + b, which leads to a preferred “resting” state −1/2 and a less frequent
“spiking” state +1/2. The probability for a unit to assume the value 1/2 (to
emit a “spike”) can be evaluated in the AA to

p+ = p(xi (t) = 1/2) = 1 − 1
2

(



(
2(−b − 1)

K 1/2σ

)

+


(
2(−b + 1)

K 1/2σ

))
. (7.1)
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Figure 12: The peak computational performance of networks with sparser net-
work activity is observed at increasing connectivity. Shown is the computational
performance pexp(C, PAR5) averaged over 20 random circuits C as a function
of weight standard deviation σ and in-degree K for binary qESNs with sparse
network activity p+ = 0.3 (A), p+ = 0.1 (B), and p+ = 0.03 (C) caused by a bias.

In order to illustrate the impact of sparse activity on the computational
performance, we compare the measure pexp of networks with different pa-
rameters σ and K at a given constant sparse activity p+. To do so, equation
7.1 is numerically solved for b, yielding the required bias to achieve the
given activity p+ for a network with parameters σ and K . In Figure 12
the resulting computational performance measure pexp(C, PAR5) of binary
qESNs for the five-bit parity task PAR5 is shown as a function of K and σ for
three sparsity levels: p+ = 0.3 (panel A), p+ = 0.1 (panel B) and p+ = 0.03
(panel C). By comparison with Figure 4 (where the activity is p+ = 0.5), it
can be observed that introducing a sufficiently sparse activity has a drastic
effect on the computational performance landscape. In general computa-
tional performance decreases with increasing sparsity of the network ac-
tivity. The most striking effect, however, is that the parameter region of
maximum performance is shifting toward higher connectivity values with
increasing sparsity of the network activity. Hence, networks with sparser
activity require a higher in-degree in order to exhibit good computational
capabilities.

Given the above result (sparsely connected networks need higher activ-
ity to “work well”), one might arrive at the intuitive hypothesis that for
varying levels of connectivity and activity, the average input to a single
network unit is constant for reservoirs with high performance: higher net-
work activity can compensate for fewer input connections and vice versa.
More precisely, one might argue that for different mean activities p+, the
quantity p+ · Kmax(p+) is constant, where Kmax(p+) = arg maxK pexp is the
in-degree yielding the largest performance pexp for the given activity p+.
However, the results of the numerical experiments we performed (data not
shown) clearly indicate that this is not the case. The product p+ · Kmax(p+)
varies strongly (by a factor of 1.6) for activities in the range p+ ∈ [0.1, 0.3].
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Networks with sparse activity need a higher in-degree than one would ex-
pect from the above hypothesis. Hence the optimal working point (in the RC
sense) of a network cannot be determined by solely considering the average
input to a single network unit. This insight is of relevance for the simulation
of cortical microcircuit models, where (due to limited computer resources)
usually only low levels of connectivity are taken into account, compensated
by a higher network activity. Our analysis for the qESN model suggests that
this approach might considerably change the computational properties of
the simulated circuits, indicating that the working point of these circuits
needs to be carefully tuned, possibly by adapting further parameters.

Unfortunately, the numerical results for qESNs with sparse network
activity outlined above cannot easily be reproduced by the mean field pre-
dictor p∞. Its numerical evaluation for networks with a nonvanishing bias
is quite complex, as the bias destroys the symmetry of the update equa-
tion, 2.1, which is explicitly taken advantage of for the calculation of p∞.
Without this symmetry, the evaluation of p∞ requires averaging over input
sequences u(·), which renders the computation very time-consuming.

Recapitulating, a possible explanation in the the RC framework for the
high in-degrees experimentally found in cortical microcircuits is sparse
network activity, a ubiquitous feature observed in cortex.

8 Discussion

In this letter, we introduced the qESN model that interpolates between
the binary LSM and the continuous ESN. This nonautonomous network
model exhibits ordered or chaotic dynamics, separated by a phase transi-
tion, depending on the weight and connectivity parameters. These dynam-
ical regimes are reminiscent of the ones observed in binary (e.g., Derrida
& Stauffer, 1986) and in multistate (see Solé, Luque, & Kauffman, 2000)
Kauffman networks. In agreement with previous results (Wolfram, 1984;
Langton, 1990; Packard, 1988; Legenstein & Maass, 2007a; Bertschinger &
Natschläger, 2004; but see Mitchell, Hraber, & Crutchfield, 1993) qENSs
show optimal computational performance near the critical line: the order-
chaos phase transition.

