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Neurons receive thousands of presynaptic input spike trains while emit-
ting a single output spike train. This drastic dimensionality reduction
suggests considering a neuron as a bottleneck for information transmis-
sion. Extending recent results, we propose a simple learning rule for
the weights of spiking neurons derived from the information bottleneck
(IB) framework that minimizes the loss of relevant information trans-
mitted in the output spike train. In the IB framework, relevance of in-
formation is defined with respect to contextual information, the latter
entering the proposed learning rule as a “third” factor besides pre- and
postsynaptic activities. This renders the theoretically motivated learning
rule a plausible model for experimentally observed synaptic plasticity
phenomena involving three factors. Furthermore, we show that the pro-
posed IB learning rule allows spiking neurons to learn a predictive code,
that is, to extract those parts of their input that are predictive for future
input.

1 Introduction

Information theory is a powerful theoretical framework with numerous
important applications, including in the context of neuroscience, such as
the analysis of experimental data. Information theory has also provided
rigorous principles for learning in abstract and more biological realistic
models of neural networks. Especially the learning objective of maximizing
information transmission of single neurons and neural networks, a princi-
ple often termed InfoMax, has been intensively studied in Linsker (1989),
Bell and Sejnowski (1995), Chechik (2003), Toyoizumi, Pfister, Aihara, and
Gerstner (2005), and Parra, Beck, and Bell (2009). This learning principle
has been shown to be a possible framework for independent component
analysis; furthermore, it could successfully explain aspects of synaptic plas-
ticity experimentally observed in neural tissue. However, one limitation of
this learning objective for gaining a principled understanding of compu-
tational processes in neural systems is that the goal of numerous types
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of computations is not a maximization of information transmission (e.g.,
from sensory input neurons to areas in the brain where decision are made).
Rather, a characteristic feature of generic computations (e.g., clustering and
classification of data, or sorting a list of elements according to some rela-
tion) is that they remove some of the information contained in the input.
Similarly, generic learning processes require the removal of some of the in-
formation originally available in order to achieve generalization capability.

Tishby, Pereira, and Bialek (1999) created a new information-theoretic
framework, the information bottleneck (IB) framework, which focuses on
transmitting the maximal amount of relevant information. This approach
takes a step toward making computational and learning processes more
amenable to information-theoretic analysis. We examine in this article
whether the IB framework can foster an understanding of organizational
principles behind experimentally verified synaptic plasticity mechanisms
that involve a “third factor" (Sjöström & Häusser, 2006; Hee et al., 2007).
These are plasticity effects where the amplitude of the synaptic weight
change depends not only on the firing activity of the pre- and postsynap-
tic neuron, but also on a third signal that is transmitted, for example, in
the form of neuromodulators or synaptic inputs from other neurons. Such
third signals are known to modulate the amplitude of the backpropagating
action potential, and thereby to critically influence the changes of synaptic
weights elicited by spike-timing-dependent plasticity (STDP). Furthermore,
we examine in this article whether one can derive from IB principles a rule
for synaptic plasticity that establishes generic computation in neural cir-
cuits: the extraction of temporally stable (“slow”) sensory stimuli (see, e.g.,
Wiskott & Sejnowski, 2002).

The extraction of relevant features and the neglect of irrelevant infor-
mation from given data is a common problem in machine learning, and
it is also widely believed to be an essential step for neural processing of
sensory input streams. However, which information contained in the in-
put data is to be considered relevant is highly dependent on the context.
In a seminal paper Tishby et al. (1999) proposed an information-theoretic
definition of relevance with regard to a given context and also presented
a batch algorithm for data compression minimizing the loss of relevant
information. This framework, the IB method, is aimed at constructing a
simple, compressed representation Y (relevant features, the IB) of the given
input data X, which preserves high mutual information with a relevance
(or target) signal R, which provides contextual or side information. In the
IB framework, the amount of relevant information contained in a random
variable is explicitly defined as the mutual information of this variable with
the relevance signal R. Multiple algorithms rooted in the IB framework
have been fruitfully applied to typical machine learning applications such
as document clustering, document classification, image classification, and
feature extraction for speech recognition (see Harremoes & Tishby, 2007).
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Recently it has been conjectured that the IB framework might constitute
one of the optimization principles underlying early neural processing of
sensory input data in some organisms. Bialek, de Ruyter van Steveninck,
and Tishby (2006) argued that biological agents maintain an internal repre-
sentation of the external world that contains information important for their
survival capabilities. More precisely, they hypothesize that only those parts
of the sensory input X should be internally represented in some model Y
that are predictive of the future state of the agent’s environment, as only
this information is relevant for the agent’s future actions, which in turn
increases its fitness. This learning paradigm was formalized as an IB opti-
mization with the relevance signal R, defined as the future sensory stimuli.
As an IB optimal internal representation, Y, called a predictive code, appar-
ently depends strongly on the statistics of the environment, and as many
organisms exhibit a remarkable ability to adapt to different environmental
configurations, it is tempting to conjecture that the internal representation
Y is (at least partially) learned during the agents lifetime. However, in the
studies mentioned above, learning rules for developing this kind of internal
representation in a biologically realistic setting, where the standard batch
IB algorithms are implausible, are missing.

An attempt to fill this apparent gap has been made in Klampfl,
Legenstein, and Maass (2009) on the level of single spiking neuron models.
In this article, a single neuron is considered an information bottleneck, as it
maps its high-dimensional input X to its one dimensional output spike train
Y. Based on this interpretation, an online update rule has been proposed that
adjusts the synaptic weights such that the neuron’s output Y contains the
maximal amount of relevant information with regard to a given relevance
signal R, which was also modeled as a spike train. This learning rule has
been shown to reliably solve numerous concrete IB optimization problems
in a neural context. However the proposed learning rule, which was de-
rived by stochastic gradient ascent on the IB objective function (essentially
the amount of transmitted relevant information), has several drawbacks.
The gradient of the transmitted relevant information (which determines
the learning rule) was estimated using the correlation of the bottleneck
neuron output Y and the relevance signal R within each single time step.
This limits the “complexity” of IB problems that the neuron is able to solve,
for example, this estimation cannot capture long delays between the input X
and the relevance signal R or the impact of higher-order moments between
the input X and the relevance variable R in the case of linear bottleneck
neurons. Furthermore, the learning rule of Klampfl et al. (2009) is compli-
cated, making it difficult to understand the learning dynamics. In addition,
it contains nonlocal variables, which reduces its biological plausibility.

The goal of this article is to develop a simpler and more transparent
approximate IB learning rule for spiking neurons. This new IB learning rule
is based on a different estimation of the gradient of the relevant information
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contained in the neural output. The estimation is of a parametric nature,
and it requires a given preprocessing of the relevance signal R. The main
assumption is hence that the bottleneck neuron has access to a rich prepro-
cessing of the relevance signal R. This preprocessing can be considered as a
third factor, besides the presynaptic input X and the output Y, which mod-
ulates synaptic plasticity in order to implement an IB optimal coding of the
inputs.

The outline of the article is as follows. In section 2, the IB framework is
briefly revisited, the underlying spiking neuron model is defined, and the
objective function for IB optimization for spiking neurons is introduced.
We present the general IB learning rule for spiking neurons in section 3
and discuss a concrete, simple example IB task. Further, in this section, we
propose an implementation of the relevance signal preprocessing using a
generic recurrent neural network. In section 4, the proposed IB learning
rule is used to model the learning of a predictive code. A detailed compar-
ison to related work is presented in section 5. Furthermore, experimental
results on synaptic plasticity with three factors that point out a possible
implementation of the learning rule proposed in this article are discussed.

2 Neuron Model and Objective Function

In this section, the neuron model and the objective function for IB opti-
mization with this model are defined. The model is formulated in discrete
time of step size �t. To introduce a biologically plausible timescale, we
assume that a single time step corresponds to 1 millisecond: �t = 1 ms. The
value of a time-varying function f at time step t will be denoted as f t .
Further, the standard Euclidean dot product of two vectors d = (d1, . . . , dN)
and e = (e1, . . . , eN) is written as d · e := ∑N

i=1 di ei . We start this section by
briefly revisiting the IB method.

2.1 Information Bottleneck Method. The IB method, originally intro-
duced in Tishby et al. (1999), is a data compression technique that in its
simplest version focuses on the following setup. Consider two random
variables (RVs) a and b with a known joint distribution p(a , b). The goal of
the IB method is to construct an RV ã , a compact, simple representation of a ,
via a stochastic mapping defined by the conditional probability p(ã |a ) such
that ã is still informative about b. The RV b will be called the relevance or
target signal in the remainder of this article. This intuitive data compression
task was formalized in Tishby et al. (1999) as a maximization problem of
the objective function L IB:

L IB = I (ã , b) − γ I (ã , a ).

