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We propose a Markov process model for spike-frequency adapting neural
ensembles that synthesizes existing mean-adaptation approaches, popu-
lation density methods, and inhomogeneous renewal theory, resulting in
a unified and tractable framework that goes beyond renewal and mean-
adaptation theories by accounting for correlations between subsequent
interspike intervals. A method for efficiently generating inhomogeneous
realizations of the proposed Markov process is given, numerical methods
for solving the population equation are presented, and an expression for
the first-order interspike interval correlation is derived. Further, we show
that the full five-dimensional master equation for a conductance-based
integrate-and-fire neuron with spike-frequency adaptation and a relative
refractory mechanism driven by Poisson spike trains can be reduced to
a two-dimensional generalization of the proposed Markov process by an
adiabatic elimination of fast variables. For static and dynamic stimula-
tion, negative serial interspike interval correlations and transient pop-
ulation responses, respectively, of Monte Carlo simulations of the full
five-dimensional system can be accurately described by the proposed
two-dimensional Markov process.

1 Introduction

Spike-frequency adaptation (SFA) refers to the intrinsic property of certain
neurons to fire with gradually increasing interspike intervals (ISIs) in re-
sponse to a steady injection of suprathreshold current. SFA is ubiquitous: It
has been observed in many neural systems of diverse species (Fuhrmann,
Markram, & Tsodyks, 2002). In the mammalian visual system, for example,
the majority of retinal ganglion cells (RGCs) (O’Brien, Isayama, Richardson,
& Berson, 2002), geniculate relay neurons (Smith, Cox, Sherman, & Rinzel,
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2001), and neocortical and hippocampal regular spiking pyramidal neurons
(McCormick, Connors, Lighthall, & Prince, 1985) exhibit SFA.

The in-vitro conditions used to experimentally verify the presence of SFA
are far from the operational mode of a typical neuron in a network. Given
cortical neuron firing rates and interconnectivity, each neuron there is un-
der intense bombardment by both excitatory and inhibitory synapses. These
mutually opposing showers of excitation and inhibition induce highly ir-
regular fluctuations of the membrane potential reminiscent of a random
walk. The resulting dominance of the mean synaptic conductances over
the leak results in a markedly shortened effective membrane time con-
stant, a dynamical regime known as the high-conductance state (Destexhe,
Rudolph, & Paré, 2003; Shelley, McLaughlin, Shapley, & Wielaard, 2002).
In this regime, action potentials are emitted when the membrane potential
chances across the firing threshold and the resulting ISIs appear stochastic
and are, for adapting neurons, roughly gamma distributed (Softky & Koch,
1993; Destexhe, Rudolph, Fellous, & Sejnowski, 2001; Dayan & Abbott,
2001).

Conductance-based phenomenological models for SFA and related rel-
ative refractory mechanisms are standard and given in Dayan and Abbott
(2001) and Koch (1999) and recently generalized in Brette and Gerstner
(2005). Benda and Herz (2003) show that a large class of biophysical mech-
anisms that induce SFA can be reduced to these conductance-based phe-
nomenological models. Similar but current-based adaptation mechanisms
have been studied in van Vreeswijk and Hansel (2001) and the related
threshold fatigue model for adaptation, also known as dynamic thresh-
old, in Chacron, Pakdaman, and Longtin (2003) and Lindner and Longtin
(2003). See Ermentrout, Pascal, and Gutkin (2001) for a bifurcation analysis
of Iahp, the afterhyperpolarization current, a calcium-dependent potassium
current, and Im, the muscarinic slow voltage-dependent potassium current,
two biophysical mechanisms behind SFA.

Mean-adaptation approximations for the firing rate of populations
of spike-frequency adapting neurons augmenting the standard Wilson
and Cowan equations (Wilson & Cowan, 1972) were devised in Latham,
Richmond, Nelson, and Nirenberg (2000) and Fuhrmann et al. (2002) and
used to study the synchronizing effects of SFA. Universal mean-adaptation
methods for modeling the firing rate of adapting neurons subject to
suprathreshold noise-free current input are given in Benda and Herz (2003).
In La Camera, Rauch, Lüscher, Senn, and Fusi (2004), mean-adaptation
methods are investigated to describe the static and dynamic firing rates of
a large class of integrate-and-fire neuron models with current-based and
dynamic threshold adaptation mechanisms driven by noisy input currents.
The phenomenological firing rate relaxation dynamics of previous Wilson
and Cowan studies is replaced in La Camera et al. (2004) with a firing rate
that depends instantaneously on filtered synaptic currents, as suggested in
Fourcaud and Brunel (2002) and Renart, Brunel, and Wang (2004). While
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for the Wilson and Cowan approaches, the relaxation time constant is a free
parameter, the approach due to La Camera et al. (2004) has no free parame-
ters, and excellent agreement is reported in the static and dynamic case for
several neuron models.

Originally introduced in Knight (1972) and recently the subject of intense
study, population density formalisms provide powerful tools to under-
stand neural ensemble and network behavior in a quantitative way (Brunel,
2000; Omurtag, Knight, & Sirovich, 2000; Nykamp & Tranchina, 2000, 2001;
Fourcaud & Brunel, 2002; Meffin, Burkitt, & Grayden, 2004; Renart et al.,
2004). Such studies are mostly restricted to exactly solvable white noise in-
put cases, with notable exceptions (Nykamp & Tranchina, 2001; Fourcaud
& Brunel, 2002). In Fourcaud and Brunel (2002), the key observation is
made that colored input noise due to synaptic filtering results in a nonzero
probability density near threshold and allows neurons to respond instanta-
neously to injected currents. This provides the theoretical basis for studies
such as La Camera et al. (2004) and will also play an important role in
the work here. Conductance-based neurons with finite synaptic time con-
stants are treated in Rudolph and Destexhe (2003a, 2005), Richardson (2004),
Richardson and Gerstner (2005), though only in the subthreshold regime,
limiting their applicability for understanding firing rate, and networks dy-
namics. The problem with threshold has yet to be solved exactly, however,
it is treated in Moreno-Bote and Parga (2004, 2005).

For neurons without SFA driven by noisy input, an alternate and fruitful
approach is to apply renewal theory as presented in detail in Gerstner
and Kistler (2002). With the defining characteristic of renewal theory being
that successive ISIs are statistically independent, these models neglect by
definition the observation in Chacron et al. (2003) and Lindner and Longtin
(2003) that SFA induces negative serial ISI correlations.

While the great majority of excitatory neurons exhibit SFA, there has yet
to be a population density treatment accounting for it, given the difficulty
in treating the added dimension analytically and numerically. We present
here a study whereby the ensemble behavior of adapting neurons in the
high-conductance state can be understood in a quantitative way.

We start by considering in section 2 how to go beyond the renewal theory
formalism of Gerstner and Kistler (2002) by introducing a dependence be-
tween ISIs, resulting in a Markov model described by a master equation. A
connection to renewal theory is found by a suitable variable transformation,
and expressions for the ISI distribution and conditional ISI distribution are
derived. We then consider in section 3 the full five-dimensional master equa-
tion of the canonical conductance-based integrate-and-fire neuron model
driven by Poisson spike trains augmented by SFA and a relative refractory
mechanism of the form given in Dayan and Abbott (2001). By applying
an adiabatic elimination of fast relaxing variables (Haken, 1983; Gardiner,
1984), we argue that this five-dimensional master equation can be approx-
imated by a two-dimensional master equation of the same form as the
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“beyond renewal theory” Markov model proposed in section 2. In section
4, we determine the generalized hazard function required for the Markov
model by fitting to Monte Carlo simulations of the full system, given that
the firing rate of the neuron model we employ has yet to be solved exactly.
By reasoning as in Fourcaud and Brunel (2002), Renart et al. (2004), and La
Camera et al. (2004), we show how the generalized hazard function applies
in the dynamic case by accounting for synaptic filtering. In section 5, we
provide numerical methods for solving the master equations and generat-
ing realizations of the proposed Markov processes. In section 6, predictions
for ISI correlations and conditional ISI distributions in the static case, and
firing rates in the dynamic case due to the proposed Markov model are
compared to Monte Carlo simulations of the full system. Finally in section
7, the master equation is employed to analyze the domain of validity of
mean-adaptation approaches.

2 Beyond Renewal Theory

Gerstner and Kistler (2002) demonstrate that for spike response models
(a generalization of integrate-and-fire neuron models), the statistical en-
semble of a single neuron with noise can be described using methods of
inhomogeneous renewal theory, as reviewed in appendix C.

The basic assumption of inhomogeneous renewal theory is that the state
of the modeled system can be described by a single state variable, τ , the time
since last renewal, or age of the system, and time t. The limiting probability
density for the neuron to spike, or more generally, for the system to renew
after surviving a time interval τ ,

ρ(τ, t) = lim
�t→0+

prob{> 0 renewals in [t, t + �t) | τ }
�t

, (2.1)

also known as the hazard function (Cox, 1962), is a function of time, t,
and age, τ .1 Thus, subsequent interspike intervals (ISIs) are by definition
independent and uncorrelated.

As Gerstner and Kistler (2002, pp. 245), stated, “A generalization of the
[renewal] population equation to neuron models with [spike-frequency]
adaptation is not straightforward since the [renewal] formalism assumes
that only the last spike suffices. . . . A full treatment of adaptation would
involve a density description in the high-dimensional space of the micro-
scopic neuronal variables [as in] (Knight, 2000).”

In section 3 we provide a full treatment of the density description men-
tioned above. However, before we proceed, it is instructive to consider what

1For our discussion of renewal processes, we follow the notation of Cox (1962) but use
τ to denote age, t to denote time, and ρ instead of h to denote the hazard function, as in
appendix C.
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a model might look like that allows for a dependence between subsequent
ISIs.

Consider the standard phenomenological model for spike-frequency
adaptation (SFA) proposed in Dayan and Abbott (2001) where a given
neuron model is augmented with a conductance gs(t) that makes the jump
gs(t + dt) = gs(t) + qs when the neuron spikes at time t and is otherwise
governed by

dgs(t)
dt

= − 1
τs

gs(t). (2.2)

Now consider a neuron that has gs as a state variable and a probability
density to fire of the form

hg(gs, t) = lim
�t→0+

prob{> 0 spikes in [t, t + �t) | gs}
�t

, (2.3)

where gs evolves in time by equation 2.2. This process is analogous to a
renewal process, but now with a single state variable, gs , which is not reset
at each occurrence of a spike but slowly forgets with a timescale of τs due to
equation 2.2. For a model of this form, it is possible for correlations to arise
between subsequent ISIs. We refer to both the renewal hazard function,
ρ(τ, t), and the hg(gs, t) defined here as hazard functions, as they both
represent a probability density of the system to spike.

It is straightforward to show that the ensemble of such neurons is gov-
erned by a master equation of the form

∂

∂t
P(gs, t) = ∂

∂gs

[
gs

τs
P(gs, t)

]

+ hg(gs − qs, t)P(gs − qs, t)

− hg(gs, t)P(gs, t), (2.4)

where P(gs, t) is the distribution of state variables gs with P(gs < 0, t) ≡ 0.
The distribution P(gs, t) is analogous to the distribution of ages, f −(τ, t),
of renewal theory, and equation 2.4 is analogous to the renewal theory
equation C.7, both given in appendix C. The model defined by equation 2.4
is referred to as the 1D Markov (1DM) model throughout the text. (See
Table 1 for an overview of the models considered in the text.)
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Understanding the connection of the 1DM model to its renewal theory
cousin is facilitated by transforming gs to a pseudo–age variable ts with
d
dt ts = 1 by2

ts = η(gs) := −τs log (gs/qs) . (2.5)

The hazard function hg(gs, t) becomes h(ts, t) = hg
(
η−1(ts), t

)
, a hazard func-

tion as in equation 2.1 of the pseudovariable ts but defined also for ts < 0.
The distribution of states P(gs, t) becomes P(ts, t), where they are related
by

P(ts, t) = P
(
gs = η−1(ts), t

) d
dts

η−1(ts). (2.6)

The reset condition is not ts �→ 0 as for a renewal process, but ts �→ η(gs + qs),
where the right-hand side can be expressed in terms of ts using the relation
gs = η−1(ts). Defining the reset mapping, ψ(ts), such that the reset condition
becomes ts �→ ψ(ts), it follows that

ψ(ts) = η(η−1(ts) + qs)

=−τs log
(

exp
(−ts

τs

)
+ 1

)
, (2.7)

with its inverse given by

ψ−1(ts) = −τs log
(

exp
(−ts

τs

)
− 1

)
, (2.8)

whereby ψ(ψ−1(t)) = t and ψ−1(ψ(t)) = t as required by the definition of
the inverse.