The qESN model for RC computations allowed the systematic investi-
gation of a fundamental difference between LSMs and ESNs arising from
the different nature of its reservoir units: the difference in the influence of
the network connectivity onto the computational capabilities. Our results
clearly show that for binary and low-resolution reservoirs, the network con-
nectivity, parameterized here by the in-degree K , has a profound impact
on the phase transition and hence also on the maximal computational per-
formance. For sparse connectivity (small K ), a gradual phase transition is
found characterized by a small gradient of the Lyapunov exponent around
its root, resulting in a high peak performance for a large region of the pa-
rameter space. For densely connected binary and low-resolution networks,
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the phase transition becomes steep, indicating a reduced parameter region
that exhibits desirable critical dynamics. This effect results in a significantly
reduced computational performance of densely connected binary and low-
resolution networks. The performance of high-resolution networks, how-
ever, does not exhibit this drastic dependence on the in-degree K . These
numerical observations can be understood by analyzing rank measures,
assessing the kernel and generalization properties, as well as by analyzing
an annealed approximation of the input separation of a given network.
In the light of these two theoretical approaches, the observed influence of
connectivity on computational performance can be successfully explained
in terms of separation of the input on short, task-relevant timescales versus
separation on long, task-irrelevant timescales.

We emphasize that the experimental and numerical results indicating
little influence of connectivity on computational performance for high-
resolution qESNs are based on the assumption that there is no inherent
spatial structure of the networks and of the input, a situation often occur-
ring in typical machine learning applications of RC systems. In particular,
we assumed in this study that all units receive the one-dimensional input
u(t), and the readout also gets input from all network units. If, however, the
network exhibits a spatial structure (e.g., the set of network units receiving
input and the set of units projecting to the readout are disjoint and “dis-
tant”), different connectivity schemes may well influence the performance
of high-resolution qESNs and analog ESNs.

It should be noted that the effect of quantization cannot be emulated by
additive or multiplicative i.i.d. or correlated gaussian noise on the output of
analog neurons. The noise just degrades performance homogeneously, and
the differences in the influence of the in-degree observed for varying state
resolutions cannot be reproduced. Thus, this type of noise is qualitatively
different from the so-called quantization noise introduced by discretizing
the state space of the network units.

The results presented in this letter that emphasize the importance of a
gradual order-chaos phase transition offer a possible explanation of why
ESNs are more often used in engineering applications than LSMs. Although
these two RC systems can have a very similar performance on a given task
(Verstraeten et al., 2007), it is significantly harder to create an LSM consist-
ing of spiking neurons operating in a desirable dynamic regime (i.e., at the
edge of chaos). In order to archive this, the excitation and inhibition in the
network need to be finely balanced to avoid quiescent or epileptic activity.
For ESNs, this is not the case; there is usually a broad parameter range in
which the ESN performs well. This difference reveals the need especially
regarding LSMs for homeostatic control mechanisms or unsupervised
learning rules that bring and keep a dynamic reservoir in a close-to-optimal
working regime, replacing (possibly suboptimal) ad hoc parameter
settings. This kind of unsupervised dynamic reservoir optimization has
become quite standard for ESNs (Triesch, 2007; Steil, 2007; Schrauwen,
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Wardermann, Verstraeten, Steil, & Stroobandt, 2008; see Lukoševičius &
Jaeger, 2007, for a review); for LSMs, interesting steps in this direction
have been undertaken, among others, in Natschläger, Bertschinger, and
Legenstein (2005), Lazar, Pippa, and Triesch (2007), Joshi and Triesch (2008).