Here I (., .) denotes the mutual information between the two arguments.
The first term I (ã , b) of L IB measures how informative the compressed
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representation ã is about b. The second term I (ã , a ) with the Lagrange
multiplier γ > 0 penalizes complex representations ã and can be regarded
as an information-theoretic regularization term.1 The IB method consists
of finding a conditional probability distribution p(ã |a ) that maximizes L IB

under the condition that ã , a , and b form the Markov chain b → a → ã .2 The
parameter γ ∈ [0, 1] determines the degree of compression via the trade-off
between the relevant information that ã carries about b and the complexity
of ã . For γ = 0, the representation ã is uncompressed, and all relevant
information is preserved; that is, L IB is maximal, for example, for the identity
mapping and I (ã , b) = I (a , b). At the other extreme, for γ = 1, the variable
ã is maximally compressed and always assumes a single value, resulting in
I (ã , a ) = 0 and I (ã , b) = 0.

An application in machine learning that illustrates the merits of the IB
method is the feature selection for document classification as presented in
Slonim and Tishby (2001). In this setup, the uncompressed input a corre-
sponds to words, which occur in the documents, and the relevance vari-
able b is chosen to be the class label (i.e., the document category, such as
“sports” or “politics”); the joint distribution of words and document cate-
gories p(a , b) is assumed to be known for a given training set. Via the IB
method, it is possible to obtain a mapping p(ã |a ) yielding a simple represen-
tation ã (word clusters instead of single words), which still carries most of
the relevant information about the document class. These low-dimensional
word clusters can then be conveniently used as features for document clas-
sification of test data.

2.2 Neuron Model. We consider a simple stochastic neuron model sim-
ilar to the ones used in Toyoizumi et al. (2005) and Klampfl et al. (2009),
however without taking a refractory mechanism into account. The neuron
has N synapses with weights w = (w1, . . . , wN), which we require to be
nonnegative. It is driven by the input X = (X1, . . . , XN), consisting of N
spike trains Xj = (. . . , x−1

j , x0
j , x1

j , . . .), formalized as left and right infinite
sequences. We define xt

j = 1 if there is a presynaptic spike at synapse j at
time step t, and xt

j = 0 otherwise. The spikes at synapse j from time step l up
to t (l < t) are written as Xl,t

j = (xl
j , xl+1

j , . . . , xt
j ); further, the input history

up to time step t = 0 of synapse j is denoted as X−∞
j := (. . . , x−1

j , x0
j ) =

X−∞,0
j and X−∞ = (X−∞

1 , . . . , X−∞
N ). The membrane potential ut of the

neuron at time t is given by the weighted sum of the synaptic activities

1The IB objective function in Tishby et al. (1999) was originally introduced with the
opposite sign, and it was parameterized in terms of β := γ −1.

2This condition is equivalent to requiring ã to be independent from b given a .
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νt = (νt
1, . . . , ν

t
N):

ut =w · νt =
N∑

j=1

w jν
t
j

νt
j = (ε ∗ Xj )t =

∞∑
l=−∞

εl xt−l
j . (2.1)

The kernel ε models the excitatory postsynaptic potential (EPSP) of a single
spike, and ∗ denotes the discrete time convolution. Given the input X,
the postsynaptic neuron spikes at time step t with the probability p(yt =
1|X−∞,t), which is a function of the membrane potential:

p(yt = 1|X−∞,t) = g(ut) = gt.

The function g is called the activation function. Its image is assumed to
be in [0, 1], and it is assumed to be continuously differentiable with a
derivative g′(ut) =: g′t . The postsynaptic spike train is denoted as Y =
(. . . , y−1, y0, y1, . . .) with yt = 1 if an output spike occurs at time step t, and
0 otherwise. In simulations, the EPSP kernel ε was chosen to be a nonantic-
ipating, decaying exponential with a time constant of 10 time steps, and the
activation function g(ut) = σ (ut − u0) was chosen as the logistic function
σ (x) := (1 + exp(−x))−1 with an offset u0 = −2.

Furthermore, according to the IB framework, another external signal be-
sides the input X is given, namely, the relevance or target signal R. We
consider situations where R is given by a stochastic process denoted by the
sequence R = (. . . , R−1, R0, R1, . . .) ∈ R

Z. It is not restricted to spike trains,
and it may be given by a more general real-valued sequence. It is straightfor-
ward to extend the results presented below to multidimensional relevance
variables. We assume that R does not directly influence the activity of the
neuron, but that it takes part in the process of the synaptic plasticity only
in order to ensure that R → X → Y is a Markov chain as required by the
IB framework. For simplicity, we assume that the processes X and R are
stationary.

2.3 Applying the IB Framework to Spiking Neurons. Following the
approach taken by Klampfl et al. (2009), we apply the IB framework to a
single neuron as illustrated in Figure 1. At any given time step t, without
loss of generality, we may assume t = 0, the neuron under consideration,
which we call the bottleneck neuron from now on, maps its input his-
tory X−∞ to an output y0 ∈ {0, 1}. Hence the neuron can be regarded as
an information bottleneck, which compresses its high-dimensional input
history X−∞ (corresponding to a in the notation introduced in section 2.1)
to its one-dimensional binary output y0 (corresponding to ã ). This map-
ping is parameterized by the weight vector w for which we want to find
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Figure 1: General setup for IB optimization with a spiking neuron. The neuron
receives input spike trains Xi for i = 1, . . . , N and emits the output Y. Further-
more, a second signal, the relevance signal R, is given, which allows introducing
the notion of relevance of information. The weights w should be learned such
that the relevant information I (y0, R) contained in the neuron output is max-
imal (under regularization constrains). In order to carry out this optimization
in an online manner, an estimation of the gradient of I (y0, R) with regard to
w is required, which is based on the quantity F 0. The latter is a parameterized
function (with parameters q) of a given preprocessing h = (h1, . . . , hr ) of the
relevance signal. The parameters q are adapted such that F 0 optimally predicts
the neural output y0 given the relevance signal R.

the configuration giving rise to the output of the neuron that is maximally
informative about the relevance signal R (corresponding to b in section
2.1). There are multiple possible ways of formalizing this setup in the IB
framework, more precisely of choosing the IB objective function.

2.3.1 The Choice of the IB Objective Function for Spiking Neurons. We define
the amount of relevant information transmitted by the neuron per time
step as the mutual information I (y0, R) between the current output y0 and
the whole relevance signal R. Hence, following the IB framework, we are
looking for the synaptic weight w that maximizes the IB objective function
L IB with a regularization term Lreg:

L IB = I (y0, R) − γ Lreg

=
〈
log

(
p(y0|R)

p(y0)

)〉
− γ Lreg, (2.2)



1968 L. Buesing and W. Maass

where the brackets 〈.〉 denote the expected value over the input spike trains
X, the output spike train Y, and the relevance signal R. Further, p(y0)
and p(y0|R) denote the unconditioned spiking probability and the spiking
probability conditioned on the relevance signal, respectively.

Our definition of the relevant information as I (y0, R) can be interpreted
as the limit of the mutual information I (y0, R−T,T ) between y0 and the rel-
evance signal R−T,T in a time window of length 2T + 1 for T → ∞ (i.e.,
I (y0, R) = limT→∞ I (y0, R−T,T )). This choice eliminates “cut-off” artifacts
like the following. If the relevant information contained in the input X ar-
rived at the bottleneck neuron with a delay of T + 1 relative to the relevance
signal R, the objective function I (y0, R−T,T ) would be insensitive to this sta-
tistical relation. One might reckon that the choice to maximize I (y0, R)
introduces anticipatory effects, for example, that for adapting its weights
w, the bottleneck neuron would need information that will be available
only in the future. Such effects will, however, not show up in our approach,
as it is explicitly designed to take into account only information for the IB
optimization that is currently available to the neuron, as outlined in the
next section.

Alternative definitions of the relevant information are also possible, of
course. It might be argued that the mutual information I (y−T,T , R−T,T )
between the neuron output and the relevance signal in some time window
is a more natural definition of the relevant information. However, it turned
out that the online optimization of I (y−T,T , R−T,T ) is considerably more
difficult than the one of I (y0, R) due to accounting for relations between
multiple output spikes of the bottleneck neuron. These technical difficulties
motivated the choice of optimizing I (y0, R).

As stated in section 2.1 the regularization Lreg in the original IB for-
mulation from Tishby et al. (1999) was given by the mutual information
between the input and the output of the IB mapping, that is, in this setup
Lreg = I (y0, X−∞). This choice is also possible in the neural context con-
sidered here. However, simulation results indicate that for this definition
of Lreg, sensible values of the trade-off parameter γ —those values of γ

that neither “unregularize” nor “overregularize” (basically the w = 0) the
IB optimization—are confined to a small interval and are thus hard to be
determined numerically. Therefore, we replace the original regularization
with a conventional quadratic regularization of the weights w:

Lreg = 1
2
w2.