The variable ts is then a general state variable that no longer represents
the time since the last spike, as in renewal theory. Since ψ : R → R

−, it
follows that all trajectories are reinserted at negative pseudo-ages, and it can
be seen from the form of ψ that “younger” spiking trajectories are reinserted
at more negative pseudo-ages. This dependence of the reinserted state on
the state just prior to spiking yields a Markov process (Risken, 1996), which
cannot be described by renewal theory.

2We follow the convention throughout the text of using positional arguments for
functions and labeled arguments for derivatives. Probability distributions are excepted
from this rule, as they are not functions but densities. The notation “:=” denotes definition
of a function and its positional arguments.
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The master equation in terms of ts takes the form

∂

∂t
P(ts, t) = − ∂

∂ts
P(ts, t)

+
{

−h(ts, t)P(ts, t), ts ≥ 0

h(ψ−1(ts), t)P(ψ−1(ts), t) − h(ts, t)P(ts, t) ts < 0,
(2.9)

revealing the advantage of the variable transformation gs → ts : The deter-
ministic drift term in equation 2.4 for the exponential decay of gs is trans-
formed to a constant drift term in ts analogous to age in renewal theory.
As a result, much can be calculated by analogy to renewal theory, and we
are freed from the difficulty of treating the nonconstant drift toward zero
in equation 2.4 numerically. We will see in later sections that h(ts, t) is in
practice approximately of the form

h(ts, t) = a (t) exp
(−b(t)qs exp (−ts/τs)

)
(2.10)

when modeling spike-frequency adapting neurons in the high-conductance
state, where a (t) and b(t) are determined by the stimulus.

For the static case where h(ts, t) ≡ h(ts), P(ts) can be found from equa-
tion 2.9 by setting ∂/∂t P(ts, t) = 0. The resulting equation for ts ≥ 0,

∂

∂ts
P(ts) = −h(ts)P(ts), (2.11)

is exactly as for a renewal process. The solution is the homogeneous survival
function,

P(ts) = kW(ts, 0), (2.12)

where

k−1 =
∫ ∞

−∞
W(ts, 0)dts (2.13)

is a constant of normalization, and the survival function,

W(�t, t0
s ) = exp

(
−

∫ �t

0
h(t0

s + s)ds
)

, (2.14)
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and analogously the inhomogeneous survival function,

W(�t, t0
s , t) = exp

(
−

∫ �t

0
h(t0

s + s, t + s)ds
)

, (2.15)

represent the probability that a system with initial state t0
s ∈ R will survive

for a time �t, and a time �t after t, respectively and are analogous to the
survival function of renewal theory as discussed in appendix C, except for
the explicit dependence on the initial state t0

s . For ts < 0, we solve P(ts)
numerically by discretizing and integrating back from ts = 0.

The distribution of pseudo-ages just prior to spiking at t, P∗(ts, t), is
related to P(ts, t) by

P∗(ts, t) = h(ts, t)P(ts, t)
α(t)

, (2.16)

where

α(t) =
∫ ∞

−∞
h(ts, t)P(ts, t)dts (2.17)

is a normalizing constant and also the firing rate of the ensemble.
The distribution of pseudo-ages just after spiking at t, P†(ts, t), is related

to P∗(ts, t) by transforming variables by the reset mapping (see equation 2.7)
for a probability distribution:

P†(ts, t) = P∗(ψ−1(ts), t)
d

dts
ψ−1(ts). (2.18)

2.1 Computing Renewal Quantities. The various quantities of renewal
theory such as the ISI distribution, hazard function, and survival function
are of interest and are straightforward to calculate for the proposed Markov
process.

First, the renewal survival function, F(τ, t), the probability that a system
that spiked at t will survive the time interval τ , is given by

F(τ, t) =
∫ ∞

−∞
W(τ, ts, t)P†(ts, t)dts . (2.19)

The ISI distribution, f (τ, t), the probability that a neuron that spiked at
t will survive for an interval τ and subsequently spike at t + τ , is

f (τ, t) =
∫ ∞

−∞
h(ts + τ, t + τ )W(τ, ts, t)P†(ts, t)dts . (2.20)
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Equivalently in terms of P∗(ts, t),

f (τ, t) =
∫ ∞

−∞
h(ψ(ts) + τ, t + τ )W(τ, ψ(ts), t)P∗(ts, t)dts . (2.21)

The hazard function of the system in a renewal sense, ρ(τ, t), where τ is a
true age, is by definition the firing rate of the subpopulation that previously
spiked at time t − τ . Thus,

ρ(τ, t) =
∫ ∞

−∞
h(ts, t)P(ts, t| spike at t − τ )dts, (2.22)

where the state distribution of the system given a spike at t − τ ,
P(ts, t| spike at t − τ ), can be determined by reasoning that it is the dis-
tribution of states just after spiking with arguments ts − τ and t − τ ,
P†(ts − τ, t − τ ), which subsequently survive the interval τ ,

P(ts, t| spike at t − τ ) = k1W(τ, ts − τ, t − τ )P†(ts − τ, t − τ ), (2.23)

where k1 is the normalization factor,

k−1
1 =

∫ ∞

−∞
W(τ, ts − τ, t − τ )P†(ts − τ, t − τ )dts, (2.24)

and by inspection of equation 2.19,

k−1
1 = F(τ, t − τ ), (2.25)

such that

ρ(τ, t) = 1
F(τ, t − τ )

∫ ∞

−∞
h(ts, t)W(τ, ts − τ, t − τ )P†(ts − τ, t − τ )dts .

(2.26)

Clearly, the numerator is just f (τ, t − τ ), resulting in

ρ(τ, t) = f (τ, t − τ )
F(τ, t − τ )

. (2.27)

This verifies that the standard renewal theory relation that f (τ ) = ρ(τ )F(τ ),
generalized for the inhomogeneous case, still holds even though the under-
lying stochastic process is not a renewal process. It is interesting to note
that in the inhomogeneous case, there is an alternate definition for the ISI
distribution that is equally sensible: define f̂ (τ, t) as the probability that
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a neuron that spiked at t − τ will survive the interval τ and subsequently
spike at t. This is the ISI distribution that treats the spike at t as the final
spike of the ISI rather than the initial spike as in equation 2.21. If one prefers
this alternate definition of the ISI distribution, as in Gerstner and Kistler
(2002), then one has

f̂ (τ, t) =
∫ ∞

−∞
h(ts + τ, t)W(τ, ts, t − τ )P†(ts, t − τ )dts, (2.28)

implying that f̂ (τ, t) = f (τ, t − τ ), and equation 2.27 becomes

ρ(τ, t) = f̂ (τ, t)
F(τ, t − τ )

. (2.29)

2.2 Correlations. In this section, an expression for the joint serial ISI
distribution, f (τi+1, τi , t), will be derived for the proposed Markov process
and shown to exhibit ISI correlations.

Recall the definition of the absence of correlations between two random
variables: τi and τi+1 are uncorrelated (independent) if and only if

f (τi+1, τi ) = f (τi+1) f (τi ), (2.30)

where f (τi+1, τi ) is the joint probability distribution of two back-to-back
ISIs in the homogeneous case.

For the inhomogeneous case, a separation of this joint distribution
f (τi+1, τi , t) by Bayes’ theorem,

f (τi+1, τi , t) = f (τi+1, t|τi ) f (τi , t − τi ), (2.31)

reveals a subtlety: The time argument of f (τi , t), the marginal distribution
of τi , must be retarded by τi . This is due to the fact that for τi to precede τi+1

at t, it must occur at t − τi . Given that f (τ, t) is known, it is left to determine
an expression for f (τi+1, t|τi ). This can be achieved using equation 2.21 by
replacing P∗(ts, t) with the conditional distribution of states just prior to
spiking given a spike at t − τi , which is denoted by P∗(ts, t|τi ).

The distribution P∗(ts, t|τi ), the conditional distribution of states just
prior to spiking, given a spike at t − τi , takes the form

P∗(ts, t|τi ) = k2h(ts, t)P(ts, t| spike at t − τi ), (2.32)
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where k2 is a normalization factor, and an expression for P(ts, t| spike at t −
τi ) was given in equation 2.23. By inspection of equation 2.22, it can be seen
that k−1

2 = ρ(τi , t). This results in

P∗(ts, t|τi ) = h(ts, t)W(τi , ts − τi , t − τi )P†(ts − τi , t − τi )
f (τi , t − τi )

, (2.33)

where the denominator, ρ(τi , t)F(τi , t − τi ), was replaced by f (τi , t − τi )
using equation 2.27.

Plugging this expression for P∗(ts, t|τi ) into equation 2.21 yields

f (τi+1, τi , t) =

f (τi+1, t|τi ) f (τi , t − τi ) =
∫ ∞

−∞
h(ψ(ts) + τi+1, t + τi+1)W(τi+1, ψ(ts), t)

× h(ts, t)W(τi , ts − τi , t − τi )P†(ts − τi , t − τi )dts, (2.34)

an inhomogeneous expression for the joint ISI distribution of two successive
ISIs.

It is instructive to verify that for the case of a renewal process, equation
2.34 predicts no correlations. For a renewal process, ψ(ts) = 0 and P†(ts, t) =
δ(ts), such that equation 2.34 becomes

f (τi+1, τi , t) = h(τi+1, t + τi+1)W(τi+1, 0, t) · h(τi , t)W(τi , 0, t − τi ). (2.35)

In addition, the ISI distribution given by equation 2.20 reduces to

f (τ, t) = h(τ, t + τ )W(τ, 0, t). (2.36)

Thus, it can be seen by inspection that equation 2.35 is of the form

f (τi+1, τi , t) = f (τi+1, t) f (τi , t − τi ), (2.37)

implying as expected that successive ISIs are uncorrelated for a renewal
process.

3 Connection to a Detailed Neuron Model

In this section we show that the full five-dimensional master equation for
the canonical conductance-based integrate-and-fire neuron model driven
by Poisson spike trains, augmented by mechanisms for SFA and a relative
refractory period, can be reduced to a two-dimensional generalization of
the 1DM model by an adiabatic elimination of fast variables.
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3.1 Neuron Model, Adaptation, Input. Following Rudolph and
Destexhe (2003a, 2005), Richardson (2004), Richardson and Gerstner (2005),
we consider the equations for the membrane potential, v(t), and excitatory
and inhibitory synaptic conductances, ge (t) and gi (t), of the conductance-
based integrate-and-fire neuron driven by Poisson spike trains:

cm
dv(t)

dt
= gl (El − v(t)) + ge (t)(Ee − v(t)) + gi (t)(Ei − v(t)) (3.1)

dge (t)
dt

= − 1
τe

ge (t) + qeSe (t) (3.2)

dgi (t)
dt

= − 1
τi

gi (t) + qiSi (t), (3.3)

where cm represents the membrane capacitance, gl the leak conductance,
Ex the various reversal potentials, qx the quantal conductance increases,
and τx the synaptic time constants. The exact parameters used are given
in appendix A. The excitatory and inhibitory input spike trains, Sx(t) with
x ∈ {e, i}, respectively, are given by

Sx(t) =
∑

k

δ(t − sx,k), (3.4)

where sx,k are the spike times of a realization of an inhomogeneous Poisson
process (Papoulis & Pillai, 1991). Thus, Sx(t) satisfies the constraints

〈
Sx(t)

〉 = νx(t) (3.5)

〈Sx(t)Sx(t′)〉 = νx(t)νx(t′) + νx(t′)δ(t − t′). (3.6)

Here νx(t) represents the time-varying rate of the inhomogeneous Poisson
process, and 〈 〉 represents the expectation value over the ensemble of real-
izations. In what follows, all Poisson processes are assumed inhomogeneous
unless otherwise stated.

To put the neuron in a state of high conductance, it is bombarded by
Ne = 1000 and Ni = 250 excitatory and inhibitory Poisson processes, all
with rate functions λe (t) and λi (t), respectively, so that

νx(t) = Nxλx(t). (3.7)

A simple thresholding mechanism approximates the action potential
dynamics of real neurons: If v(t) exceeds the threshold, vth, v(t) is reset to
vreset. Analogous to the input spike train, we can thus define the output
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spike train,

A(t) =
∑

k

δ(t − sk), (3.8)

where sk are the times of membrane potential threshold crossings enumer-
ated by k.