We have shown that the k-step separation d(k) can also be used to
efficiently compute an upper bound for the memory function of binary
networks with ordered dynamics. Previously only the memory function
of linear networks was studied in detail (White et al., 2004; Jaeger, 2002;
Ganguli et al., 2008), whereas theoretical results for nonlinear networks
were missing. Given the numerical observation that d(k) decays exponen-
tially in the ordered regime, one can infer from the presented upper bound
on the memory function that the information storage capabilities of qESNs
scale like O(log(N)) with the system size N. It was also shown numerically
that this scaling holds for the performance on the representative classifi-
cation tasks (pexp(C, PAR5) and pexp(C, RAND5)) as well. These findings
might indicate a trade-off for RC systems between memory capacity and
kernel quality. Two extreme examples can illustrate this consideration. On
the one hand, delay line networks as well as another special class of linear
networks (the so-called orthogonal networks) exhibit a very good memory
performance: their memory capacities scale like O(N) (White et al., 2004),
while failing on classification tasks like PARn, ANDn (as they are not linearly
separable) and with high probability (for large n) also failing on RANDn.
Hence their kernel quality can be considered poor. On the other hand, the
nonlinear qESNs exhibit a comparably homogeneous performance over all
tasks that were studied in this letter, indicating a good kernel quality but
showing only logarithmic memory scaling. Formalizing and investigating
this apparent trade-off might reveal deep insights into the art of RC system
design.

We informally equated in this letter RC systems with binary units with
LSMs. Most work about LSMs is concerned with modeling cortical cir-
cuits, and the reservoir consequently often consists of biologically inspired
spiking neuron models such as integrate-and-fire type units. We did not
explicitly simulate such biologically more realistic reservoirs; however, our
results for reservoirs with binary units show characteristic properties also
observed in biological modeling. For example, the performance of spik-
ing reservoirs (commonly termed liquids) also strongly depends on the
in-degree distribution of the network (Häusler & Maass, 2007). This indi-
cates that the binary nature of spikes is an important factor in the network
dynamics of cortical circuits, a feature included in binary qESNs but not
present in mean field or rate-coded models of biological circuits.

The finding that binary reservoirs have high performance exclusively
for low in-degrees stands in stark contrast to the fact that cortical neurons
feature high in-degrees of over 104. This raises the interesting question
as to which properties and mechanism of cortical circuits not accounted
for in the qESN model may cause this discrepancy. We have shown that
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sparse network activity as observed in cortical networks is a suitable can-
didate mechanism, as it indeed shifts the region of optimal performance to
higher in-degree values in binary networks. Interestingly, the sparse activ-
ity regime has also been proposed as a good computational regime for ESNs
(Steil, 2007; Schrauwen et al., 2008) and can be easily attained using the un-
supervised dynamic reservoir optimization techniques mentioned above.

Although sparse activity is a prominent property of neocortical circuits,
it is not the only possible explanation for the topological discrepancy be-
tween cortical circuits and the optimal circuits identified by our analysis.
For example, the transmission of information between neurons via synapses
is known to be error prone as, for example, vesicle release into the synaptic
cleft is a stochastic process with little reliability (Tsodyks & Markram, 1997).
This stochastic aspect of biological connectivity might well result in a con-
siderably smaller “true” or effective in-degree that is closer to the parameter
regime found to be optimal for binary qESNs.

Appendix A: Lyapunov Exponents via Branching Processes

In this appendix, the probabilities pαβ

i j defining the multitype branching
process described in section 2 are calculated. The network is assumed to be
of infinite size (N = ∞), and the weight matrix W is assumed to be regen-
erated independently at every time step (AA approximation). In the AA,
the recurrent input

∑∞
j=1 wi j x j (t) to unit i at time t is distributed symmet-

rically with regard to, 0 as the weights wi j are distributed symmetrically
with regard to 0. It is straightforward to see that all dynamics are invariant
whether the input u(t) = 1 or u(t) = −1. Hence, without loss of generality
(wlog), we can assume u(t) = 1 in the rest of the analysis, a fact that makes
the use of branching theory possible.