With this choice of Lreg, it is considerably easier to determine sensible values
of γ . Other choices of Lreg are also possible, such as penalizing deviations
from an average target firing rate. It is straightforward to incorporate such
a regularization into the objective function presented here.
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2.3.2 Online Estimation of the Relevant Information. Eventually we wish
to maximize L IB defined in equation 2.2 via a stochastic gradient ascent
with regard to the weights w yielding an online update rule. However, this
maximization requires explicit knowledge of the conditional distribution
p(y0|R) of the output y0 given the relevance signal R, as can be seen from
equation 2.2. Most IB algorithms resolve this issue by estimating the joint
distribution of the input data and the relevance signal (here, p(X−∞, R))
from the whole batch data set and subsequently evaluating the conditional
distribution of the compressed output variable given the relevance signal
(here, p(y0|R)) using the fact that R → X → Y is a Markov chain. How-
ever, this approach seems plausible only in an offline, batch IB optimization
task where the entire data set is available at all times. In the neural setup
considered here, we do not want to, assume that the neuron has all infor-
mation about the joint distribution of X−∞ and R; rather, it should estimate
p(y0|R) and the relevant information I (y0, R) online. As this can be arbi-
trarily difficult (depending on the “complexity” of p(X−∞, R)), we can only
hope to solve the neural IB optimization task approximately under some
simplifying assumptions.

A possible strategy that addresses the problem outlined above is the
following. As its output y0 is binary, the neuron has to estimate p(y0 = 1|R)
only in order to determine an approximation of I (y0, R) (and its gradi-
ent). We therefore assume the neuron has access to a parametric estimation
F t ≈ p(yt = 1|R) with r parameters q = (q1, . . . , qr ). For simplicity, we re-
strict ourselves to the case where F t is of the form F t = σ (q · ht), with
σ denoting the logistic function that ensures F t ∈ [0, 1]. The quantities
h = (h1, . . . , hr ) are r given filters3 operating on the relevance sequence
R and ht = (ht

1, . . . , ht
r ) denotes their values at time step t. These filters h

are a preprocessing of the relevance signal R that is currently available to
the neuron. In a neural system, it might be implemented by some neural
circuitry that carries out transformations of the sequence R. In simulations,
h can be modeled, for example, by moving averages or Volterra series of
the relevance signal R; concrete examples for such a preprocessing as well
as for a preprocessing with a simulated neural circuitry are given below.
The concrete choice of the form of the estimator F t , a linear model in the
parameters q followed by the logistic function, results in a simple online
learning rule (due to similarities with logistic regression). Other forms of F t

that also allow simple gradient ascent could potentially be worth studying.
Based on the estimator F t (see Figure 1 for a visualization of this ap-

proach), we propose the following objective function L to be maximized

3We define a filter hi : R
Z → R

Z as a mapping from left-right infinite sequences to left-
right infinite sequences with R �→ hi [R] = (. . . , hi [R]−1, hi [R]0, hi [R]1, . . .). F t is precisely
defined as F t = σ (q · h[R]t). For simplicity in the main text, the shorter notation is used.
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with regard to w and q,

L = L F − γ Lreg =
〈
log

(
F (y0, R)

p(y0)

)〉
− γ

2
w2, (2.3)

where F (y0, R) = (F 0)y0
(1 − F 0)1−y0 ≈ p(y0|R). The term γ Lreg represents

the regularization term, which remains unchanged from the objective func-
tion L IB given in equation 2.2. The term L F is the approximation of the
relevant information L F ≈ I (y0, R) based on F 0, and it can easily be shown
that the following relation holds:

L F =
〈
log

(
F (y0, R)

p(y0)

)〉
= I (y0, R) − 〈

DKL(p(y0|R)‖F (y0, R))
〉

with DKL(p(y0|R)‖F (y0, R)) =
1∑

y0=0

p(y0|R) log
(

p(y0|R)
F (y0, R)

)
, (2.4)

where DKL(P‖Q) denotes the Kullback-Leibler divergence between P and
Q. It can be seen from equation 2.4 that optimizing L with regard to q
for fixed weights w amounts to minimizing the Kullback-Leibler diver-
gence between the estimation F (y0, R) and the “true” conditional distribu-
tion p(y0|R). The divergence 〈DKL(p(y0|R)‖F (y0, R))〉 assumes its unique
minimum at F (y0, R) = p(y0|R). On the other hand, maximizing L with
regard to w for fixed q (i.e., for fixed F 0) can be interpreted as maximiz-
ing an estimation L of the “true” IB objective function L IB. It can eas-
ily be shown that this is equivalent to maximizing the difference of the
transmitted information I (y0, X−∞) and the Kullback-Leibler divergence
〈DKL(p(y0|X−∞)‖F (y0, R))〉:

L F = I (y0, X−∞) − 〈DKL(p(y0|X−∞)‖F (y0, R))〉.

The objective function L also has the following pleasant property:

L ≤ L IB.

This ansatz can hence be understood as maximizing a lower bound L of
the “true” IB objective function L IB. In a batch setting, this optimization
problem could be solved by an algorithm with two alternating steps that
are iterated, reminiscent of the expectation-maximization algorithm. In the
first step, minimize 〈DKL(p(y0|R)‖F (y0, R))〉 with regard to q for fixed w.
In the second step, minimize 〈DKL(p(y0|X−∞)‖F (y0, R))〉 − I (y0, X−∞) +
γ Lreg with regard to w for fixed q. These two steps are iterated until a
termination condition is fulfilled.
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In the remainder of the article, we investigate an online optimization
scheme for w and q that is obtained by a stochastic gradient ascent on L .
For deriving this online learning rule, it is advantageous to rewrite L in the
following form:

L = 〈
log F (y0, R)

〉 + H(y0) − γ

2
w2, (2.5)

where H(y0) denotes the entropy of y0.

3 IB Learning Rule for Spiking Neurons

3.1 Online Learning Rule. From the objective function L defined in
equation 2.3, an online learning rule for w can be obtained by performing a
stochastic gradient ascent with a learning rate ηw:

�wt = wt+1 − wt = ηw Lw, with 〈Lw〉 = ∂L
∂w

,

and analogously for the parameters q with a learning rate ηq . As shown in
appendix A, this leads to the following equations:

�wt = ηwg′tνt (
σ−1(F t) − σ−1(〈gt〉)) − ηwγw (3.1)

�qt = ηq ht(yt − F t),

where σ−1 is the inverse logistic function and
〈
gt

〉
is the average firing rate

of the neuron. Further, g′t denotes the derivative of the activation function
at time step t, and F t = σ (qt · ht) denotes the estimator of p(yt = 1|R). For
online learning,

〈
gt

〉
is estimated by a running average ĝt of gt over an

exponential time window of width η−1
g :

ĝt+1 = (1 − ηg)ĝt + ηggt.

Apart from the multiplicative term g′t , which modulates the amount
of weight change �wt with the sensitivity (i.e., the derivative) of the
activation function, learning rule 3.1 consists basically of three addi-
tive terms. These terms correspond to the gradients of the estimation
〈log F (y0, R)〉 ≈ −H(y0|R), of the entropy H(y0) and of the regularization
Lreg, which stem from the three additive terms of L in the form of equa-
tion 2.5. The first term νtσ−1(F t), being proportional to the gradient of
〈log F (y0, R)〉, increases those weights w j whose synaptic activity νt

j cor-
relates with the estimator F t (as σ−1 is just a monotonic rescaling). Thus,
those weights are potentiated whose activity can be well predicted by the
estimator F t and hence carry relevant information. The second term, which
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is proportional to −σ−1(〈gt〉) = log((1 − 〈gt〉)/〈gt〉), stemming from the gra-
dient of H(y0), changes the weights in order to achieve a high entropy of
the output y0 (which is maximal at 〈gt〉 = 1/2). This term can be interpreted
as a homeostatic control on a long time-scale, as the average 〈gt〉 is slowly
changing due to changes of the weights. It pushes the activity of the neu-
ron toward a working regime of optimal information transmission. The last
term −w from equation 3.1 represents the gradient of the regularization
−w2/2 and yields a conventional weight decay term.

The update rule for the parameters q is proportional to the difference of
the neuron output yt and F t . The parameters q assume stationary values if,
for example, the estimation F t fulfills F t = 〈yt〉Y|X,R.4

3.2 A Simple Example. In this section, the IB learning rules 3.1 for
adapting the weights w and parameters q are applied to a simple IB op-
timization task. The inputs to the neuron, as well as the relevance signal,
consist of (discrete-time) Poisson spike trains. Some of the input spike trains
exhibit a statistical dependence on the relevance signal on the level of pre-
cise spike times, and hence carry relevant information. When learning rule
3.1 is used, the neuron should learn to exclusively potentiate the weights of
these input channels and neglect the remaining inputs.