SFA and a relative refractory period can both be modeled with the addi-
tion of a current to equation 3.1 of the form proposed in Dayan and Abbott
(2001),

gy(t)(Ey − v(t)), (3.9)

where Ey is a reversal potential. The conductance gy(t) is governed by

dgy(t)
dt

= − 1
τy

gy(t) + qyA(t), (3.10)

where τy and qy are the time constant and quantal conductance increase of
the mechanism. We label SFA and the relative refractory mechanism by the
subscripts y = s and y = r , respectively. Defining

βv(v, ge , gi , gs, gr ) := gl (El − v) +
∑

µ=e,i,s,r

gµ(Eµ − v) (3.11)

and for µ = e, i, s, r ,

βµ(gµ) := − 1
τµ

gµ, (3.12)

the five-dimensional system of coupled differential equations describing the
conductance-based spike-frequency adapting relative refractory integrate-
and-fire neuron driven by Poisson spike trains is:

cm
dv(t)

dt
= βv(v(t), . . . , gr (t)) − (Vth − Vreset)A(t) (3.13)

dgx(t)
dt

= βx(gx(t), t) + qxSx(t) (3.14)

dgy(t)
dt

= βy(gy(t), t) + qyA(t), (3.15)

where x ∈ {e, i} and y ∈ {s, r}. We refer to equations 3.13 to 3.15 as the full
five-dimensional (5DF) model throughout the text (see the model overview
in Table 1). The parameters used are given in Table 3.
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3.2 Ensemble Behavior. It is natural to look for an ensemble description
of equations 3.13 to 3.15, given that the input is described in terms of an
ensemble.

Equations 3.13 to 3.15 are a set of concurrent first-order differential equa-
tions, that is, the right-hand sides at time t are functions of the instantaneous
values of the state variables, (v(t), ge (t), gi (t), gs(t), gr (t)), implying no de-
lays or memory effects are to be modeled. The system is therefore a Markov
process, and given an initial distribution P(v, ge , gi , gs, gr , t0) for some t0,
the evolution of P(v, ge , gi , gs, gr , t) can be described by a suitable mas-
ter equation (Risken, 1996). For the system in question here, the master
equation takes the form

∂

∂t
P(v, ge , gi , gs, gr , t) =−divJ (v, ge , gi , gs, gr , t)

+ δ(v − vreset)Jv(vth, ge , gi , gs − qs, gr − qr , t), (3.16)

where the probability current density, J , is a vector with components

Jv(v, ge , gi , gs, gr , t) = βv(v, ge , gi , gs, gr , t)P(v, ge , gi , gs, gr , t) (3.17)

Jµ := βµ(gµ, t)P(v, ge , gi , gs, gr , t) (3.18)

with µ ∈ {s, r}. (For J e and J i , see appendix B.) The δ term in equation
3.16 implements the reinsertion of probability flux that crosses the thresh-
old. Furthermore, we define P(v, ge , gi , gs, gr , t) = 0 if one or more of the
conductances ge , . . . , gr is negative.

There exists a wealth of literature treating master equations of con-
ductance and current-based integrate-and-fire neuron models in the ab-
sence of adaptation and relative refractory mechanisms (Knight, 1972;
Gerstner, 1995; Brunel, 2000; Omurtag et al., 2000; Nykamp & Tranchina,
2000; Knight, Omurtag, & Sirovich, 2000; Gerstner, 2000; Fourcaud & Brunel,
2002; Rudolph & Destexhe, 2003a; Richardson, 2004; Richardson & Gerstner,
2005). The usual approach is to make the so-called diffusion approximation
yielding generally a Fokker-Planck equation for the membrane potential,
and perhaps one or two other dimensions treating synaptic conductances.

We present here a novel approach applicable for neurons in the high-
conductance state whereby the variables v, ge , gi are eliminated by a tech-
nique known as an adiabatic elimination of fast variables (Haken, 1983;
Gardiner, 1984), and the system is reduced to a master equation for the
two-dimensional marginal probability distribution, P(gs, gr , t), of the slow
variables, gs and gr . As we will see, the membrane potential, v, and the
synaptic conductances, ge and gi , are thus encapsulated in the hazard func-
tion, hg(gs, gr , t). We treat here the static input case, λe , λi . The case for
dynamic external input λe (t), λi (t) is treated in section 4.
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We follow here the intuitive treatment of adiabatic elimination given in
Haken (1983). We begin by integrating P(v, . . . , gr ) over the fast variables
v, ge , gi , yielding the marginal distribution for the slow variables gs, gr ,

P(gs, gr , t) =
∫ ∞

0

∫ ∞

0

∫ vth

−∞
P(v, ge , gi , gs, gr , t)dvdgedgi . (3.19)

Integrating equation 3.16 over v, ge , gi yields

∂

∂t
P(gs, gr , t) = −

∑
µ=s,r

∂

∂gµ

(βµ(gµ)P(gs, gr , t))

−
∫ ∞

0

∫ ∞

0
βv(vth, ge , gi , gs, gr )P(vth, ge , gi , gs, gr , t)dgedgi

+
∫ ∞

0

∫ ∞

0
βv(vth, ge , gi , gs − qs, gr − qr )

× P(vth, ge , gi , gs − qs, gr − qr , t)dgedgi . (3.20)

For details of the calculation, see appendix B. Now we separate the marginal
distribution for the slow variables from the full distribution by Bayes’ the-
orem, resulting in

P(v, ge , gi , gs, gr , t) = P(v, ge , gi , t|gs, gr , t)P(gs, gr , t), (3.21)

and make the adiabatic approximation as in Haken (1983) that

P(v, ge , gi , t|gs, gr , t) ≈ P (gs ,gr )(v, ge , gi , t), (3.22)

where P (gs ,gr )(v, ge , gi , t) is the solution to the three-dimensional master
equation for the canonical conductance-based integrate-and-fire neuron
with a constant bias current, I (gs, gr ) = gs(Es − v) + gr (Er − v), with nei-
ther SFA nor the relative refractory mechanism. This implies we assume
that v, ge , gi are immediately at equilibrium given the slow variables, or in
other words, the system responds adiabatically to the dynamics of the slow
variables gs, gr . The adiabatic assumption ensures the two-dimensional pro-
cess (gs(t), gr (t)) is a Markov process.

Now defining the hazard function,

hg(gs, gr , t) :=
∫ ∞

0

∫ ∞

0
βv(vth, ge , gi , gs, gr )P (gs ,gr )(vth, ge , gi , t)dgedgi ,

(3.23)
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the master equation, 3.20, becomes

∂

∂t
P(gs, gr , t) =−

∑
µ=s,r

∂

∂gµ

(βµ(gµ)P(gs, gr , t))

− hg(gs, gr , t)P(gs, gr , t)

+ hg(gs − qs, gr − qr , t)P(gs − qs, gr − qr , t). (3.24)

We refer to the model defined by equation 3.24 as the 2D Markov (2DM)
model throughout the text (see the model overview in Table 1). Since no
analytical solution is yet known for P (gs ,gr )(vth, ge , gi , t) in equation 3.23,
hg(gs, gr ) was extracted from Monte Carlo simulations of equations 3.13 to
3.15, as will be discussed in section 4.1. Then given a solution to the master
equation, P(gs, gr , t), the firing rate of the ensemble, denoted by α(t), is
determined by the expectation value of the hazard function hg(gs, gr , t)
over P(gs, gr , t):

α(t) =
∫ ∞

0

∫ ∞

0
hg(gs, gr , t)P(gs, gr , t)dgsdgr . (3.25)

For the adiabatic approximation, the assumption that gs is slow com-
pared to v, ge , gi is easily justified as the timescale of gs is on the order
of 100 ms, while the timescale of v is on the order of 2 ms in the high-
conductance state. The timescale of the mean and standard deviation of ge

and gi are on the order of τe = 1.5 ms and τi = 10 ms, respectively, while
the fluctuations of ge and gi are the source of stochasticity of the system and
are on a still shorter timescale.

The timescale of gr is significantly faster than gs , though its treat-
ment as a slow variable is also justifiable, but in a somewhat indirect
manner. As has been argued in Fourcaud and Brunel (2002) and Re-
nart et al. (2004), for neurons with synaptic time constants comparable
to or larger than the effective membrane time constant and driven by
sufficient input noise, as is the case here, the firing rate follows the input
current almost instantaneously. It is this property that allows the dynamic
firing rate to be treated as a function of the time-dependent means and
variances of the synaptic conductances in La Camera et al. (2004), a method
we follow in section 4. This suggests that such modulations do not push
the system far from equilibrium and that the system returns to equilibrium
on a timescale faster than that of the synaptic means (τe , τi ). Since over
the domain of the gr trajectory for which the integrals on the right-hand
side of equation 3.20 are nonzero, gr has a timescale comparable to the
mean of the synapses, the argument applies equally to gr . However, since
gr is spike triggered, we leave gr in the master equation, while the synaptic
variables, ge and gi , determine hg(gs, gr , t) and can be treated outside the
master equation formalism.
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Methods to undertake a rigorous analysis of the error in the adiabatic
approximation are beyond the scope of this letter. What follows are a vari-
ety of numerical comparisons to demonstrate the accuracy and domain of
applicability of the proposed approximation.

4 Methods

In this section we provide methods for determining appropriate homo-
geneous and inhomogeneous hazard functions for the 1DM, 2DM, and
renewal models. Since no analytical expression for equation 3.23, or the
renewal hazard function of the 5DF model is yet known, we approach
the problem by fitting the homogeneous hazard functions determined by
5DF Monte Carlo simulations in the static case. The inhomogeneous func-
tions are then constructed from the homogeneous ones by discretizing time
and taking one homogeneous hazard function for the duration of a single
time bin.

4.1 Determining the Static Hazard Function for Markov Models.
Given a finite subset of the possible realizations of the Poisson input spike
trains, the 5DF model equations, 3.13 to 3.15, can be integrated for each input
realization. Any statistical quantity of interest can then be approximated by
averaging or histogramming over this finite set of trajectories. This approach
is known as the Monte Carlo method. By increasing the number of trials
in this finite set of realizations, the statistical quantities determined by the
Monte Carlo method converge to the true quantities. Therefore, Monte
Carlo simulations are used for determining the unknown hazard functions
as well as later benchmarking the reduced master equations.

By Monte Carlo simulations of the 5DF model under static stimulation,
the quantities P∗(gs + gr ), P(gs + gr ), and α(t) can be obtained. Then anal-
ogous to equation 2.16, we can determine hg(gs, gr ) by

hg(gs, gr ) = hg(gs + gr ) = αP∗(gs + gr )
P(gs + gr )

, (4.1)

where we treat the sum of the conductances, gs + gr , rather than each in-
dependently because we have chosen their reversal potentials to be equal
(see appendix A). It was found that hg(gs, gr ) can be fit well by a function
of the form

hg(gs, gr ) = a exp(−b · (gs + gr )), (4.2)

where a and b are fit parameters. Some typical fits for various excitatory
Poisson input rates are shown in Figure 1. For the 1DM model, the same
fit parameters were used, but with gr = 0. Transforming to (ts, tr ) by the
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Figure 1: hg(gs, gr ) = hg(gs + gr ) as a function of gtot = gs + gr , as determined
from 5DF Monte Carlo (data points, 1000 trials per λe , 10 s per trial, dt =
0.01 ms) by equation 4.1, was found to be approximately exponential for a
range of excitatory stimulation rates, λe , with the inhibitory stimulation rate
fixed at λi = 11.4 Hz. For the definition of the 5DF model, see Table 1. The
exponential fits (lines) are good for low rates (< : λe = 5.26 Hz, 
: λe = 5.56 Hz,
�: λe = 5.88 Hz, ×: λe = 6.01 Hz, �: λe = 6.25 Hz, ©: λe = 6.67 Hz) in A, but
poorer for gs near zero for high rates (< : λe = 6.90 Hz, 
: λe = 7.14 Hz, �:
λe = 7.69 Hz, ×: λe = 8.33 Hz, �: λe = 9.09 Hz, ©: λe = 10.0 Hz) in B.

inverse of equation 2.5, we have

h(ts, tr ) = a exp
(

−b ·
(

qs exp
(−ts

τs

)
+ qr exp

(−tr
τr

)))
. (4.3)

4.2 Constructing Inhomogeneous Hazard Functions. Now given the
hazard functions determined under static input statistics, the inhomoge-
neous hazard function given time-varying Poisson input rates λe (t), λi (t)
can be constructed by accounting for synaptic filtering.