In order to calculate the probabilities pαβ

i j , it is necessary to calculate
the steady-state probabilities pSm (s) of a network unit to assume the state
s ∈ Sm. Let zi j (t) denote the product wi j x j (t) of the weight wi j (with wi j ∼
pw = N (0, σ 2)) and the activation xj (t) of unit j at time t. All zi j (t) for
i, j ∈ N are i.i.d. according to pz. The recurrent input Zi (t) = ∑

j=1 zi j (t) to
unit i is the sum of K independent contributions (corresponding to the K
recurrent connections for each unit). The following equations hold for the
distributions:

pz(z) =
∫

ds
1
|s| pSm (s)pw(z/s)

pZ =∗K pz = pz ∗ . . . ∗ pz︸ ︷︷ ︸
K-times

pSm (s) =
∫

d ZpZ(Z)χIs (Z + 1), (A.1)
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where ∗K denotes the K -fold convolution and χI (·) is the indicator function
of the interval I . The interval Is = (ψm ◦ g)−1(s) is the inverse image of s un-
der the quantized activation function ψm ◦ g. Equations A.1 are solved nu-
merically in an iterated fashion for the steady-state distributions pSm and pz.

pαβ

i j , denoting the probability per output link that a perturbation sα → sβ

causes a perturbation si → s j (where Sm = {s1, . . . , s2m} is the single unit
state space), can easily be calculated using the steady-state distributions
pSm and pz from equation A.1. It is given by

pαβ

i j =
∫

dw

∫
d Z′ pw(w)pZ′ (Z′)χIsi

(Z′ + sαw + 1)χIs j
(Z′ + sβw + 1)

pZ′ = ∗K−1 pz,

where w denotes the weight of the input that is perturbed by the sα →
sβ perturbation and Z′ denotes the recurrent input to the unit from the
remaining K − 1 presynaptic units, which are unaffected by the sα → sβ

perturbation.
In an infinite-size network with neuron in-degree K generated as de-

scribed in section 2, the neuron out-degree is Poisson distributed with
mean K . Therefore, the mean descendant matrix M whose element
Mα+2m(β−1),i+2m( j−1) denotes the average number of descendants of type
si → s j caused by a sα → sβ perturbation for α, β, i, j = 1, . . . , m is given by

Mα+2m(β−1),i+2m( j−1) = K · pαβ

i j .

According to equation 2.2, the largest Lyapunov exponent is defined as

λ= lim
n→∞

1
n

ln
(

H(n)
H(0)

)
H(n) = d(x1(n), x2(n)) = ‖x1(n) − x2(n)‖1.

Here we restricted ourselves wlog to the use of the p − 1 norm (as all norm
are equivalent on R

N). Following Athreya and Ney (1972), the expected
number of perturbations after n time steps is given by ZT Mn. Here ZT

denotes the transposed of Z ∈ N
22m

whose ith element Zi denotes the initial
number of perturbations of type sα → sβ with i = α + 2m(β − 1) at time step
0. Hence H(n) can be cast into the following form:

H(n) = ZT Mn D,

where the elements of D ∈ R
22m

are given by Dα+2m(β−1) = |sα − sβ |. It is then
straightforward to see that

λ = lim
n→∞

1
n

ln
(

ZT Mn D
ZT D

)
= ln(ρ),
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Figure 13: Cohen’s kappa coefficient κ(C, RAND5,τ ) plotted as a function of the
delay parameter τ for binary networks with m = 1 (log σ = 0.2, K = 3; A) and
for high-resolution networks with m = 6 (log σ = 0, K = 3; B). The plots show
results for different networks with size N = 25 (dotted), N = 50 (dashed), and
N = 150 (solid). Results for each parameter pair (τ , N) were averaged over 50
different circuits C . The performance measure pexp(C, TASKn) can be interpreted
as the area under the plotted curves (corresponding to a summation over τ ).

where ρ is the largest eigenvalue of M, which is guaranteed to be nonneg-
ative by the Perron-Frobenius theorem.

Although the dimension of M is 22m × 22m, we cannot expect to obtain 22m

meaningful eigenvalues of M as the matrix also contains 2m rows describing
the “diagonal” perturbations sα → sα , which are only trivial perturbations.
Furthermore, as the network dynamics of a qESN defined in equation 2.2 are
symmetric with regard to 0, the perturbations sα → sβ are equivalent to the
perturbation s2m+1−α → s2m+1−β . Hence, M only has 2m−1(2m − 1) meaning-
ful eigenvalues of which the logarithm represents the Lyapunov spectrum.