Consider the following setup, which is shown in Figure 2. Let the N = 100
inputs X = (X1, . . . , X100) to the bottleneck neuron be arranged into three
groups G1, G2, G3 consisting of 25, 25, and 50 neurons, respectively. The
inputs Xi , as well as the relevance signal R, are given by spike trains (i.e.,
binary sequences in {0, 1}Z) of constant rate5 νX = 0.02 and νR = 0.06 (cor-
responding to 20 Hz and 60 Hz for a time step �t = 1 ms). Spike trains from
different input groups are statistically independent. Furthermore, the in-
puts are generated such that spike trains from the input groups G1 and
G2 exhibit a correlation coefficient (CC) with the relevance spike train R
of c1 = 0.1 and c2 = 0.075 due to coincident spikes of Xi and R within one
time step. Spike trains of G3 are highly correlated with each other with a
CC of c3 = 0.2. Here the CC c between two spike trains xi (t) and xj (t) is de-
fined as c = 〈(xi (t) − 〈xi (t)〉)(xj (t) − 〈xj (t)〉)〉/(var(xi (t))var(xj (t)))1/2, where
var(xi (t)) denotes the variance of xi (t). In this setup, the inputs of the
groups G1 and G2 carry relevant information, whereas inputs of G3 have
interesting statistics (i.e., high correlation) but nevertheless are irrelevant
due to the definition of R. Further simulation parameters and details can
be found in section 5.3. The preprocessing ht = (ht

1, ht
2) was chosen in

the following way. The first element ht
1 = 1 is a constant bias, whereas

4Here 〈 f 〉Y|X = ∑
Y f · p(Y|X) denotes the expected value of f over Y conditioned

on X.
5We define the rate of a spike train Xj at time step t as the current probability to spike

p(xt
j = 1).
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Figure 2: Setup of the simple IB task described in section 3.2. The synapses
of the neuron are arranged in three groups G1 to G3 whose average weights
are denoted as w̃1 to w̃3. The inputs to the neuron, illustrated here by a spike
raster plot (notice that only 2/5 of the spike trains of each group are shown), as
well as the relevance signal are modeled as spike trains. The different groups
convey different amounts of relevant information in their precise spike tim-
ings, parameterized by the correlation coefficient between the input and the
relevance signal. IB learning rule 3.1 adapts the weights w such that eventually
the output of the neuron is most informative about the relevance signal (with
regularization).

ht
2 = ∑∞

s=0 exp(−s/τ )Rt−s is a low-pass filter of the relevance spike train
with an exponential window of size τ = 10.

In Figure 3 the results of a simulation of this setup with a trade-off pa-
rameter γ = 8 · 10−6 are plotted. Figure 3A shows the temporal evolution of
the average group weights w̃a = |Ga |−1 ∑

i∈Ga
wi of group Ga for a = 1, 2, 3

with group size |Ga |. It can be observed that the average group weights w̃a

converge to a value roughly proportional to the CC between the correspond-
ing input spike trains and the relevance signal; for example, the weights of
G1 are strongest after the learning. The inputs of G3 do not carry relevant in-
formation by construction, and therefore the weights decay toward zero due
to the regularization term of the objective function 2.3. The dynamics of the
parameters q are plotted in Figure 3B. They eventually assume stationary
values that are (possibly locally) optimal values for estimating the output
probability p(yt = 1|R) conditioned on the relevance signal R by the esti-
mator F t = σ (qt · ht). An estimation of the IB objective function L IB (for de-
tails, see section B.1) and of the lower bound L are shown in Figure 3C. Both
measures increase over time due to the stochastic gradient ascent learning.
Furthermore, L is quite “tight” for this task and provides the neuron with a
good estimation of the “true” value of the objective function L IB as well as its
gradient with regard to w and q. Additionally the regularization Lreg is plot-
ted separately to illustrate its contribution to the total objective function L .
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Figure 3: Results of the simulation described in section 3.2. (A) Trajectories of
the average group weights w̃i for i = 1, . . . , 3 as a function of the time step t. The
weights of G1 (black) and G2 (gray) are increased as they have nonvanishing
mutual information with the relevance signal R. The weights of the remaining
group G3 (light gray) decay to zero as the corresponding inputs are independent
of R. (B) The trajectories of the parameters q1 (black) and q2 (gray). They evolve
such that σ (qt · ht) optimally estimates the conditional probability p(yt = 1|R)
(in terms of the Kullback-Leibler divergence). (C) Numerical estimations of the
IB objective function L IB (gray) and of the lower bound L (black) are plotted as
functions of time step t. One sees that the lower bound gives a good estimation
of L IB in this example task. Furthermore, the regularization term Lreg is plotted
(light gray). (D) Results of applying an InfoMax learning rule to the same setup.
InfoMax does not take the relevance signal R into account, and therefore weights
of group G3 get potentiated (color coding as in panel A).

In Figure 3D we show results of a simulation using the same setup as
described above, with the only difference that the weights are learned not
with the IB learning rule but with an InfoMax learning rule. InfoMax aims
at maximizing the amount of transmitted information I (y0, X−∞) between
the input and output of the neuron without taking the relevance signal R
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into account. It can be seen that in contrast to the results of IB learning,
InfoMax potentiates the weights of G3 as their inputs exhibit the strongest
correlation with each other. The InfoMax rule is given in section A.2, and a
more general comparison to IB learning can be found in section 5.

3.3 Neural Implementation of the Relevance Signal Preprocessing.
In section 3.2 a simple IB optimization task was solved assuming that the
filters h = (h1, . . . , hr ) provide a suitable preprocessing of the relevance
signal R (in that case, a low-pass filter of the relevance signal and a constant
bias). In this example the preprocessing was quite specific for the given IB
task (i.e., specific for the distribution p(X−∞, R)), and one might argue that
the neuron could not have solved other IB tasks with this preprocessing.
In this section, we address this point by proposing the implementation of
the relevance signal preprocessing by a generic neural circuit, which is not
tailored for a single IB task but allows the bottleneck neuron to solve a larger
class of IB tasks with the same preprocessing filters. These tasks may also
feature more statistically complex dependencies between the neural input
X and the relevance signal R, in particular in the temporal domain.

In the approach for IB optimization presented above, it is essential for the
bottleneck neuron to have a reasonable approximation F t of the conditional
probability p(yt = 1|R) in order to optimize the weights w. The quality of the
lower-bound L , which is optimized (i.e., the difference |L IB − L|), is given
by the Kullback-Leibler divergence between the estimation F t = σ (q · ht)
and the “true” value p(yt = 1|R). Hence |L IB − L| critically depends on the
given preprocessing h of R. Ideally the preprocessing would be powerful
enough such that F t = p(yt = 1|R) for some parameters q, and optimizing
L would then be equivalent to optimizing the “true” IB objective func-
tion L IB. Maass, Natschlaeger, and Markram (2002) investigate the general
problem of approximating with a fixed set of preprocessing filters (here
h = (h1, . . . , hr )) and a fixed class of memoryless readout functions (here,
the linear maps parameterized by q followed by the logistic function σ ) for
any given target filter (here p(yt = 1|R)).6 A largely positive result is given
for approximating target filters that are time invariant (TI) and have the
fading memory (FM) property (for exact definitions and results, see Maass
et al., 2002) under suitable assumptions concerning the set of filters and
the set of readout maps. Roughly speaking, a filter has fading memory if
it becomes asymptotically insensitive to the remote history of its input. A
further specific result given in Boyd and Chua (1985) states that TI-FM fil-
ters can be approximated with arbitrary precision by a finite-dimensional,
linear dynamical system implementing the filters and a polynomial readout
map.

6The considerations in Maass et al. (2002) focus on the case of continuous time, but
similar results also hold for discrete time.
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Based on the theoretical results of Maass et al. (2002), in a series of publi-
cations (for a review see Buonomano & Maass, 2009; for a similar approach,
see Jäger, 2001), it was observed that various TI-FM filters can be efficiently
approximated using a fixed generic neural network implementing the fil-
ters h and exclusively learning a memoryless linear readout function. This
approach exploits that sufficiently large recurrent networks of nonlinear
neurons provide a sufficiently generic nonlinear preprocessing. Hence, it
often suffices to use linear, rather than polynomial, adaptive readouts. More
precisely, in this approach, the filters h are implemented by a sufficiently
complex recurrent neural network that is generated randomly (in partic-
ular, the network is not designed for approximating a specific filter) and
receives an external input given by the signal on which the target filter op-
erates on (here, the relevance signal R). The value ht of the filters h at time
step t is then defined, for example, as the vector of neuron activations (for
continuous networks) or the output spikes of the network units at time step
t. The readout map in these studies was restricted to linear maps, qt · ht ,
and only the parameters q are learned in order to approximate the given
specific target filter. This neural architecture poses a sensible implementa-
tion of the preprocessing h in the IB setup if the target filter σ−1(p(yt = 1|R))
can be assumed to have the FM property (it is guaranteed to be TI if R and
X are stationary processes). The FM property amounts to assuming that
input spikes xt

i become asymptotically independent from the relevance sig-
nal Rt±τ for large delays τ . In the following paragraph, an example IB task
is discussed that illustrates this approach. We show that in this example,
a generic recurrent network with a trainable linear readout provides the
bottleneck neuron with a sufficiently accurate estimation F t = σ (q · ht) of
p(yt = 1|R), allowing it to solve a given IB task.