The homogeneous hazard functions given static stimulation rates λe , λi

determined by the recipes in section 4.1 are the hazard functions given
synaptic conductance distributions parameterized by 〈ge,i 〉, neglecting
higher-order moments. It can be shown that

d
dt

〈gx(t)〉 = − 1
τx

(〈gx(t)〉 − qxτx Nxλx(t)), (4.4)

with x ∈ {e, i}, a low-pass filter equation of the quantity qxτx Nxλx(t) with a
cutoff frequency of 2π/τx (Gardiner, 1985; La Camera et al., 2004).

As argued in Fourcaud and Brunel (2002) and Renart et al. (2004), the
firing rate of neurons with nonzero synaptic time constants driven by

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.19.11.2958&iName=master.img-000.jpg&w=263&h=133
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sufficient noise follows their input currents instantaneously. Then the haz-
ard function hg(gs, gr , t) here is also determined instantaneously by the
mean synaptic conductances. Therefore, inhomogeneous parameters a (t)
and b(t) in equation 4.3 can be determined by interpolating the parameters
determined from static 〈ge〉 and 〈gi 〉 with the instantaneous dynamic 〈ge (t)〉
and 〈gi (t)〉 determined by integrating equation 4.4 for some given arbitrary
time-varying input spike trains parameterized by λe (t), λi (t). Thus, we have
the hazard function

hg(gs, gr , t) = a (t) exp(−b(t) · (gs + gr )). (4.5)

A similar approach was taken in La Camera et al. (2004), except that we
do not correctly account for the dynamics of the standard deviation of
the synaptic conductance by the fitting approach used here. This could be
remedied given an analytically solvable neuron model as was used in La
Camera et al.

In this study, we investigate only time-varying excitation. Treating in-
hibition in addition would require additional fits and two-dimensional
interpolation of the resulting parameters but would yield no new results
for this study.

4.3 Comparing to Renewal Theory Models. In inhomogeneous re-
newal theory, only the time since the last spike (age) enters into the hazard
function (Gerstner & Kistler, 2002). While such theories cannot account for
ISI correlations due to SFA, they can account for much of the gradual in-
crease in excitability that follows a spike due to SFA by an appropriately
chosen hazard function. Perhaps surprisingly, such models are sufficient to
exhibit “adapting” transients to step stimuli. Like the 2DM model, we seek
to calibrate such renewal models to the 5DF system and assess their suitabil-
ity for modeling the ensemble firing rate under dynamic stimuli. Sufficient
for such a comparison is a recipe for specifying the hazard function as a
function of the static stimulus. The dynamic case can then be constructed
by using the effective synaptic filtered stimulus to determine the inhomo-
geneous hazard function at each instant in time, as for the Markov models
in the previous section.

For the static case, one can determine the hazard function as a function
of the stimulus by interpolating the ISI distribution due to 5DF Monte Carlo
and applying the standard renewal theory result that

ρ(τ ) = f (τ )
F(τ )

, (4.6)
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where the renewal theory survival function is given by

F(τ ) =
∫ ∞

s=τ

f (s)ds. (4.7)

The renewal model will thus reproduce the ISI distribution of 5DF Monte
Carlo under static stimulation. This process is numerically unstable for
large τ , and for the dynamic case too costly. Another approach is to deter-
mine the renewal hazard function by equation 2.26, with one caveat: since
the resulting renewal hazard function must be uniquely determined by the
stimulus, P(ts, tr , t) in equation 2.26 must be replaced by P∞(ts, tr , t), the
instantaneous equilibrium distribution, or asymptotic state distribution for
large time resulting from a h(ts, tr , t) fixed at the instantaneous value at time
t. The renewal hazard function determined by this recipe, combined with
the renewal master equation C.7, defines what we subsequently refer to
as the effective renewal (ER) model (see the model overview in Table 1).
Typical hazard functions are shown in Figure 2. Indeed, the renewal hazard
functions determined by equation 2.26 are consistent with those of 5DF
Monte Carlo determined by equation 4.6.

Simulation of the ER model implies that the master equation for P(ts, tr , t)
must be allowed to converge to P∞(ts, tr , t) for each time step where the
stimulation changes. This is costly and makes the ER models much less
efficient to simulate than the 1DM and 2DM models, but allows a direct
comparison of renewal models with the 1DM and 2DM models and 5DF
Monte Carlo. When the renewal hazard function is known a priori, as would
be the case for a gamma renewal process, or when the hazard functions can
be fit by simple functions, the renewal theory ensemble equations given in
appendix C are comparatively more efficient to simulate than the 1DM and
2DM models.

5 Numerics

In this section we describe the numerical techniques applied to solve the
1DM and 2DM master equations, generate realizations of the 1DM and
2DM processes, and solve the 5DF neuron model equations.

5.1 Numerical Solution of Master Equations. We solved the 1DM and
2DM master equations numerically by discretizing P(ts, t) and P(ts, tr , t),
respectively, applying the exponential Euler method for the death term, and
reinserting the lost probability by walking the negative time domain and
fetching the probability sources of each bin determined by equation 2.8.
We present the one-dimensional case here, which can be generalized to two
dimensions.
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Figure 2: The renewal hazard function, ρ(τ ), for synaptic input rates (λe =
6.5 Hz, λi = 11.4 Hz) and (λe = 8.3 Hz, λi = 11.4 Hz) resulting in an ensemble
firing rate of α = 6.33 Hz (top row), and α = 18.67 Hz (bottom row), respectively.
The renewal hazard function for 5DF Monte Carlo (circles) was computed by
equation 4.6 with a spike train of 104 s. The renewal hazard function due to the
2DM model (solid line) was determined by equation 2.26. The renewal hazard
function for a gamma renewal process (dashed line) equal to the 2DM renewal
hazard function at large τ and with the same average firing rate was computed
as discussed in section C.2. The small τ region is shown blown up in the right
column. For the definition of the 2DM and 5DF models, see Table 1.

We discretize P(ts, t) on equally spaced grids ti
s and t j with grid spacings

�ts := ti+1
s − ti

s and �t := t j+1 − t j , respectively, with �ts = �t, such that
P(ts, t) → Pi, j . The discretized form of the master equation 2.9 then takes
the form

Pi+1, j+1 = Pi, j exp(−�t · h(ti
s , t j )) + Pi, j

r , (5.1)

where the first term is the exponential Euler computation of loss of proba-
bility due to the death term. On the left-hand side, the first superscript of
P , i + 1, leads i by one to implement the constant drift of ts , dts/dt = 1. The

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.19.11.2958&iName=master.img-001.jpg&w=263&h=210
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reinserted probability, Pi, j
r , is computed for ti

s + �ts < 0 by

Pi, j
r :=

irif(ti+1
s )−1∑

m=irif(ti
s )

Pm, j
d

+ ψ−1(ti+1
s ) − irif(ti+1

s )
�ts

Pi+1, j
d

− ψ−1(ti
s ) − irif(ti

s )
�ts

Pi, j
d , (5.2)

where Pi, j
d is the loss of probability computed by

Pi, j
d := �t · Pi, j · h(ti

s , t j ), (5.3)

and irif refers to the “reinserted-from” index, which satisfies

tirif(ti
s )

s ≤ ψ−1(ti
s ) < tirif(ti

s )
s + �ts . (5.4)

The first term in equation 5.2 is just a sum of all Pi, j
d except the fractional

last bin, which sends probability to the interval t ∈ [ti
s , ti

s + �ts). The second
two terms subtract the fractional first and add the fractional last bins of
Pi, j

d , which are reinserted to the interval, and thus implement a sort of
anti-aliasing of the reinsertion mapping.

5.2 Neuron Simulations. Monte Carlo simulations of the full-system
(5DF Monte Carlo) were performed by solving equations 3.13 to 3.15 using
the NEST simulation environment (Diesmann & Gewaltig, 2002) with a
time step of 0.01 ms.

5.3 Generating Realizations of the Proposed Markov Processes. Gen-
erating realizations of the proposed 1DM or 2DM processes is straight-
forward: The thinning method for a general hazard function described in
Devroye (1986) can be applied. The quantity hmax = maxts ,t(h(ts, t)) for the
1DM case or hmax = maxts ,tr ,t(h(ts, tr , t)) for the 2DM case must be known.
The variables t and ts (1DM), or t, ts , and tr (2DM) are required and can have
initial values of zero. Sequential intervals are generated using a homoge-
neous Poisson process with hazard rate ρ = hmax. Given one such interval,
�ti , it is added to t and ts (1DM), or t, ts , and tr (2DM). Next, a spike is
generated at time t with probability h(ts, t)/hmax (1DM) or h(ts, tr , t)/hmax

(2DM), and if a spike is generated, ts �→ ψs(ts), and tr �→ ψr (tr ), where ψs and
ψr refer to the reinsertion mappings as in equation 2.7 with the respective
parameters for the two mechanisms.
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6 Results

In this section we compare ISI distributions, static ISI correlations, and firing
rate dynamics of the 1DM, 2DM, and ER models to 5DF Monte Carlo.

6.1 Interspike Interval Distributions. The predictions due to the ER
and 2DM model are in excellent agreement with the static ISI distribution of
5DF Monte Carlo. The prediction due to the 1DM model neglects refractory
effects and is therefore poor for low ISIs, as can be seen in Figure 3.

6.2 Interspike Interval Correlations. In this section we investigate cor-
relations between subsequent ISIs, a feature of the proposed 1DM and 2DM
models that is absent by definition in renewal theory models of spike statis-
tics.

The correlation coefficient, r , for a finite number of observations is de-
fined by

r2 = (
∑

(xi − x̄)(yi − ȳ))2∑
(xi − x̄)2

∑
(yi − ȳ)2 , (6.1)

and is the standard measure by which to quantify correlations between two
random variables x, y, where xi , yi denote the individual observations and
x̄, ȳ denote the means.

The correlation coefficients of subsequent ISIs under static stimulation
were calculated for 100 runs of 100 s, and the mean and deviation in the
mean are given in Table 2. Indeed, the renewal process shows no ISI corre-
lations. For low and high firing rates, the difference between the correlation
coefficients for 5DF Monte Carlo and realizations of the 2DM model is con-
sistent with zero. Both exhibit negative ISI correlations, implying short ISIs
are generally followed by long ISIs and vice versa, as has been observed
in previous experimental and theoretical studies (Longtin & Racicot, 1997;
Chacron, Longtin, & Maler, 2000; Chacron et al., 2005; Nawrot et al., 2007).

The conditional ISI distribution, f (τi+1|τi ) can be computed for the 1DM
and 2DM models by equation 2.34. Predictions due to the 2DM model are
in agreement with 5DF Monte Carlo for low and high rates, and both long
and short τi , as shown in Figure 3. Applying equation 2.34, we can compute
the quantity

〈τi+1|τi 〉τi+1 =
∫ ∞

0
τi+1 f (τi+1|τi )dτi+1. (6.2)

As discussed in Whittaker and Robinson (1967), this is a linear function of τi

for normal distributions, the slope of which is the correlation coefficient. As
the ISI distributions here are not normal, there are deviations from linearity,
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Figure 3: Comparison of the conditional ISI distributions due to 5DF Monte
Carlo with predictions due to effective renewal theory (ER, dotted line), the 1DM
model (dashed line, determined by equation 2.34), and the 2DM model (solid
line, determined by the 2D generalization of equation 2.34). For the definition
of the 1DM, 2DM, 5DF, and ER models, see Table 1. The left column shows
three representative conditional ISI distributions for an ensemble firing rate
of α = 18.67 Hz (λe = 8.3 Hz, λi = 11.4 Hz), and the right column shows the
same for α = 6.33 Hz (λe = 6.5 Hz, λi = 11.4 Hz). The upper two plots show the
conditional ISI distribution for τi much shorter than the mean. The middle two
plots show the conditional ISI distribution for τi equal to the mean. The lower
two plots show the conditional ISI distribution for τi much longer than the
mean. The preceding ISI, τi , is given on each plot, and a small interval around
τi is used to compute the distributions from 5DF Monte Carlo to yield sufficient
statistics. The theoretical predictions of the conditional ISI distributions using
the 2DM model are in good agreement with 5DF Monte Carlo for all situations
considered. The ISI distribution due to 5DF Monte Carlo is consistent with the
renewal ISI distribution only when the preceding ISI is equal to the mean ISI
(middle row). Spike trains of duration 104 s were used. Error bars represent the
relative error in the histogram bin counts, 1/

√
count.
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Table 2: Serial ISI Correlation Coefficients for Monte Carlo Simulations of
the Full Five-Dimensional System (5DF), Realizations of the One- and Two-
Dimensional Markov Models (1DM, 2DM), and Realizations of the Effective
Renewal Theory Model (ER).