Appendix B: Dependence of Computational Performance
on Task Delay and Network Size

The performance measure pexp(C, TASKn) introduced in equation 3.1 for a
task TASKn of n bits (e.g., PAR5) and a circuit C is given by summation of the
performances κ(C, TASKn,τ ) for the τ -delayed task TASKn,τ over all delays
τ ≥ 0. The quantity pexp(C, TASKn) is hence not easy to interpret, as it is
not bounded for all system sizes N ∈ N. To give some intuition about the
performance of the qESN, the kappa coefficient κ(C, RANDn,τ ) (which is in
[0, 1]) is explicitly plotted as a function of τ in Figure 13A for binary (m =
1) and in Figure 13B for high-resolution networks (m = 6) with different
network sizes N = 25, 50, 150 for the task RAND5. It can be observed that
for fixed N, the kappa coefficient κ decreases monotonically with τ , and for
fixed τ , it increases monotonically with N (in agreement with the results
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presented in Figure 10). The performance measure pexp(C, TASKn) is the
area under the curves shown in Figure 13.

Appendix C: Input Separation d(k) in the Annealed Approximation

Here we calculate the distance d(k) defined in equation 5.1 for large net-
works N → ∞ using the annealed approximation (AA) introduced in
Derrida and Pomeau (1986). We denote networks receiving the the input
u1(·) and u2(·) with N1 and N2, respectively. First, we notice that in the AA
and the limit N → ∞, the following holds:

d(k) = lim
N→∞

〈
1
N

N∑
b=1

∣∣x1
b (0) − x2

b (0)
∣∣〉

C

= 〈∣∣x1
a (0) − x2

a (0)
∣∣〉

C ∀a ∈ N

=
2m−1∑
i, j=0

qi j (k, u1, u2)|si − s j |. (C.1)

Here qi j (k, u1, u2) denotes the joint probability of finding x1
a (k) in the state

si and x2
a (k) in the state s j given the input u1(·), u2(·). Due to the AA,

this probability is independent of the node index a . Hence, in the AA and
for N → ∞, the state of the network is completely described by the joint
distribution of a pair of states x1

a (k) and x2
a (k) in the state space Sm × Sm.

Moreover, qi j (k, u1, u2) determines the distribution of the recurrent feedback
for the next time step k + 1. We define the matrix q (k, u1, u2) with the entries
qi j (k, u1, u2). We denote the mapping from qi j (k, u1, u2) to qi j (k + 1, u1, u2)
as S representing the transition from time step k to k + 1 by applying the
input pair u1(k) and u2(k):

q (k + 1, u1, u2) = S(q (k, u1, u2)).

C.1 Separation Approximation. Since the state xi
a (k) of neuron a is

quantized with m bits, we can write it in the following way:

xi
a (k) =

m−1∑
l=0

2−l(bi
l − 1/2

)
, bi

l ∈ {0, 1}

Bl (xi
a (k)) := bi

l .

(C.2)

According to equation C.2, there is a unique binary representation of
xi

a (k) given by (bi
0, . . . , bi

m−1); the mapping Bl (.) maps a state to its lth bit.
Equation C.2 can be interpreted as effectively replacing unit a with m bi-
nary units of states bi

l whose outputs are reduced by 1/2 and multiplied
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by 2−l and finally summed up; this is still exact. Now we assume that
each of these m units receives input drawn independently from the input
distribution and has different weights drawn independently from N(0, σ 2)
every time step. For given presynaptic input, the b1

l and b2
l are independent

for all l = 0, . . . , m − 1 under this approximation:

qi j (k, u1, u2) =
m−1∏
l=0

ql
Bl (si ),Bl (s j )(k, u1, u2);

ql (k, u1, u2) denotes the 2 × 2 matrix, whose entry ql
b1

l ,b2
l
(k, u1, u2) is the joint

probability of finding the bit number l of unit x1
a (k) in state b1

l ∈ {0, 1} and
of unit x2

a (k) in state b2
l ∈ {0, 1}. Under this approximation, we only have

to calculate 4m matrix entries instead of the 22m entries, a considerable
reduction of complexity.

We denote the update mapping for ql by Sl :

ql (k + 1, u1, u2) = Sl (q (k, u1, u2)).