Consider the following setup. Let the relevance signal R be a piece-wise
constant, real-valued stochastic process that assumes every 30 time steps a
new value that is identically and independently distributed in [−0.5, 0.5],
(see Figure 4A). The input spike trains Xi are arranged in four subgroups
G1 to G4 similar to the setup of the example given in section 3.2. The inputs
of the group G j were generated as spike trains with a time-varying rate λt

j
at time step t. The rate λt

1 was defined as

λt
1 = a Rt−τ1 Rt−τ2 + b, (3.2)

with delays τ1 = 10 and τ2 = 50 time steps and coefficients a , b. The re-
maining rates λt

2, λt
3, λt

4 were generated with the same statistics as λt
1, but

they are independent from R. By construction, only inputs of G1 contain
relevant information, whereas the remaining inputs do not. The prepro-
cessing of the relevance signal was implemented by a recurrent network
of r = 200 sigmoidal rate neurons, which receives the relevance signal R
as input; that is, the values of the filters ht at time step t were chosen as
the network activity at time step t. According to the approach proposed
above, the estimation F t was given by σ (q · ht), and the parameters q were
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Figure 4: Numerical results for an IB optimization task with a preprocessing
of the relevance signal R implemented by a generic recurrent network as de-
scribed in section 3.3. (A) Shown is the relevance signal R (top) as well as the
spiking probability λ1 (bottom) for the inputs of group G1. By design, only λ1

is statistically dependent on R, and hence only the inputs of G1 carry relevant
information. (B) The trajectories of the mean weights w̃1 (black) of G1 and w̃�1
(gray) of the remaining groups G2, G3, G4 are plotted as functions of time step
t. As only the inputs of G1 have a nonvanishing mutual information with R, w̃1

is exclusively potentiated. The average w̃�1 of the remaining weights decays due
to regularization. (C) Trajectories of the activation function gt = p(yt = 1|X−∞,t)
(black) and of the estimator F t (gray) are shown for an interval of 500 time steps
after the weights w and the parameters q have been learned.

learned by equation 3.1. The quantity F t can be interpreted as the activity
of a logistic readout neuron with input ht from the recurrent network and
weights qt . All further details and parameter can be found in section B.2.

The simulation results of the average weights w̃1 = 1
25

∑
j∈G1

wt
j of G1

and w̃ �1 = 1
75

∑
j /∈G1

wt
j of the remaining groups G2, G3, G4 are presented in

Figure 4B. In agreement with the learning goal, only the weights from G1 are
potentiated, while the other weights decay to zero due to the regularization
term in the objective function L defined in equation 2.3. In Figure 4C the
spiking probability gt = p(yt = 1|X−∞,t) and the estimation F t ≈ p(yt =
1|R) are plotted for 500 time steps after learning of w and q. Although
the rates of G1 are related to the relevance signal R by a second-order
Volterra series defined in equation 3.2, which involves temporal delays of
10 and 50 time steps, the estimation F t is sufficiently accurate for learning
an approximate IB optimal coding. Hence, this task is an example where the
preprocessing of the relevance signal R via a generic untrained recurrent
network with a trainable readout enables the neuron to extract statistical
dependencies between X−∞ and R and to solve the given IB task.

4 Application: Predictive Coding

In Bialek et al. (2006), the H1 neuron of the blowfly, an extensively stud-
ied cell of the fly sensory-motor control system, is proposed as a possible
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example for a biological system providing an IB optimal coding. It is hy-
pothesized that the output of this neuron is maximally informative about
future external stimuli; hence this coding paradigm is termed predictive cod-
ing. In the following section, we show how such a predictive coding scheme
can be learned by a neuron using a variant of the presented IB learning rule,
equation 3.1.

It is has often been hypothesized that biological agents maintain an in-
ternal representation, denoted here as Xint, of the external world that is
obtained and updated via previous sensory stimuli Xpast (as sensing is a
causal process that takes time). The representation Xint allows the agent to
adapt its behavior to the state of the environment and plan future actions.
The hypothesis that this representation Xint is optimal in some information-
theoretic sense (for a given amount of invested resources Lreg) has drawn
much attention and served as a guideline for many intriguing studies (see
the references in Bialek et al., 2006). Bialek et al. (2006), however, argue
that not all sensory information contained in Xpast is equally important
for the behavior and the survival capabilities of the agent, and hence the
entire sensory information should not be represented internally in Xint.
More precisely, it is hypothesized that only such external stimuli are worth
being represented that are informative about the future sensory stimuli
Xfuture, which encodes the future state of the environment. Only this infor-
mation can be used by the agent to plan behavior and eventually improve
its fitness. This predictive coding paradigm was formalized as an IB opti-
mization problem. The mapping from the past sensory stimuli Xpast to the
representation Xint should be chosen such that it maximizes the predictive
information I (Xint, Xfuture) about the future sensory stimuli Xfuture at fixed
costs Lreg. Following this train of thought, the agent should hence maximize
the following IB objective function Lpredictive:

Lpredictive = I (Xint, Xfuture) − γ Lreg.

Bialek et al. (2006) also discuss a concrete example of this predictive coding
paradigm: the H1 neuron of the blowfly. This neuron is part of the optomotor
control loop, and it is known to approximately code logarithmically for the
horizontal angular velocity of the fly. Bialek et al. (2006) argue that this
specific coding of the H1 neuron of the external stimuli could be optimal
with regard to the objective function Lpredictive.

Here we show that a single neuron can learn to extract predictive infor-
mation from its inputs and establish a predictive coding scheme, similar to
the one described in Bialek et al. (2006), using a slightly modified version
the IB learning rule, equation 3.1. At any time step t, we identify the sen-
sory input Xpast with the input history X−∞,t of the bottleneck neuron and
identify the internal representation Xint with its output yt . Furthermore, we
define the relevance signal Xfuture as the future input Xt,t+δ to the neuron
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in the time interval [t, t + δ], which extends δ time steps into the future
for a given parameter δ ∈ N. For simplicity, we also assume in this section
that the activation function g = σ of the bottleneck neuron is the logistic
function.7

One possible approach to learn a predictive code is the following. If we
assume that the synaptic kernel ε (see equation 2.1) is nonanticipating and
that its support is shorter than δ time steps, the future activation gt+δ is
exclusively a function of the future input Xt,t+δ . Hence, gt+δ can be inter-
preted as a preprocessing ht of the relevance signal Xt,t+δ . Based on this
observation, we make the ansatz F t = gt+δ for the estimator F t ; that is, we
hypothesize that the neuron uses its own future spiking probability gt+δ to
estimate the amount of predictive (i.e., relevant) information contained in
its input at time step t. The objective function L to maximize resulting from
this approach reads:

L =
〈

log

(
(gδ)y0

(1 − gδ)y0

p(y0)

)〉
− γ

2
w2. (4.1)

Due to the ansatz F t = gt+δ , the objective function 4.1, and consequently
its gradient at time step t, contains the spiking probabilities gt and gt+δ .
Performing a straightforward stochastic gradient ascent (analogous to the
procedure that leads to rule 3.1) would result in an anticipating learning
rule; the weight update �wt would involve the future spiking probability
gt+δ . This can be circumvented by shifting the time step index on the right-
hand side of the learning rule by −δ, which is allowed in stochastic gradient
ascent as this does not change the expected value of the learning rule. This
leads to the following update equation for the weights:

η−1
w �wt+1 = g′t−δ

νt−δ
(
σ−1(gt) − σ−1(〈gt−δ〉)

)
− γwt + νt(gt−δ − gt).

(4.2)

The above learning rule is nonanticipating, but it is still not local in time
as it contains the terms gt−δ , g′t−δ , and νt−δ . Therefore, the values of the
activity gt as well as the synaptic activity νt have to be buffered by the
neuron for δ time steps in order to learn a predictive code with rule 4.2.
Although an exact implementation of this buffering seems rather implau-
sible, approximate implementations of the predictive coding learning rule
might be biologically achievable. Assuming that the time parameter δ is
not exactly defined but is rather given by a more diffuse parameter range,

7Similar learning rules can also be derived for more general activation functions, but
they turn out to be slightly more complex.
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running averages of g and ν with appropriate window sizes might prove
to be sufficiently informative in order to learn an approximate predictive
code. These averages could possibly be encoded in the signaling cascades
that are triggered by pre- and postsynaptic spike events.