Model Correlation coefficient

α = 6.33 Hz
5DF −0.148 ± 0.004
2DM −0.147 ± 0.003
1DM −0.160 ± 0.003
ER 0.0042 ± 0.0043

α = 18.67 Hz
5DF −0.235 ± 0.002
2DM −0.236 ± 0.002
1DM −0.283 ± 0.002
ER 0.001 ± 0.002

Figure 4: Mean of the conditional ISI distribution as a function of the pre-
ceding ISI, τi , for high-ensemble firing rates (A, (λe = 8.3 Hz, λi = 11.4 Hz),
α = 18.67 Hz) and low-ensemble firing rates (B, (λe = 6.5 Hz, λi = 11.4 Hz),
α = 6.33 Hz). The data points (triangles) shown are for 5DF Monte Carlo. The-
oretical predictions due to the 1DM (dashed line), 2DM (solid line), and ER
(dotted line) models are shown. For the definition of the 1DM, 2DM, 5DF, and
ER models, see Table 1. A linear function with slope equal to the serial ISI cor-
relation coefficient would be the functional form if the ISI distributions were
normal. Thus, these linear functions are plotted for comparison.

as shown in Figure 4. Predictions due to equation 6.2 for the 2DM model
are consistent with 5DF Monte Carlo for both low and high rates, as seen
in Figure 4. Thus, the 2DM model is indistinguishable from the full system
when considering static correlations.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.19.11.2958&iName=master.img-003.jpg&w=287&h=143
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Figure 5: (A) The ensemble firing rate, α(t), in response to a moderate step
stimulus, determined by 5DF Monte Carlo (5 · 105 trials, solid line), and nu-
merical solution of the 1DM (dotted line), 2DM (dashed line), and ER (dashed
dotted line) master equations. For the definition of the 5DF, 1DM, 2DM, and ER
models, see Table 1. (B) The region outlined by the dashed rectangle is enlarged,
showing consistency between the two-dimensional Markov (2DM) model and
the full system (5DF Monte Carlo) apart from a 0.5 ms lead of the 2DM solution.
This discrepancy is likely due to the neglected membrane potential dynamics.

6.3 Firing Rate Dynamics. In this section, we compare the ensemble
firing rates of the 1DM, 2DM, and ER models to 5DF Monte Carlo for small
to large step stimuli, and for random fluctuating stimuli generated by an
Ornstein-Uhlenbeck process.

We subject the neural ensemble to a dynamic stimulus by specifying a
time-varying excitatory Poisson input rate, λe (t). Given the time-dependent
hazard function determined by the Poisson input rates as described in
section 4.2, the ensemble firing rate, α(t), of the 1DM and 2DM models can
be calculated by solving equations 2.9 and 3.24, respectively, for the time-
dependent state distribution, and subsequently applying equation 2.17 or
the 2D generalization of it. For the ER model, the hazard function was
calculated by the methods discussed in section 4.3, and the ensemble firing
rate was determined by solving equation C.7.

For weak step stimuli that do not bring the system too far from equi-
librium, all models (ER, 1DM, 2DM) faithfully reproduce the step stimulus
response of 5DF Monte Carlo (not shown). For moderate step stimuli, only
the 2DM model faithfully reproduces the step stimulus response of 5DF
Monte Carlo, shown in Figure 5. For large step stimuli, the 2DM model
starts to deviate from 5DF Monte Carlo, as seen in Figure 6.

The effective renewal theory (ER) model does a reasonable job of pre-
dicting the ensemble firing rate of the system to low-amplitude step stimuli.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.19.11.2958&iName=master.img-004.jpg&w=287&h=146
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Figure 6: (A) The ensemble firing rate, α(t), in response to a large step stimulus,
determined by 5DF Monte Carlo (5 · 105 trials, solid line), and numerical solution
of the 1DM (dotted line), 2DM (dashed line), and ER (dashed dotted line)
master equations. For the definition of the 5DF, 1DM, 2DM, and ER models, see
Table 1. (B) The region outlined by the dashed rectangle is enlarged, showing
disagreement between the two-dimensional Markov (2DM) model and the full
system (5DF Monte Carlo).

This is perhaps surprising, since we do not expect renewal models to
faithfully reproduce the dynamical responses of spike-frequency adapt-
ing neurons, as renewal models do not account for the dependencies of
the firing probability density (hazard function) on spikes prior to the most
recent. However, this shows that if the ensemble is not pushed far from
equilibrium, knowledge of just the last spike is sufficient to predict the
firing rate.

We further compared 5DF Monte Carlo and predictions of the 2DM
model for a stimulus, νe (t), generated by an Ornstein-Uhlenbeck (OU) pro-
cess. Let ζ (t) be an OU process with mean of 10 Hz, standard deviation of
0.6 Hz, and time constant of 0.2 s. Then the excitatory synaptic inputs were
supplied with νe (t) = Neζ (t), with Ne = 1000 being the number of excitatory
synaptic inputs.

The ensemble firing rates for the 2DM model, its adiabatic solution, and
5DF Monte Carlo are shown in Figure 7. The adiabatic solution of the 2DM
model is defined as the system that at each instant in time has a distribution
of states equal to the instantaneous equilibrium distribution, P∞(ts, tr , t), the
asymptotic state distribution for large time resulting from a h(ts, tr , t) fixed
at the instantaneous value at time t. The firing rate of the adiabatic 2DM
model is then calculated by

α(t) =
∫ ∞

−∞
h(ts, tr , t)P∞(ts, tr , t)dtsdtr . (6.3)
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Figure 7: (A) The ensemble firing rate, α(t), in response to an Ornstein-
Uhlenbeck process stimulus (as described in the text), determined by 5DF Monte
Carlo (solid line), numerical solution of the 2DM master equation (dashed line),
and the adiabatic solution (adiabatic 2DM, dotted line) computed by equation
6.3. For the definition of the 5DF, and 2DM models, see Table 1. (B) The region
outlined by the dashed rectangle is enlarged, showing consistency between the
two-dimensional Markov (2DM) model and the full system (5DF Monte Carlo).

By comparison of the ensemble firing rates of the 2DM model with its
adiabatic solution in Figure 7, we can see that the system is being driven
from equilibrium by the stimulus. Furthermore, the behavior of the 2DM
model far from equilibrium captures the ensemble firing rate dynamics of
5DF Monte Carlo faithfully. This is a robust result under variation of neuron
parameters and stimuli, so long as the ensemble is not pushed too far from
equilibrium, as for the large step stimulus in Figure 6.

7 Beyond Mean-Adaptation Approximations

In this section we show that statistical moment theory approximations such
as the mean-adaptation theories due to La Camera et al. (2004) can be
derived from the 1DM master equation. The approach generalizes, and we
derive the next order moment theory approximation, a mean+variance-
adaptation theory and use it to clarify the domain of validity of mean-
adaptation theories.

Recall the 1DM master equation for a spike-frequency adapting neuron,

∂

∂t
P(gs, t) = ∂

∂gs

[
gs

τs
P(gs, t)

]

+hg(gs − qs, t)P(gs − qs, t)

−hg(gs, t)P(gs, t), (7.1)
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where P(gs, t) is the probability density of the adaptation state variable, gs ,
and P(gs < 0, t) = 0. The ensemble firing rate, α(t), is given by

α(t) =
∫ ∞

−∞
hg(gs, t)P(gs, t)dgs . (7.2)

The mean adaptation variable is

〈gs(t)〉 =
∫ ∞

−∞
gs P(gs, t)dgs . (7.3)

Multiplying equation 7.1 by gs and integrating over gs yields the time
evolution of the mean, 〈gs(t)〉,

d〈gs(t)〉
dt

= − 1
τs

〈gs(t)〉 + qsα(t). (7.4)

By Taylor expanding hg(gs) in equation 7.2 around 〈gs(t)〉, and keeping up to
linear terms, a mean-adaptation theory as in La Camera et al. (2004) results.
Keeping up to quadratic terms, we have

α(t) ≈ α
(
〈gs(t)〉, 〈�g2

s (t)〉
)

= hg

(
〈gs(t)〉

)
− 1

2
h′′

g

(
〈gs(t)〉

)
· 〈�g2

s (t)〉, (7.5)

where the h′
g(〈gs(t)〉) term vanishes by a cancellation of means. A

mean+variance-adaptation theory results, but we require the time evo-
lution of the variance. Multiplying equation 7.1 by (gs − 〈gs(t)〉)2 and
integrating over gs yields the time evolution of the variance, 〈�g2

s (t)〉,

d〈�g2
s (t)〉

dt
=− 2

τs
〈�g2

s (t)〉 + q 2
s α(t)

+ 2qs

∫ ∞

0

(
gs − 〈gs(t)〉

)
hg(gs, t)P(gs, t)dgs . (7.6)

Approximating hg(gs) ≈ hg(〈gs(t)〉) + h′
g(〈gs(t)〉)(gs − 〈gs(t)〉), equation 7.6

becomes

d〈�g2
s (t)〉

dt
≈− 2

τs
〈�g2

s (t)〉 + q 2
s α

(〈gs(t)〉, 〈�g2
s (t)〉)

+ 2qsh′
g(〈gs(t)〉) · 〈�g2

s (t)〉, (7.7)
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which has a steady state

〈
�g2

s

〉 = 1
2

q 2
s α

(〈gs〉,
〈
�g2

s

〉)
1
τ

− qsh′
g(〈gs〉)

. (7.8)

Thus, the mean+variance-adaptation theory consistency relation for the
adapted equilibrium firing rate, α∗, reads

α∗ = hg(qsτsα
∗) + 1

4
h′′

g(qsτsα
∗)

[
q 2

s α∗
1
τ

− qsh′
g(qsτsα∗)

]
. (7.9)

Higher-order moment theories can be derived by keeping higher terms
in the expansions in equations 7.5 and 7.7, and computing the necessary
equations for the time evolution of higher statistical moments from the
master equation 7.1.

7.1 Validity of Mean-Adaptation Theories. In this section we give a
heuristic criterion for the validity of mean-adaptation theories in the static
case, and the improved accuracy of the mean+variance-adaptation theory
is demonstrated by a numerical example. It is illustrative to first investigate
the exactly solvable leaky integrate-and-fire neuron driven by white noise
for the parameters considered in La Camera et al. (2004), and subsequently
contrast the findings to the 5DF model defined by equations 3.13 to 3.15.

It can be seen by inspection of equation 7.9 that if h′′
g(gs) ≈ 0 over the

regime where P(gs) is appreciably nonzero, then the mean-adaptation
consistency relation,

α∗ = hg
(
qsτsα

∗), (7.10)

as in La Camera et al. (2004), results.
First, we use the 1DM master equation to verify the mean-adaptation

theory for the leaky integrate-and-fire neuron driven by white noise con-
sidered in La Camera et al. (2004). The hazard function, hg(gs, t), is referred
to there as the response function in the presence of noise and has the exact
solution,

hg(gs, t) =
[
τ

∫ Cθ−(m−gs )τ
σ
√

τ

CVr −(m−gs )τ
σ
√

τ

√
πex2

(1 + erf (x)) dx

]−1

, (7.11)

due to Siegert (1951), Ricciardi (1977), and Amit and Tsodyks (1991), where
Vr is the reset potential, θ is the threshold, τ is the membrane potential,
C is the membrane capacitance, and erf(x) = (2/

√
π)

∫ x
0 e−t2

dt is the error



Spike-Frequency Adapting Neural Ensembles 2989

Figure 8: (A, top) The hazard function, hg(gs), and (A, bottom) the equilib-
rium distribution of adaptation states, P(gs), in the low-firing rate regime
(α∗ = 4.83 Hz, mean current input m = 0.25 nA and noise σ = s · √

2 ms with
s = 0.6 nA) of the leaky integrate-and-fire neuron (LIF) used in La Camera
et al. (2004). P(gs) was determined by numerical solution of the 1DM master
equation using the hazard function given in equation 7.11. Neuron parame-
ters: C = 0.5 nF, τm = 20 ms, θ = 20 mV, Vr = 10 mV. Adaptation parameters:
τs = 110 ms, qs · τs = 4 pA · s. For comparison, the neuron and adaptation pa-
rameters are as for Figure 1a in La Camera et al. (2004), except τr = 0 ms and
τs = 110 ms. For the definition of the 1DM model, see Table 1. The hazard func-
tion is nearly linear over the distribution of states; thus, terms depending on
the variance of P(gs) in equation 7.9 can be neglected, and mean-adaptation
theories will yield good approximations to the adapted ensemble firing rate.
(B) The adapted ensemble firing rate, α∗, for a range of mean current inputs,
m, determined by numerical solution of the 1DM master equation (circles), and
the mean-adaptation theory consistency relation (solid line).

function. As in La Camera et al. (2004), m and σ are the mean and stan-
dard deviation of the input current. Upon firing, the adaptation current,
gs , makes a jump of qs and relaxes with a time constant τs . As can be seen
in Figure 8A, hg(gs) is quite near linear over the regime where P(gs) is
appreciably nonzero, and predictions of the adapted firing rate due to a
mean-adaptation theory are in excellent agreement with the 1DM master
equation as shown in Figure 8B. The mean+variance-adaptation theory
helps us to understand this: agreement is good because h′′

g(gs) ≈ 0 over the
regime where P(gs) is appreciably nonzero for all firing rates considered.