An explicit form for Sl can be derived in the following way. First, we
condition the probability ql (k + 1, u1, u2) on the presynaptic input h1 =
(h1

1, . . . , h1
K ) ∈ SK

m for network N1 and h2 = (h2
1, . . . , h2

K ) ∈ SK
m for network

N2 and on the weight matrix W defining the circuit C for this time step
k + 1 (which is the same for N1 and N2). The pairs (h1

i , h2
i ), i ∈ 1, . . . , K are

i.i.d. according to q (k, u1, u2). This yields

ql (k + 1, u1, u2) = 〈〈ql (k + 1, u1, u2 | h1, h2, W)〉C 〉h1,h2

=
∑
h1,h2

p(h1, h2)
∫

dW p(W)ql (k + 1, u1, u2 | h1, h2, W).

(C.3)

Here p(W) denotes the probability of the weight matrix W, which is
multinormal for all the nonvanishing K weights per row. Conditioned
on the input and the weights, the network realizations N1 and N2 are
independent, and the K -fold integral over the weights appearing in
equation C.3 can be explicitly integrated to a single integral:

∫
dW p(W)ql

i j (k + 1, u1, u2 | h1, h2, W) = F l
i j (h

1, h2, u1(k), u2(k)).
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F l is defined as

F l
i j (h

1, h2, u1(k), u2(k)) = 1
(8π det(C)�22)1/2

×
2l−1∑
α=0

∫
Iα,i −u1(k)

dv exp
(

v2

2

(
�2

12

�22
− �11

))

×
2l−1∑
β=0

[
erf

(
(I +

β, j − u2(k))�22 + �21v

(2�22)1/2

)

− erf

(
(I −

β, j − u2(k))�22 + �21v

(2�22)1/2

)]
.

Here we use the following definitions:

R = σ 2
(

(h1)T h1 (h1)T h2

(h2)T h1 (h2)T h2

)
�i j = (R−1)i j

Iα,i = [I −
α,i , I +

α,i ] := [tanh−1(2−l+1α − 1), tanh−1(2−l+1(α + 1) − 1)],

where (ha )T hb = ∑N
i=1 ha

i hb
i denotes the standard dot product. Using the

above expression for F l
i j , the update can finally be written as

ql
i j (k + 1, u1, u2) = 〈

F l
i j (h

1, h2, u1(k), u2(k))
〉
h1,h2 .

For the sake of computational tractability for larger m and K , we do
not evaluate the 2K sums explicitly involved in the average over the
presynaptic input 〈.〉h1,h2 . Instead we determine this expectation value
by a finite number of samples from the joint distribution p(h1, h2). This
sampling is easily realizable since p(h1, h2) is of the product form given in
equation C.3. The sample size for all experiments was chosen to be 150.

Appendix D: Bound for the Memory Function

D.1 Upper Bound for the Memory Function. Here we derive the
upper bound (see equation 6.3) for the memory function m(k). The tar-
get output at time t for the memory task of k time steps is given
by yT (t) = u(t − k). The linear readout with weights αi has the output
y(t) = αT x(t) = ∑N

i=1 αi xi (t). α is the learned by linear regression yield-
ing α = A−1 p(k), where A = 〈

x(t)x(t)T
〉

is the covariance matrix of the net-
work state x(t) and pk = (pk 1, . . . , pk N) = 〈x(t)yT (t)〉. Here 〈·〉 denotes the
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average over the input u(·) for a given circuit A. Using the expression for
the memory function given in White et al. (2004) results in

m(k) = pT
k A−1 pk ≤ ‖A−1‖2‖pk‖2,

where ‖ · ‖ is the standard Euclidean norm and ‖ · ‖2 is the corresponding
induced operator norm. Without loss of generality we can set the readout
time t = 0 as the input sequence u(·) is stationary. Now look at a single
component of pk :

pk i = 〈xi [u](0)uk〉.

Here x[u](0) = (x1[u](0), . . . , xN[u](0)) is the state vector that results from
applying the left-infinite input sequence u = (u1, u2, . . .), where uk := u(−k).
Further, we define

ui := (ui+1, ui+2, . . .)

ui, j := (ui+1, . . . , u j ).