The structure of learning rule 4.2 is similar to the one of the general
IB rule, equation 3.1. The first term, which is proportional to νt−δσ−1(gt),
potentiates those synapses whose input at time t − δ is correlated with the
output rate gt at time step t, that is, those synapses are potentiated whose
inputs are predictive for the future neural output. The next term, which
is proportional to σ−1(〈gt−δ〉), remains unchanged from the original rule,
equation 3.1. The last term νt(gt−δ − gt) stems from the fact that the esti-
mator F t := gt+δ depends now on w itself. This term replaces the learning
rule for q form, equation 3.1 (second line), and it drives the weights such
that the past activity gt−δ can be well estimated by the present activity gt .

We want to point out that the simple choice for the estimator F t = gt+δ

made above limits the power of rule 4.2 for learning a predictive code. Only
those weights w j are potentiated whose input Xj is positively correlated at
time t with the output at time t + δ. Negative correlations or higher-order
statistical dependencies cannot be extracted with this choice of the estimator
F . In order to achieve this, a more sophisticated ansatz for F with a more
diverse preprocessing of Xt,t+δ would be required (e.g., the ansatz proposed
in section 3.3).

We illustrate the behavior of learning rule 4.2 by a simple numerical
example for a delay parameter δ = 25. Consider the following setup where
the synapses are again divided into four groups G1, . . . , G4. Synapses from
subgroup G1 receive spike trains with a rate that is determined by a (discrete
time) Ornstein-Uhlenbeck8 (OU) process with a time constant τ1 = 50, mean
μ1 = 0.2 and standard deviation (SD) σ1 = 0.3 · μ1. The inputs for group
G2 are generated in a similar way, however, with a time constant τ2 = 25
and σ2 = 0.5 · μ1. A (discrete time) telegraph process with mean μ1 and
SD σ1 and a time constant τ3 = 20 determine the rate for the spike train
of group G3. Spike trains of G4 are generated with a constant rate μ1.
Additional parameters and details can be found in section B.3. The results
of the simulation are plotted in Figure 5. As expected the weights of G4

rapidly decay as they transmit no relevant information. Further, due to the
long autocorrelation time constant τ1, the weights of G1 are exclusively
potentiated, while the weights for G2 and G3 decay. If, however, the values
of the time constants τ1 and τ3 are switched (τ1 = 20, τ3 = 50), the results are
reversed: weights of G3 grow over time, while those of G1 decay (results not
shown). This example illustrates that the specialized version (see equation
4.2) of the IB rule (see equation 3.1) enables the neuron to extract predictive
information from its input in simple setups.

8More precisely the firing rate p(xi (t) = 1) is defined as p(xi (t) = 1) =
min{1, max{0, O(t)}} in terms of the OU process O(t).
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Figure 5: Numerical results for the predictive coding application described in
section 4. (A) Shown are the average group weights w̃i for G1 (top curve in black),
G2 (dark gray), G3 (gray), and G4 (light gray). Group G1 transmits the largest
amount of predictive information due to the long autocorrelation time constant
τ1 of its input, and hence the average w̃1 is exclusively increased, whereas the
remaining weights decay to zero. (B) The lower bound L (black) is plotted
as a function of the time step t. Also shown is an estimation of the “true” IB
objective function Lpredictive (gray), for which the mutual information I (yt, Xt,t+δ)
was approximated by

∑N
j=1 I (yt, Xt,t+δ

j ) (causing the large offset between L
and Lpredictive). The trajectories indicate that the neural output becomes more
predictive for the future input Xt,t+δ .

5 Discussion

5.1 Relation to Existing Work. Here we briefly discuss existing work
that is related to the IB learning rules proposed in this contribution. Addi-
tionally, in the first paragraph, the differences between the approach pre-
sented in this article and other IB algorithms are described.

5.1.1 Other IB Algorithms. Most IB algorithms determine nonparamet-
ric mappings from the input to the output RVs (Tishby, Pereira, & Bialek,
2000; Slonim & Tishby, 1999). Hence, the approach presented here, which
determines an IB optimal mapping via gradient ascent with regard to the
model parameters w, q might be regarded to be against the spirit of the IB
framework. However, we argue that in the neural setup considered here,
where the global structure of the IB mapping is fixed (e.g., the dimension-
ality of the output and the class of transformations that can be used), such
a parametric approach is nevertheless justified. Another difference is that
most IB algorithms operate in batch mode on the complete input data (with
the notable exceptions of predictive coding described below), whereas the
setup we propose maps input sequences onto an output sequence online.
This approach reflects the fact that neurons naturally operate in the temporal
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domain, which also requires an online algorithm for learning the IB optimal
mapping. Furthermore, most IB algorithms assume that the joint distribu-
tion p(X, R) of the input RV X and the relevance RV R is known; hence,
they require a beforehand estimation of p(X, R) based on finite samples (for
an in-depth analysis of this procedure, see Ohad Shamir, Sabato, & Tishby,
2008). In contrast to this procedure, our approach (based on the objective
function 2.3) directly unifies this estimation process and learning of the IB
mapping. This unification, however, comes at the expense of not optimizing
the “true” IB objective function L IB but a lower bound L of the latter.

The work presented here directly builds on Klampfl et al. (2009). There,
the authors derived an online IB learning rule by gradient ascent for a
quite sophisticated stochastic neuron model, assuming that the relevance
signal sequence is given by a spike train of the same neuron model. The
gradient of the relevant information (the mutual information between the
output Y and the relevance signal R) was estimated by measuring the
correlation

〈
yt Rt

〉
, where Rt ∈ {0, 1} is the relevance spike train at time step

t. The resulting learning rule is sensitive only to instantaneous correlations
between the neural output and the relevance signal, a fact that limits the
applicability of the learning rule. In contrast, we propose in this study
the more general approach of a parametric estimation of the gradient of
I (y0, R) based on a given preprocessing ht = (ht

1, . . . , ht
r ). The resulting

rule, equation 3.1, is as powerful as the preprocessing that is available to
the neuron. Given that neurons are strongly interconnected and receive
many recurrent inputs resulting in highly nontrivial transformations of the
external input, it seems reasonable to assume that the preprocessing of the
relevance signal, which is potentially available to the bottleneck neuron,
is diverse and rich enough to carry out a large class of IB optimization
tasks. Further, a considerable simplification of learning rule 3.1 compared
to the one presented in Klampfl et al. (2009) was achieved by choosing
to maximize the mutual information I (y0, R) instead of the more complex
quantity I (Y, R), where Y = (. . . , y−1, y0, y1, . . .). 9

5.1.2 InfoMax and Imax. The learning goal of maximizing the mutual in-
formation between the input and output of individual neurons or neural
networks, so-called InfoMax learning, has served as a fruitful theoretical
principle for learning with artificial and more biologically realistic neu-
ral models (see, e.g., Linsker, 1989; Bell & Sejnowski, 1995; Chechik, 2003;
Toyoizumi et al., 2005; Parra et al., 2009). More precisely InfoMax is de-
fined as learning a neural mapping X → Y of some input X to the out-
put Y, which maximizes the amount of transmitted information defined

9This simplification can apparently be made without reducing the power of the learn-
ing rule, as all numerical IB tasks presented by Klampfl et al. (2009) can also be solved by
rule 3.1 even when assuming only a simple preprocessing (data not shown).
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as the mutual information I (X, Y) (with some regularization constraints).
While InfoMax shares a common theoretical foundation with the IB method,
namely, information theory, there are differences with regard to the specific
learning goals and their biological interpretation. InfoMax is an unsuper-
vised learning principle; its formulation involves only the input X and
the output Y. There is no external guideline of how the input X is to be
transformed into the output Y except for maximizing the scalar mutual
information I (X, Y). InfoMax can be interpreted as a possible approach to
dimensionality-reduction techniques, to clustering as well as to blind source
separation (Bell & Sejnowski, 1995). The IB method also aims at construct-
ing a mapping X → Y of the input X to the output Y, which exhibits certain
information-theoretic properties. In contrast to InfoMax, however, the IB
method is not an unsupervised learning framework. In the IB framework,
it is assumed that the environment offers information about what can be
considered relevant in the input via the given relevance signal R. It has to
be emphasized that IB mapping, once learned, maps the input to the output
X → Y; it is not a mapping from the input and the relevance signal to the
neural output X × R → Y. Thus, relevant information given by R that is
not present in the input X will not be encoded in the output Y. Further,
it should be noted that the relevance signal R has to be present only dur-
ing learning of the IB mapping. After this learning phase, the IB optimal
mapping X → Y can be carried out by the neural architecture without the
presence of the relevance signal R. In a biologically plausible setting, the
distinction between learning and operation phase could, for example, be
implemented with a learning rate η(‖Rt‖) that detects the presence of the
relevance signal by monitoring some measure of its intensity ‖Rt‖ over time
and stops learning if the relevance signal is absent.