For the 5DF models defined by equations 3.13 to 3.15, we have hg(gs) ≈
a · exp(−bgs). As can be seen in Figure 9A, hg(gs) has an appreciable second
derivative over P(gs), and thus we expect mean-adaptation equilibrium
ensemble firing rate predictions to deviate from the ensemble firing rate
of the 1DM master equation. Indeed, such deviations are observed and are
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Figure 9: (A, top) The hazard function, hg(gs), and (A, bottom) the equilibrium
distribution of adaptation states, P(gs), determined by numerical solution of
the 1DM master equation. The hazard function, hg(gs), was determined by
fitting to 5DF Monte Carlo as in Figure 1 with λe = 9.75 Hz, λi = 11.4 Hz. For
the definition of the 5DF and 1DM model, see Table 1. The hazard function
has nonzero curvature (h′′

g(gs) > 0) over the distribution of states; thus, terms
depending on the variance of P(gs) in equation 7.9 cannot be neglected, and
mean-adaptation theory predictions for the adapted ensemble firing rate are
expected to be in error. (B) The adapted ensemble firing rate, α∗, for a range
of Poisson input rates, λe , determined by solution of the 1DM master equation
(circles), the mean-adaptation theory consistency relation (dashed line), and
the mean+variance-adaptation consistency relation (solid line). As expected,
mean-adaptation theory predictions for the adapted firing rate are corrected by
the mean+variance-adaptation theory consistency relation in equation 7.9.

corrected by the mean+variance-adaptation consistency relation, as seen in
Figure 9B. Thus, a heuristic condition for the validity of mean-adaptation
theories is that we must have h′′

g(gs) ≈ 0 over the regime where P(gs) is
appreciably nonzero. Less heuristically, the contributions due to the second
term (and all neglected higher-order terms) on the right-hand side of equa-
tion 7.9 must vanish compared to the first. When this condition is violated,
higher-order moment theories such as the mean+variance-adaptation the-
ory given here, or the 1DM master equation, should be applied to determine
the ensemble firing rate.

For the neuron models considered here, the accuracy of the
mean+variance-adaptation theory was also verified in the dynamic case
for an OU stimulus as in Figure 7, as shown in Figure 10.

8 Discussion

In this letter, we propose a one-dimensional Markov process (the 1DM
model) for modeling neural ensemble activity and spike train statistics

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.19.11.2958&iName=master.img-008.jpg&w=287&h=141


Spike-Frequency Adapting Neural Ensembles 2991

Figure 10: (A) The ensemble firing rate, α(t), in response to an Ornstein-
Uhlenbeck process stimulus (as for Figure 7), determined by the 1DM
model (solid line), the adiabatic solution (thick solid line) computed by the
mean+variance-adaptation consistency relation equation 7.9, the dynamic
mean+variance-adaptation theory equations 7.4 to 7.6 (dotted line), and the
dynamic mean-adaptation theory equations (dashed line). (B) The region out-
lined by the dashed rectangle is enlarged, showing consistency between the
1DM model and the mean+variance-adaptation theory, while predictions due
to the mean-adaptation theory are poor. For the definition of the 1DM model,
see Table 1.

that goes beyond renewal theory by accounting for interspike interval (ISI)
correlations due to spike-frequency adaptation (SFA) mechanisms without
the need to model the high-dimensional space of the microscopic neuronal
state variables.

We demonstrated that the full five-dimensional master equation of a
conductance-based integrate-and-fire neuron with SFA and a refractory
mechanism driven by Poisson spike trains (the 5DF model) can be reduced
to a two-dimensional master equation plus filtering differential equations
accounting for synaptic dynamics (the 2DM model), under an adiabatic
elimination of the fast variables v, ge , gi , assuming the neuron has nonzero
synaptic time constants and is in the high-conductance state. The resulting
2DM master equation is a two-dimensional generalization of the Markov
process proposed at the outset as an extension of renewal theory to account
for ISI correlations.

We presented methods for generating inhomogeneous realizations of
the proposed 1DM and 2DM models and a method for solving their
master equations numerically. The 2DM model was shown to accurately
predict firing rate profiles of the full system under dynamic stimulation
and conditional ISI distributions and serial ISI correlations under static
stimulation.
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It was shown that mean-adaptation theories for spike-frequency adapt-
ing neurons with noisy inputs such as in La Camera et al. (2004) and higher-
order statistical moment theories can be derived from the 1DM master
equation as long as one neglects the refractory period. A heuristic condition
for the validity of mean-adaptation theories was derived and found to be
violated for the neuron model (5DF) and parameters considered here. Fur-
thermore, a mean+variance-adaptation theory was derived that corrected
the ensemble firing rate predictions of mean-adaptation theories in this
case.

8.1 Comparison with Other Studies of Adaptation. Studies of the fir-
ing rates of networks and ensembles of spike-frequency adapting neurons
due to Latham et al. (2000) and Fuhrmann et al. (2002) augment a Wilson
and Cowan equation (Wilson & Cowan, 1972) for the firing rate with a mean
adaptation variable.

As is typical of the Wilson and Cowan approach, the ensemble firing
rate, α, enters a differential equation of the form

τe
dα

dt
= −α + hg(〈gs(t)〉, · · ·), (8.1)

where hg(〈gs(t)〉, · · ·) is the static firing rate given the input and the mean
adaptation, and τe is the timescale for relaxation to a firing rate equilibrium.
As is suggested in Fuhrmann et al. (2002), τe is determined mainly by the
membrane time constant of the neuron, but is also affected by the mean
amplitude of the input, and is treated there as a free parameter.

It has been argued in Gerstner (2000), Brunel, Chance, Fourcaud, and
Abbott (2001), Fourcaud and Brunel (2002), Renart et al. (2004), and La
Camera et al. (2004) that for current and conductance-based synapses with
nonzero time constants and biological input statistics, the ensemble firing
rate responds instantaneously to input currents, and synaptic filtering dom-
inates. In this case, the Wilson and Cowan equation for α can be replaced
by an instantaneous f-I function, and the synaptic currents or conductances
modeled by relaxation equations for their means and variances. This is the
approach taken in La Camera et al. (2004). Thus, one sidesteps the concerns
mentioned in Fuhrmann et al. (2002) that the Wilson and Cowan equation
“cannot be rigorously derived from the detailed integrate-and-fire model”
and has been “shown not to accurately describe the firing rate dynamics
[by] (Gerstner, 2000).”

The models due to Latham et al. (2000), Fuhrmann et al. (2002), and
La Camera et al. (2004) all approximate the evolution of the ensemble of
adaptation variables by its mean value and are therefore mean-adaptation
theories. La Camera et al. (2004) state that such mean-adaptation theo-
ries are a good approximation under the assumption that “adaptation is
slow compared to the timescale of the neural dynamics. In such a case, the
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feedback [adaptation] current . . . is a slowly fluctuating variable and does
not affect the value of s [the standard deviation of the input current].”

La Camera et al. (2004) explore adaptation time constants on the order of
100 ms under the assumption that the adaptation dynamics are “typically
slower than the average ISI.” They report that “for irregular spike trains the
agreement is remarkable also at very low frequencies, where the condition
that the average ISI be smaller than τN [the time constant of adaptation] is
violated. This may be explained by the fact that although 〈I SI 〉 > τN , the ISI
distribution is skewed towards smaller values, and [the mean adaptation
current proportional to the firing rate] . . . is still a good approximation.”

In section 7 we used the 1DM master equation to derive a
mean+variance-adaptation theory, the next correction to the mean-
adaptation theories in La Camera et al. (2004), yielding another explanation
for the success reported there. We found that the error in the firing rate in
La Camera et al. remained small because the hazard function used there is
a nearly linear function of the adaptation variable in the interesting regime
where P(gs) is appreciably nonzero. Thus, perturbing contributions to the
average firing rate from deviations of the adaptation variable above and
below the mean over the course of one ISI roughly cancel on average. For
the neuron model (5DF) and parameters considered here, the hazard func-
tion has an appreciable nonlinearity resulting in erroneous predictions of
the firing rate when using a mean-adaptation theory. The mean+variance-
adaptation theory derived here corrected the predictions.

It is appropriate to reiterate that both the 1DM master equation and
the resulting mean+variance-adaptation theory approximation considered
here neglect refractory dynamics. It was demonstrated by the adiabatic
reduction of the 5DF model to the 2DM model that the inclusion of a relative
refractory period requires a two-dimensional master equation. Indeed, as
shown in Figure 6, oscillations emerge for large and fast stimulation changes
that are qualitatively captured by the 2DM model but not by the 1DM
model. It remains to be seen if a two-dimensional mean- or mean+variance-
adaptation theory can be constructed that accounts for this behavior, and
under what conditions it can be reduced to a one-dimensional model by
simply rescaling the firing rate by f ′ = 1/(1/ f + τeff), as in La Camera et al.
(2004) for the absolute refractory period case, where τeff is some effective
absolute refractory period of the relative refractory mechanism.

In Benda and Herz (2003), a thorough mathematical analysis of several
well-known mechanisms for SFA based on biophysical kinetics is performed
for the case of a suprathreshold current. A universal phenomenological
mean-adaptation model for such biophysical mechanisms for SFA is intro-
duced with much the same form as later used in La Camera et al. (2004) for
the case of noisy drive. Methods are given to completely parameterize the
model using quantities that can be easily measured by standard recording
techniques. Implications for signal processing are considered there and in
subsequent publications (Benda, Longtin, & Maler, 2005).
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In Chacron et al. (2003), a novel approach is taken compared to Latham
et al. (2000), Fuhrmann et al. (2002), Benda and Herz (2003), and La
Camera et al. (2004). There an expression is derived for the serial corre-
lation coefficient of ISIs in the static case by employing a Markov chain.
In their analysis, they define a quantity analogous to the static distribution
P†(ts) here. In their framework, they prove that adaptation of the threshold
fatigue form used there results in ISI correlations as have been observed
experimentally (Longtin & Racicot, 1997; Chacron et al., 2000; Nawrot et al.,
2007). Their expression, however, contains integrals that require “the com-
putation of the FPT [first-passage time] PDF of the Ornstein-Uhlenbeck
process through an exponential boundary. Given that no general analytical
expression is available for this quantity, derivation of the correlation from
the integrals can be computationally more demanding than estimating the
same quantities from simulations” (Chacron et al., 2003). Subsequently, only
simulations are performed, and the derived expression is never compared
to the simulated result. Thus, they miss an important benchmark to ensure
the calculations are correct. It is possible that the numerical techniques used
here could be applied to compute a prediction for the correlation coefficient
by the expression they derive and subsequently compared to the simulated
result.

Mean-adaptation theories cannot be used to model the correlation be-
tween subsequent ISIs, as they do not preserve the ensemble statistics. Our
approach is that one simply not replace the trajectory of the adaptation
variable, gs , by its mean. This resolves the problem in the development
in La Camera et al. (2004) that the mean input current and instantaneous
gs have an equal role in determining the instantaneous firing rate, and gs

cannot be consistently replaced by its mean. What results is the 1DM master
equation presented here. We subsequently calculate an expression for the
inhomogeneous conditional ISI distribution and compare it to 5DF Monte
Carlo in the static case. Furthermore, we calculate the variation of the mean
of the conditional ISI distribution as a function of the preceding ISI, a gen-
eralization of the serial correlation coefficient of ISIs, and compare it to 5DF
Monte Carlo. By our Markov process master equation, we avoid the diffi-
culty encountered in Chacron et al. (2003) of treating the first passage times
of an Ornstein-Uhlenbeck process through an exponential boundary, while
capturing the full inhomogeneous ensemble dynamics in a framework that
is tractable.