The ◦ is used for concatenating sequences such that u = u1,k ◦ uk = u1,k−1 ◦
uk ◦ uk ∀k ∈ N. Using this notation, the component pk i can be written as

pk i =〈xi [u](0)uk〉 =
∑

u

p(u)xi [u](0)uk

=
∑
u0,k−1

p(u0,k−1)
∑

uk

p(uk)
∑

uk

p(uk)
(
xi [u0,k−1 ◦ uk ◦ uk](0)uk

)
.

Since all inputs are independent, we can carry out explicitly the sum over
uk with p(uk) = 1/2:

pk i = 1
2

∑
u0,k−1

p(u0,k−1)
∑

uk

p(uk)
(
xi [u0,k−1 ◦ (+1) ◦ uk](0)

−xi [u0,k−1 ◦ (−1) ◦ uk](0)
)

= 1
2
〈xi [u0,k−1 ◦ (+1) ◦ uk](0) − xi [u0,k−1 ◦ (−1) ◦ uk](0)〉u0,k−1,uk .

Now the vector h = (h1, . . . , hN) is defined in the following way:

hi := xi [u0,k−1 ◦ (+1) ◦ uk](0) − xi [u0,k−1 ◦ (−1) ◦ uk](0).
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It can be seen from equation 5.1 of d(k) that the following identity holds:

d(k) = 1
N

〈‖h‖1〉.

The squared Euclidean norm of pk can be expressed as

‖pk‖2 = 1
4

N∑
i

〈hi 〉2 1
4

≤ 1
4

N∑
i

〈|hi |〉2

≤ 1
4

(
N∑
i

〈|hi |〉
)2

= 1
4

(〈
N∑
i

|hi |
〉)2

= 1
4

〈‖h‖1〉2 = N2

4
d(k)2.

Together with the fact that m(k) ≤ 1 (which is simply the Cauchy-Schwarz
inequality), this finally results in

m(k) ≤ min
{

N2

4
‖A−1‖2 d(k)2, 1

}
.

D.2 An Annealed Approximation for ‖A−1‖2. Here we calculate ‖A−1‖2

for m = 1 (binary) qESNs using the annealed approximation (AA). We start
by explicitly calculating the components Ai j = 〈xi (t)xj (t)〉. The diagonal
elements simply evaluate to

Aii = 〈xi (t)xi (t)〉 = 〈xi (t)2〉 = 0.25 =: a .

The network state update equations are rewritten in the following form:

xi (t) = �

(
1
2

zi (t − 1) + u(t − 1)
)

zi (t − 1) := 2
K∑

j=1

wi j x j (t − 1),

where �(x) = 1/2 for x > 0 and �(x) = −1/2 otherwise. Independent
of the input, the quantity zi (t − 1) is normally distributed according to
zi (t) ∼ N (0, Kσ 2), and zi (t − 1) and z j (t − 1) are i.i.d. for i �= j . Further,
as 〈zi (t − 1)〉 = 0, we may assume wlog u(t − 1) = 1. The probability p+ for
xi (t) = +0.5 and p− evaluate to

p(xi (t) = +0.5) = p+ = 


(
2

K 1/2σ

)
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p(xi (t) = −0.5) = p− =


(
− 2

K 1/2σ

)


(x) = 1
2

(
1 + erf

(
x√
2

))
.

Now the off-diagonal elements of A can easily be computed (i �= j):

Ai j = 〈xi (t)xj (t)〉 = 0.25(p+ − p−)2 := b.

Due to the simple form of A(all diagonal elements are equal to a and the off-
diagonal elements are equal to b), its eigenvalues can easily be determined.
There are two different eigenvalues λmin < λmax:

λmax = a + (N − 1)b

λmin = a − b = 0.25(1 − (p+ − p−)2)

= 0.25

(
1 −

(



(
2

K 1/2σ

)
− 


(
− 2

K 1/2σ

))2
)

.

Now the following relation holds for the matrix norm ‖ · ‖2:

‖A−1‖2 = λ−1
min = 4

(
1 −

(



(
2

K 1/2σ

)
− 


(
− 2

K 1/2σ

))2
)−1

.
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