To further illustrate the difference between IB and InfoMax, consider the
setup of the simulation presented in section 3.2. The input to the IB neuron
consists of three groups: G1, G2, and G3. The results presented in section
3.2 show that if the relevance signal R is statistically dependent on the
input G1 and G2 (i.e., G1, G2 convey relevant information), the correspond-
ing weights are potentiated (see Figure 3A). If, however, the synapses are
updated with an InfoMax learning rule (for details, see section A.2), only
the weights of group G3 are potentiated, while all other weights decay (see
Figure 3D). This weight configuration maximizes the transmitted mutual
information I (X, Y) since group G3 subsumes the most afferents and its
inputs exhibit the strongest spike-spike correlations. This is an example
where the learning results of IB and InfoMax differ.

Becker (1996) and Becker and Hinton (1992) propose a learning principle
called Imax that is similar to IB learning and can be interpreted as a special
case of the latter. The objective of Imax is to maximize the mutual informa-
tion between the outputs of two (or more) networks that receive disjoint
but statistically related inputs. It is therefore different from InfoMax, which
aims at maximizing the mutual information between input and output.
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More precisely, in Becker (1996), two (multilayer) feedforward networks are
considered, whose two inputs X1, X2 are given by neighboring patches of
visual input. The learning objective was defined as maximizing the mutual
information I (X̂1, X̂2) between the activations X̂1, X̂2 of the output layers of
the networks. Partial derivatives of I (X̂1, X̂2) are propagated back into the
hidden layers of the network to maximize I (X̂1, X̂2). In contrast to the work
presented in this article, the architecture of Becker (1996) and Becker and
Hinton (1992) does not operate in the temporal domain; it implements an in-
stantaneous mapping from input to output (which simplifies drastically the
evaluation of the objective function I (X̂1, X̂2)). An interesting topic for fu-
ture research is to port the architecture proposed in Becker (1996) and Becker
and Hinton (1992) to neurons operating in time by using the learning rule
presented here. This can possibly be achieved by adopting ideas from the
symmetric IB setup presented in Friedman, Mosenzon, Slonim, and Tishby
(2001), where two disjoint input streams are mapped to simpler represen-
tations while preserving as much mutual information between each other.

5.1.3 Predictive Coding. Predictive coding, which was formalized in the
IB framework in Bialek et al. (2006), has been studied for linear mappings
and gaussian noise in Creutzig and Sprekeler (2008), revealing an intrigu-
ing relation to slow feature analysis (for an introduction, see Wiskott &
Sejnowski, 2002). The solutions to this past-future bottleneck are explic-
itly given. Furthermore, the analysis of predictive coding was expanded
to linear dynamical systems in Weiss (2007), also resulting in a complete
characterization of the IB optimal systems assuming a linear dependence of
the input RV X on the relevance RV R with additive gaussian noise. These
studies provide strong, exact results to the considered restricted setups. The
spirit of the approach presented here is quite different. We provide an iter-
ative scheme for IB optimization, which is possibly prone to local minima,
focusing on a neural mapping while making only a few assumptions about
the input and relevance processes X and R.

Predictive coding as a learning goal for sensory processing with neu-
ral architectures was motivated in Bialek et al. (2006) by arguing that this
paradigm allows learning a “useful” (with regard to the agent’s fitness)
internal representation or model of the environment. It can therefore be
considered to be closely related to learning a generative model of the envi-
ronment (see Slonim & Weiss, 2003, for a relation between IB and genera-
tive models). However it can be argued that learning a sufficiently accurate
model of the environment may consume too many resources and may
require too many data to be a suitable strategy for adapting to the envi-
ronment. An alternative would be a discriminative approach; one might
hypothesize that it is more appropriate for an agent to directly learn a map-
ping from environmental configurations to behavioral decisions, without
the need for an explicit representation of the environment. Which of these
two approaches, generative versus discriminative, is the better theoretical
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model depends, among others, on the structure and amount of data that the
agent learns from. In a machine learning context (Hinton, 2007) argues that
a combination of generative learning, making use of unlabeled data, and
discriminative learning is a powerful and promising approach. This indi-
cates that such a combination of discriminative and generative approaches
might also be a powerful model for sensory processing in biological agents.

5.2 A Possible Biological Implementing of IB Optimization with Spik-
ing Neurons. The experimental investigation of synaptic plasticity has
made significant advances in the past decade (for reviews, see Caporale
& Dan, 2008; Sjöström, Rancz, Roth, & Häusser, 2008). The classical picture
of synaptic plasticity, as postulated by Hebb (1949) and later experimen-
tally described by others, which exclusively depends on the pre- and post-
synaptic activity, had to be considerably expanded over the years due to
accumulating experimental evidence. It is now known that many additional
factors modulate synaptic weight changes e.g., neuromodulators (Hee et al.,
2007), details of neural morphology (Sjöström et al., 2008), and extracellular
subthreshold stimulation (Sjöström, Turrigiano, & Nelson, 2001), for ex-
ample). This large body of experimental literature poses a huge challenge
for theoretical work about the underlying functions of these mechanisms
for neural information processing. The fact that synaptic plasticity is de-
termined by additional quantities besides pre- and postsynaptic activity
might be a suitable mechanism allowing synaptic weight changes to ful-
fill complex optimization goals like IB optimization. In the following, we
show that the proposed IB learning rule 3.1 fits well with recent experimen-
tal results concerning the influence of dendritic depolarization on synaptic
plasticity.

The plasticity of synapse j described by rule 3.1 depends on the synap-
tic activity νt

j , in agreement with experimental findings. Further, a mea-
sure of the average postsynaptic activity 〈gt〉 influences the weight change.
This may be interpreted in a biological context as a homeostatic control
of the weights. The central claim of learning rule 3.1 is, however, that a
“third” factor σ−1(F t), which quantifies the influence of the relevance sig-
nal, shapes synaptic plasticity. This contribution crucially determines the
sign and amplitude of the weight change in this plasticity model. A biologi-
cal mechanism termed dendritic switch, which has recently been uncovered
by Sjöström and Häusser (2006), is a plausible candidate for a third factor
modulating plasticity as required by IB learning. It is known that plastic-
ity of dendritic synapses depends on the backpropagating action potential
(bAP) in the dendrite (Caporale & Dan, 2008). Further, it has been shown that
the bAP amplitude and the reliability of the bAP are shaped by the active
and passive conductance properties of the dendrite (see Stuart & Häusser,
2001). These conductance properties can in turn be considerably modulated
by local de- or hyperpolarization of the dendrite as demonstrated in Stuart
and Häusser (2001). Hence it can be assumed that properly timed EPSPs
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Figure 6: A possible biological mechanism implementing IB optimization in a
single neuron. As shown in experiments, the activity of proximal synapses can
act as “dendritic switches” that critically influence the amplitude and the sign of
weight changes of distal synapses. The IB learning rule could be implemented
in the distal synapses assuming that the proximal synapses convey the influence
of the relevance signal R via F t .

and IPSPs in the dendrite shape synaptic plasticity by influencing the bAP
amplitude. According to Sjöström and Häusser (2006), these mechanisms
indeed enable proximal synapses to act as “dendritic switches,” which mod-
ulate the weight changes at distal synapses by boosting or shunting the bAP.
These “dendritic switches” were shown to be able to change the amplitude
as well as the sign of the weight change at distal synapses by modulat-
ing the bAP with EPSPs and IPSPs that de- or hyperpolarize the proximal
part of the dendrite. In the IB model, the proximal synapses, the dendritic
switches, would convey the influence of the relevance signal σ−1(F t) (see
Figure 6). The weights w, which obey rule 3.1, would correspond to more
distal synapses whose plasticity is controlled by the relevance signal. With
this correspondence, the IB plasticity model predicts a boosting (shunt-
ing) of bAPs leading to potentiation (depression) at active distal synapses
(those with νt > 0) whenever the weighted, preprocessed relevance signal
σ−1(F t) (representing the input at the proximal synapses) is high (low). As
the dendritic switches act on a millisecond timescale, this mechanism would
provide a sufficiently high temporal resolution for the relevance signal in
contrast to other factors modulating plasticity (e.g., neuromodulators).

In spite of this possible correspondence with the experimental data dis-
cussed above, we wish to point out the limitations of IB learning rule 3.1 as
a theoretical model for experimental findings. It has to be noted that the IB
learning rule presented here cannot account, for example, for the effect of
spike-timing-dependent plasticity (STDP) as reported in Bi and Poo (1998),
for example. The weight change given by IB rule 3.1 does not exhibit a
dependence on the postsynaptic spike times, only on a long-term average
of the postsynaptic firing rate 〈g〉. This is in contrast to the experimental
results on STDP, which report a strong dependence of plasticity on the pre-
cise timing of pre- and postsynaptic spikes. Furthermore, numerous more



A Spiking Neuron as Information Bottleneck 1987

subtle aspects of plasticity, such as postsynaptic voltage dependence and
weight dependence of plasticity, are not reflected by the IB rule. A topic
of current research is whether the IB approach in conjunction with more
realistic neuron models or other constraints can reproduce experimental
data more faithfully.