8.2 On the Adiabatic Reduction of the Master Equation. Under the
assumption that the neuron is in the high-conductance state due to biolog-
ically realistic noisy inputs, we show that the 5DF master equation for the
conductance-based spike frequency adapting relative refractory integrate-
and-fire neuron model used here can be reduced to the 2DM master equa-
tion by an adiabatic elimination of fast variables. The variables that remain
are those of SFA and the relative refractory mechanism, and the form is
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analogous to the 1DM master equation proposed to extend renewal theory
to a class of Markov processes that account for SFA.

The adiabatic reduction does not solve explicitly the firing rate of the
given neuron model (without adaptation or the refractory mechanism) or
rely on such a solution. We leave the firing rate dynamics of the given neuron
model (without adaptation or the refractory mechanism) encapsulated in
the hazard function (see equation 3.23). The approach applies to other mod-
els of adaptation such as the adapting threshold models in Chacron et al.
(2003) and the current-based adaptation models in La Camera et al. (2004).

Concerning the generality of the adiabatic elimination for the adaptation
variable, we expect it could be applied to a larger class of formally spiking
neuron models with fast, intrinsic dynamics compared to adaptation. For
those interested in modeling a class of neurons where a solution to equation
3.23 already exists, the framework can be easily and immediately applied.
The fitting methods presented allow the connection to be made between
models for which an explicit solution for the hazard function is unknown
and the 1DM and 2DM models presented here. What results is a reduced
state space to explore for functional implications.

The generality of treating the relative refractory mechanism as a slow
variable in the adiabatic elimination is less clear. There are some issues
that need to be clarified before one could specify the class of neurons to
which it applies. Specifically, the relationship between the requirement that
the neuron be in the high-conductance state (small effective τm) and the
requirement that the synapses have nonvanishing time constants (τe > 0)
resulting in a nonvanishing probability at threshold (P(vth, · · ·) > 0) remains
to be thoroughly investigated. The delta-conductance-based approach in
Meffin et al. (2004), for example, does not satisfy the second requirement.
The nonvanishing probability at threshold seems to be a criterion for the
neuron to respond quickly to the synaptic signal (Fourcaud & Brunel, 2002;
Renart et al., 2004).

An important step in the reduction is the treatment of the synaptic con-
ductances. As their statistics are assumed to instantaneously determine the
equilibrium statistics of the membrane potential, they were removed from
the master equation. Then differential equations were found for their first
statistical moments (means) in terms of the rate of the Poisson process in-
put, as in La Camera et al. (2004). One weakness of the fitting approach
used here is that we cannot account for the dynamics of the second central
moment (variance), as was done in La Camera et al., and modeling both dy-
namic excitation and inhibition simultaneously requires a laborious fitting
of a two-dimensional space of synaptic inputs. Further work will apply
methods such as those due to Moreno-Bote and Parga (2004) to obtain a
solution to equation 3.23 without fitting, thus allowing ensemble studies
of adapting network models and analysis as in Latham et al. (2000) with
the rigor of, for example, (Brunel, 2000), and the possibility for quantitative
agreement with traditional large-scale network simulations.
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8.3 Beyond Renewal Theory. We reviewed standard results of inhomo-
geneous renewal theory in appendix C and uncovered a conceptual error
often made in the literature when using the intensity-rescaling transfor-
mation to make the transition from homogeneous (static) to inhomoge-
neous (dynamic) renewal theory. We clarified and remedied the problem
by presenting a correct renewal process generation scheme as discussed in
Devroye (1986).

By means of a variable transformation, we provided a link between the
1DM model and inhomogeneous renewal theory methods, allowing direct
comparison and contrast. The 1DM master equation was found to have an
analogous structure to the renewal master equation, but with a state space
spanning the whole real line. Furthermore, the 1DM state is not reborn
to a universal initial value upon spiking, as in renewal theory (zero age),
but reinserted to a state that is a function of the state just prior to spiking.
This fact introduces a memory into the system and results in negative ISI
correlations as reported in Chacron et al. (2003).

Due to the detailed adiabatic reduction and fitting, we proposed the
nested exponential form of the hazard function as given by equation 2.10
and the state-dependent reinsertion function as given by equation 2.7 for
the conductance-based SFA mechanism considered here. The hazard func-
tion (perhaps time-dependent) and the reinsertion function together are a
complete specification of the proposed Markov model given an initial dis-
tribution of states. We provided a numerical recipe to efficiently generate
inhomogeneous realizations of the proposed Markov process.

With an additional dimension for a relative refractory mechanism, the
Markov process faithfully reproduces the transient dynamics and ISI cor-
relations of 5DF Monte Carlo, as expected by the adiabatic reduction. The
same comparison between a one-dimensional Markov process and a neu-
ron model without the relative refractory mechanism was not done, as we
found that without refractory mechanisms, the neuron model used exhib-
ited a high probability to spike just after spiking due to correlations in the
synaptic conductance on the timescale of the refractory mechanism. We feel
this is a bug rather than a feature of neuron models without a refractory
mechanism. Thus we chose not to build a Markov process to account for
it. Furthermore, the proposed relative refractory mechanism requires only
slightly more effort than treating an absolute refractory period, as done in
Nykamp and Tranchina (2001). When the hazard function calibrated for the
2DM model is used directly for the 1DM model, reasonable agreement to
refractory neuron models was still observed for the moderate firing rates
considered.

8.4 Suprathreshold Stimuli. For large and rapid changes in stimulus
that bring the ensemble predominantly into the suprathreshold regime, the
predictions due to numerical solutions of the 2DM model deviated some-
what from 5DF Monte Carlo simulations, as seen in Figure 6. The reasons
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for this are twofold. First, the stimulus brings us into a regime where the
exponential fitting procedure for h(ts, tr ) begins to fail and was poorly pop-
ulated with data points. This fact likely accounts for the larger amplitude of
the oscillations of the 2DM model compared to 5DF Monte Carlo. It is likely
that a choice of function that improves the fit in this regime or a proper
analytical solution for h(ts, tr ) would improve the agreement here. Second,
following the large stimulus change, a large portion of the population is in
the suprathreshold regime where neurons make large migrations from the
reset potential directly to the threshold following a spike. The 2DM model
completely neglects the dynamics of the membrane potential and thus this
migration period, resulting in the phase lead over the full system.

A closer inspection of Figure 6 reveals a transition from predominantly
supra- to predominantly subthreshold firing. Shortly after stimulus onset,
a large portion of the population fires almost immediately and is reinserted
with the adaptation conductance increased by qs , that is, a mass exodus
in phase space. For the 2D case, the neurons also start a refractory period
upon reinsertion; in the 1D case, they do not. The stimulus is sufficiently
strong that in the 2D case, it is still suprathreshold following the refractory
period. In the 1D case, there is no refractory period, and the neurons can
fire immediately following a spike cycle, and no lull is seen in the firing rate
following the initial mass exodus. For the 2D case, and even the renewal
case, the system is refractory following the mass exodus, and a lull in
the firing rate results, to peak again as the neurons are released from the
refractory state. With the accumulation of adaptation, the fraction of the
ensemble participating in subsequent exodus events is ever diminished
as more and more neurons enter the subthreshold regime where neurons
survive for highly variable durations following the refractory period. Thus,
for large stimuli that keep the neuron suprathreshold over several spikes,
the population is initially synchronized, firing at a rate determined by the
refractory mechanism. As adaptation accumulates, spiking becomes more
irregular, and the neurons desynchronize.

The desynchronization of neurons driven by suprathreshold current has
been observed experimentally in Mainen and Sejnowski (1995). It is shown
there that this transition to the subthreshold regime due to adaptation is not
strictly necessary for the neurons to desynchronize due to the constant pres-
ence of noise. However, adaptation is also a mechanism by which an other-
wise irregularly firing neural ensemble is synchronized at a stimulus onset.
Following such a synchronization, the transition from the predominantly
suprathreshold regime to the predominantly subthreshold regime induced
by the accumulation of adaptation is akin to a transition from a noisy oscil-
lator firing mode to a point process firing mode. While the ensemble would
gradually desynchronize in the noisy oscillator firing mode, the transition
to the point process firing mode over only a few spikes ensures this occurs
much more rapidly. Thus, adaptation works to both synchronize and then
desynchronize at changes in stimulus. This is an implementation of novelty
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detection and is related to the high-pass filtering properties of SFA reported
in Benda et al. (2005). Evidence for a synchronization-desynchronization
coding scheme for natural communication signals was recently reported
for the spike-frequency adapting P-unit electroreceptors of weakly electric
fish in Benda, Longtin, and Maler (2006).

9 Conclusion

In this letter, we have focused on establishing a framework for rigorously
treating the dynamic effects of spike-frequency adaptation and refractory
mechanisms on neural ensemble spiking. The resulting master equation
formalism unifies renewal theory models and previous studies on adapta-
tion (e.g., Latham et al., 2000; Fuhrmann et al., 2002; Chacron et al., 2003;
Benda & Herz, 2003; La Camera et al., 2004) into an ensemble, or popula-
tion density framework such as those due to Knight (1972, 2000), Brunel
(2000), Omurtag et al. (2000), Nykamp and Tranchina (2000), Fourcaud and
Brunel (2002), Richardson (2004), Rudolph and Destexhe (2005), Meffin et al.
(2004), and Moreno-Bote and Parga (2004). The resulting methods are new
and powerful tools for accurately modeling spike-frequency adaptation,
an aspect of neuron dynamics ubiquitous in excitatory neurons that has
been largely ignored in neural ensemble studies thus far due to the added
difficulties of treating the extra state variable.

By distilling the detailed neuron model down to two essential dimen-
sions, spike-frequency adaptation and a relative refractory period, using an
adiabatic elimination, their central role in perturbing neural firing is empha-
sized. Future work will employ the framework to examine the functional
implications of spike-frequency adaptation. Given the variety of intriguing
and prominent consequences such as interspike interval correlations and
transient synchronization following stimulus changes, one is compelled to
question if spike-frequency adaptation can be neglected when considering,
for example, the dynamic nature of the neural code (Shadlen & Newsome,
1998; Rieke, Warland, de Ruyter van Steveninck,& Bialek, 1997), the propa-
gation of synchrony (Abeles, 1991; Diesmann, Gewaltig, & Aertsen 1999), or
the function of spike-timing-based learning rules (Gerstner, Kempter, van
Hemmen, & Wagner, 1996; Song, Miller, & Abbott, 2000).

Appendix A: Neuron and Adaptation Model Parameters

The parameters of the 5DF neuron model given in equations 3.13 to 3.15
were determined by fitting to a single-compartment Hodgkin-Huxley (HH)
model of a pyramidal neuron under various conditions using NEURON
(Hines & Carnevale, 1997) as described in Muller (2003). The HH model
and parameters are taken from Destexhe, Contreras, and Steriade (1998).

The phenomenological mechanism for spike-frequency adaptation (SFA)
used here, the counterpart to the M-current and AHP-current mechanisms
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in the HH model, was inspired by (Dayan & Abbott, 2001), and similar
models have been proposed in (Koch, 1999) and Fuhrmann et al. (2002),
and more recently generalized in Brette and Gerstner (2005).

Additionally, a relative refractory period (RELREF) mechanism identical
to the SFA mechanism was added, but with a much shorter time con-
stant and a much larger conductance increase. Both the SFA and RELREF
mechanisms consist of an action potential (AP) activated and exponentially
decaying conductance coupled to an inhibiting reversal potential so that
the standard membrane equation takes the form:

cm
dv(t)

dt
= gl (El − v(t)) + ge (t)(Ee − v(t)) + gi (t)(Ei − v(t))

+ gs(t)(Es − v(t)) + gr (t)(Er − v(t)).

If v exceeds the threshold vth:
� v is reset to vreset.
� gs �→ gs + qs .
� gr �→ gr + qr .
� The time of threshold crossing is added to the list of spike times.

All conductances, gx(t), where x ∈ {s, r, e, i} are governed by an equation of
the form

dgx(t)
dt

= − 1
τx

gx(t).