5.3 Summary. In this article, we presented an online learning rule for
IB optimization with a simple, idealized spiking neuron model. The neuron
was regarded as an information bottleneck that maps its high-dimensional
input sequence on a one-dimensional output sequence of spikes. With the
help of the proposed IB learning rule, the neuron can adapt its weights
such that its output contains the maximal amount of relevant information,
that is, its output is maximally informative (possibly locally optimal) about
a relevance signal also given by a sequence of RVs in time. This learning
rule was derived assuming that the neuron has access to an estimation of
its currently transmitted amount of relevant information (more precisely,
the gradient), which is based on a given preprocessing of the relevance
signal and an adaptable set of parameters that are learned simultaneously
with the weights. This approach extends previous studies on neural IB
optimization (Klampfl, Legenstein, & Maass, 2007; Klampfl et al., 2009) that
were based on correlations between the output of the bottleneck neuron
and the relevance signal.

We also addressed the question of how a suitable and sufficiently general
preprocessing of the relevance signal may be implemented in a biological
neural system. Motivated by previous theoretical, numerical, and experi-
mental studies (see Buonomano & Maass, 2009), we argued that a generic
recurrent neural circuit, which is not learned for a certain IB task and hence
looks randomly structured from the perspective of the bottleneck neuron,
can be considered a plausible candidate for such an implementation of the
preprocessing. Simple models of recurrent neural networks were shown in
previous studies to provide a considerable amount of memory and nonlin-
earity and, hence, render themselves to be a suitable preprocessing of the
relevance signal enabling the bottleneck neuron to carry out a class of IB
tasks.

Further, we have discussed a biological mechanism that can in principle
resolve the problem of spatial nonlocality encountered in previous IB learn-
ing rules for spiking neurons—the problem of how the current values of
quantities that are essential to the learning rule can be made available at the
location of the synapse. The recently discovered mechanism of dendritic
switches (Sjöström & Häusser, 2006) seems well suited as an implementa-
tion of a learning process that is modulated by an external “third” factor
(the relevance signal in in addition to the two factors given by pre- and
postsynaptic signals) as required by IB learning.

Predictive coding has been proposed as an unsupervised learning goal
for single neurons in Bialek et al. (2006), a hypothesis that seems to be in
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agreement with experimental findings. As an application of IB learning with
spiking neurons, we have shown that a variant of the proposed IB learning
rule enables the neuron to learn a predictive code assuming simple input
statistics. It has to be emphasized that several neural learning rules exist
that extract temporal regularities from the input. In a recent study (Creutzig
& Sprekeler, 2008), a close relation between IB optimization and learning
of temporal invariances in a more machine-learning-oriented setting was
pointed out. The approach presented here shows that also on a single neural
level, the well-known learning goals related to temporal invariance can be
motivated and a viable learning rule can be derived from the IB framework.

The proposed learning rules are based on idealized assumptions espe-
cially with regard to the neuron model. The applied neuron model neglects
several characteristics observed in experiments, most prominently a re-
fractory mechanism, complex voltage dynamics (e.g., bursting, rebound
spikes), and spatial extension and morphology of a neuron. We argue that
studying learning in a highly simplified system is nevertheless sensible, as
it possibly provides a baseline architecture (a possible learning strategy and
its essential functional building blocks) that is not (we hope) cluttered by
unimportant contingent details of the neural dynamics.

Appendix A: Derivation of the Learning Rules

A.1 IB Learning Rule. Here we calculate the gradient of the objective
function L with regard to w and q. The following relations are useful:

〈
log F (y0, R)

〉 = 〈
y0 log(F 0) + (1 − y0) log(1 − F 0)

〉
= 〈

g0 log(F 0) + (1 − g0) log(1 − F 0)
〉

〈
log p(y0)

〉 = 〈
g0〉 log

〈
g0〉 + (1 − 〈

g0〉) log(1 − 〈
g0〉).

When these identities are used, the objective function L can be written as

L = 〈
g log F + (1 − g) log(1 − F ) − g log 〈g〉

− (1 − g) log(1 − 〈g〉)〉 − γ

2
w2.

For simplicity the time step index was left out as no confusion can oc-
cur (e.g., F = F 0). From this form of L , the gradient with regard to w is
straightforward to calculate:

∂L
∂w

=
〈(

log
(

F
1 − F

)
− log

( 〈g〉
1 − 〈g〉

))
∂g
∂w

〉
− γw

=
〈
(σ−1(F t) − σ−1(〈g〉)) ∂g

∂w

〉
− γw.
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Here we used the fact that the expected value 〈·〉 in the above equation is
taken only over the joint distribution p(X−∞, R), which is independent of
w (and q), and hence the gradient ∂

∂w
(and ∂

∂q ) commutes with the average
operator 〈·〉. We notice that log(x/(1 − x)) is the inverse function of the
logistic function σ (x) = 1/(1 + exp(−x)). Further, the gradient of g yields
∂g/∂w = g′ν, where g′ is the derivative of g. This results in the w-part of
learning rule equation 3.1.

The gradient of L with regard to q is even simpler, as only F depends on
q. Hence, only the following term has to be calculated:

∂

∂q

〈
g log F + (1 − g) log(1 − F )

〉 =
〈

F ′

F (1 − F )
h(g − F )

〉
.

Using the relation σ ′ = σ (1 − σ ), which holds for the logistic function σ ,
yields the final learning rule for the parameters q.

A.2 An InfoMax Learning Rule. In close analogy to the derivation of
the IB learning rule presented above, one can derive an InfoMax learning
rule starting from the objective function L InfoMax:

L InfoMax = I (y0, X−∞) − γ

2
w2

= 〈
g log g + (1 − g) log(1 − g) − g log 〈g〉

− (1 − g) log(1 − 〈g〉)〉 − γ

2
w2.

The yields the following InfoMax learning rule:

�w = ηwg′ν(σ−1(g) − σ−1(〈g〉)) − ηwγw.

Appendix B: Details of the Numerical Examples

B.1 Example of Section 3.2. Weights w were initialized with 0.15 and
the parameters q with 0 and ĝ with 0.02. The learning rates were set to
ηw = 0.075, ηq1 = 4.25 · 10−4, ηq2 = 4.25 · 10−3, and ηg = 2 · 10−3. Correlated
spike trains are generated using techniques described in Gütig, Aharonov,
Rotter, and Sompolinsky (2003). The values of L and L IB shown in Fig-
ure 3C were estimated with the pyentropy software package described in
Ince, Petersen, Swan, and Panzeri (2009) using sophisticated bias-correcting
methods. Every point is an average of 50 independent trials, each estimated
from sequences Y and R of length 5 · 105 with frozen w and q.

B.2 Example of Section 3.3. Weights w were initialized with 0.05, ĝ with
0.02 and the initial values of the components of q were set to 0. The learning
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rates were set to ηw = 2 · 10−3, ηq = 10−3, ηg = 2.5 · 10−3, and the parameters
a , b were set to a = 1/2, b = 1/8. The trade-off parameter was set to γ =
6 · 10−5. For this example, a recurrent network of r = 200 sigmoidal rate
neurons was used (as a LSM). The state vector st = (st

1, . . . , st
r ) ∈ R

r obeys
the equation

st+1 = st · (1 − α) + β f
(
Ws st + Win(Rt − 0.5) ∗ 2

)
,

with the parameters α = 0.4 and β = 0.44. The activation function f : R
r →

R
r is given by applying the hyperbolic tangent component-wise. The ele-

ments of the recurrent weight matrix Ws ∈ R
r2

are generated in the follow-
ing way. The probability of two neurons to be connected was set to 1/2; the
weight for a connected pair was drawn from a normal distribution N (0, 1).
Finally Ws was rescaled by a scalar such that its spectral radius was equal to
0.8. The elements of Win = ((Win)i , . . . , (Win)r ) ∈ R

r were drawn i.i.d. from
{0, 1} with p((Win)i = 1) = 0.3. The filter bank h was then chosen to equal
the state vector, ht = st .

B.3 Details of the Predictive Coding Application. Weights w were
initialized with 0.1 and ĝ, as well as all elements of the history of g and g′

with 0.01. The learning rates were set to ηw = 2 · 10−4 and ηg = 2.5 · 10−4.
The trade-off parameter was set to γ = 10−3. Furthermore, the values of L
and Lpredictive were evaluated using the python module pyentropy based on
spike trains X, Y of length 5 · 105 with frozen weights w. For Lpredictive, the
term I (y0, X0,δ) was approximated by I (y0, X0,δ) ≈ ∑100

j=1 I (y0, X0,δ
j ) to avoid

the undersampling problem occurring in the evaluation of the mutual in-
formation for high-dimensional variables. This approximation introduced
a large error; however, the results still give intuition of the evolution of the
“true” IB objective function Lpredictive.
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and synaptic plasticity. Physiol. Rev., 88, 769–840.
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