The arrival of a spike at a synapse triggers gx �→ gx + qx for x ∈ {e, i}.
Poisson processes were used to supply spike trains to the 1000 excitatory
and 250 inhibitory synapses, where Poisson rates in the range 3 to 20 Hz
were used as described in the text for each specific simulation. The synaptic
model and parameters were directly transferred from the HH models, while
the remaining parameters, as determined by fits to the HH model, are given
in Table 3.

Appendix B: Further Details on the Adiabatic Reduction

In this appendix, we give the mathematical steps that lead from equation
3.16 to 3.20 in a more detailed way.

For notational simplicity, we introduce the five-dimensional state
variable x = (v, ge , gi , gs, gr ). The indices 1, 2, 3, 4, 5 shall correspond to
v, e, i, s, r , as used in the definition of the neuron model in equations
3.13 to 3.15 (e.g., τ2 := τe ). The partial derivatives with respect to xµ are
denoted by ∂µ and with respect to time by ∂t . Furthermore, we define
P(x1, x2, x3, x4, x5) = 0 if one or more of the conductances x2, . . . , x5 is neg-
ative.
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Table 3: Neuron and Synapse Model Parameters Used for Simulations of the
Full System (5DF) Given by Equations 3.13 to 3.15.

Parameter Description Value

vth Threshold voltage −57 mV
vreset Reset voltage −70 mV
cm Membrane capacitance 289.5 pF
gl Membrane leak conductance 28.95 nS
El Membrane reversal potential −70 mV
qr RELREF quantal conductance increase 3214 nS
τr RELREF conductance decay time 1.97 ms
Er RELREF reversal potential −70 mV
qs SFA quantal conductance increase 14.48 nS
τs SFA conductance decay time 110 ms
Es SFA reversal potential −70 mV
Ee,i Reversal potential of excitatory and inhibitory 0 mV, −75 mV

synapses, respectively
qe,i Excitatory and inhibitory synaptic quantal 2 nS

conductance increase
τe,i Excitatory and inhibitory synaptic decay time 1.5 ms, 10.0 ms

The master equation governing the evolution of the probability density
P(x, t) may be formulated as a conservation equation:

∂t P(x, t) = −divJ (x, t) + δ(x1 − vreset)J1(vth, x2, x3, x4 − q4, x5 − q5, t).

(B.1)

The second term on the right-hand side of equation B.1 accounts for neurons
that cross the threshold surface x1 = vth at time t with the state variables
(vth, x2, x3, x4 − q4, x5 − q5) and are reinserted to (vr , x2, x3, x4, x5).

The probability current J (x, t) is determined by the underlying stochastic
differential equations 3.13 to 3.15. The components Jµ(x, t) for µ = 1, . . . , 5
consist of the current due to the drift terms, βµ(x), and for µ = 2, 3 of
additional currents due to the excitatory and inhibitory input Poisson spike
trains, respectively. The drift term for the membrane potential reads

β1(x) := 1
cm


 5∑

µ=2

xµ(Eµ − x1) + gl (El − x1)


 . (B.2)

For the conductances xµ with µ = 2, . . . , 5, the drift terms are:

βµ(x) = βµ(xµ) := − 1
τµ

xµ. (B.3)
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The components of the probability current for µ = 1, 4, 5 obey the equation

Jµ(x, t) = βµ(x)P(x, t). (B.4)

For the excitatory synaptic conductance x2, the component J2(x, t) is

J2(x, t) =β2(x)P(x, t)

+
∫ x2

0

[∫ ∞

0
W2(y2, y1, t)P(x1, y1, x3, . . . , x5)dy2

]
dy1

−
∫ x2

0

[∫ ∞

0
W2(y1, y2, t)P(x1, y2, x3, . . . , x5)dy2

]
dy1. (B.5)

The component J3(x, t) has a similar form with obvious modifications. Since
the synaptic input is modeled as a Poisson process, the transition rates
Wµ(y1, y2, t) for µ = 2, 3 may be written as

Wµ(y1, y2, t) = νµ(t)δ(y1 − (y2 + qµ)), (B.6)

given the presynaptic firing rates νµ(t). The diffusion approximation can
be obtained by a Kramers-Moyal expansion of the components J2 and J3

(Gardiner, 1985).

B.1 Integration. To obtain an equation for the marginal probability dis-
tribution, P(x4, x5, t), one integrates equation B.1 over x1, x2, x3. The integral
of the terms ∂µ Jµ(x, t) on the right-hand side in B.1 for µ = 2, 3 vanishes
due to the boundary condition that the probability current vanishes in the
limit xµ → 0 and xµ → ∞ for µ = 2, 3:∫ ∞

0
∂µ Jµ(x, t)dxµ = lim

xµ→∞ Jµ(x, t) − Jµ(x, t)
∣∣∣
xµ=0

= 0. (B.7)

The component J1(x, t) yields a nonvanishing contribution:∫ ∞

0

∫ ∞

0

(∫ vth

−∞
∂1 J1(x, t)dx1

)
dx2dx3

=
∫ ∞

0

∫ ∞

0
J1(vth, x2, . . . , x5, t)dx2dx3. (B.8)

The reinsertion term involves an integration over a delta distribution:∫ ∞

0

∫ ∞

0

(∫ vth

−∞
δ(x1 − vreset)J1(vth, x2, x3, x4 − q4, x5 − q5, t)dx1

)
dx2dx3

=
∫ ∞

0

∫ ∞

0
J1(vth, x2, x3, x4 − q4, x5 − q5, t)dx2dx3. (B.9)
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Integration of the left-hand side in equation B.1 results in:

∫ ∞

0

∫ ∞

0

∫ vth

−∞
(∂t P(x, t)) dx1dx2dx3 = ∂t P(x4, x5, t). (B.10)

Plugging these results into equation 3.16 yields:

∂t P(x4, x5, t) = −
∑

µ=4,5

∂µ

(
βµ(xµ)P(x4, x5, t)

)

+
∫ ∞

0

∫ ∞

0
J1(vth, x2, x3, x4 − q4, x5 − q5, t)dx2dx3

−
∫ ∞

0

∫ ∞

0
J1(vth, x2, . . . , x5)dx2dx3. (B.11)

Returning to the initial notation and using the definition for J1(x, t) =
β1(x, t)P(x, t) yields equation 3.20.

Appendix C: Inhomogeneous Renewal Processes

The proposed Markov models can be easily understood by analogy to in-
homogeneous renewal theory. We review some standard results thereof,
which define the renewal models used in the text.

Poisson and gamma renewal processes, both special cases of a renewal
process, are used extensively to model the spike train statistics of corti-
cal neurons (van Rossum, Bi, & Turrigiano, 2000; Song & Abbott, 2001;
Rudolph & Destexhe, 2003b; Shelley et al., 2002), and are treated in detail
in (Gerstner & Kistler, 2002) in sections 5.2, 5.3, 6.2.2, and 6.3.2. While the
treatment in section 6.2.2 is developed for spike response model neurons
with escape noise and in section 6.3.2 for populations of neurons satisfying
a few basic assumptions, it is not explicitly stated there that the analysis
is that of an arbitrary inhomogeneous renewal process, though it is men-
tioned in Gerstner (2001). We first reiterate this fact by producing the main
results of section 6.2.2 and 6.3.2 of Gerstner and Kistler (2002) using an
inhomogeneous generalization of the notation of Cox (1962), a classic ref-
erence work on homogeneous renewal theory. Second, we present a recipe
for efficiently generating spike trains of a general inhomogeneous renewal
process.

In what follows, by working exclusively with the inhomogeneous haz-
ard function, we avoid the pitfall of studies that erroneously assume an
intensity-rescaling transformation of a stationary gamma renewal process
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with parameter γ , or a yields an inhomogeneous gamma renewal process
with parameter γ , or a (Barbieri, Quirk, Frank, Wilson, & Brown, 2001;
Gazères, Borg-Graham, & Frégnac, 1998).

A renewal process is defined here to be inhomogeneous when its hazard
function takes the form ρ(τ, t), where τ denotes the age, and t denotes the
explicit dependence of the hazard function on time. The ensemble firing
rate3 at t, denoted by α(t), is the expectation value,

α(t) = 〈ρ(t)〉 =
∫ ∞

0
ρ(s, t) f −(s, t)ds, (C.1)

where f −(τ, t) denotes the probability density function (PDF) of times since
last renewal, also called the backward recurrence time in Cox (1962). The
PDF, f −(τ, t), can be determined by reasoning that the probability that the
system has an age in the interval (τ, τ + �τ ) is equal to the probability that
there is a renewal in the time interval (t − τ, t − τ + �τ ) and that the system
subsequently survives until t. This yields

f −(τ, t) = α(t − τ )F(τ, t − τ ), (C.2)

where F(�t, t) is the inhomogeneous survival function, representing the
probability that the system will survive for a time �t after t. Generalizing
equation 1.2.10 in Cox (1962) for the inhomogeneous case, we have

F(�t, t) = exp
(

−
∫ �t

0
ρ(s, t + s)ds

)
. (C.3)

Plugging equation C.2 into C.1 results in the equivalent of equations 6.44
and 6.45 of Gerstner and Kistler (2002).

A differential formulation of equations C.1 to C.3 is possible. First, note
that age increases with increasing t and thus

dτ

dt
= 1.

This suggests a transform of the age variable τ → τ ′ = t − τ , as in equation
6.46 of Gerstner and Kistler (2002). This new age variable, τ ′, is stationary
with the evolution of t. We define the stationary backward recurrence time
PDF as

f −
s (τ ′, t) := f −(t − τ ′, t).

3The ensemble firing rate is referred to as the population activity, A(t), in Gerstner and
Kistler, 2002.
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Thus,

d
dτ

f −
s (τ ′, t) = ∂

∂t
f −
s (τ ′, t)

= ∂

∂t
(α(τ ′)F(t − τ ′, τ ′)),

and differentiation of equation C.3 yields d
dtF(t − τ ′, τ ′) = F(t − τ ′, τ ′)ρ(t −

τ ′, t) whereby we have

d
dt

f −
s (τ ′, t) = −α(τ ′)F(t − τ ′, τ ′)ρ(t − τ ′, t)

d
dt

f −
s (τ ′, t) = − f −

s (τ ′, t)ρ(t − τ ′, t). (C.4)

This relation determines d
dt f −

s (τ ′, t) for τ ′ ∈ (−∞, t). Additionally, we need
to ensure that the normalization of f −

s (τ, t) is preserved, namely, that

∫ ∞

−∞

∂

∂t
f −
s (τ, t)dτ = 0. (C.5)

Splitting the integral into three regions of interest, we have

lim
�t→0+

[∫ t−�t

−∞

∂

∂t
f −
s (s, t)ds

+
∫ t+�t

t−�t

∂

∂t
f −
s (s, t)ds

+
∫ ∞

t+�t

∂

∂t
f −
s (s, t)ds

]
= 0.

Since f −
s (τ ′ > t, t) = 0, the third integral is zero. We then have

lim
�t→0+

∫ t+�t

t−�t

∂

∂t
f −
s (s, t)ds = −

∫ t

−∞

∂

∂t
f −
s (s, t)ds.

Since the contribution from equation C.4 in the integral on the left-hand
side is vanishing, we need to add an additional term to d

dt f −
s (τ, t), which is

zero for all τ �= t but which has a finite integral when integrating around t.
This can be achieved by addition of a δ-function term:

d
dt

f −
s (τ, t) → d

dt
f −
s (τ, t) − δ(τ − t)

∫ t

−∞

∂

∂t
f −
s (s, t)ds.
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Clearly the factor behind the δ-function is α(t). Thus, we have the final form,

d
dt

f −
s (τ ′, t) =

{− f −
s (τ ′, t)ρ(t − τ ′, t), τ ′ < t

0, τ ′ ≥ t

+α(t)δ(τ ′ − t), (C.6)

defined for τ ′ ∈ (−∞,∞). Equation C.6 expressed in terms of f −(τ, t) results
in the master equation,

∂

∂t
f −(τ, t) = − ∂

∂τ
f −(τ, t) − f −(τ, t)ρ(τ, t) + α(t)δ(τ ), (C.7)

defined for τ ∈ [0,∞). This is exactly equation 6.43 in Gerstner and Kistler
(2002). It is analogous to equation 2.9, but with reinsertion to τ = 0 after a
spike.

C.1 Numerical Solution of the Renewal Master Equation. As the re-
newal master equation C.7 is just a special case of the 1DM master equation,
it can be solved with the same numerical techniques as described in section
5.1. The content of the δ term in equation C.7 is that all probability lost
due to the death term (the second term on the rhs) is accumulated and
reinserted to the τ = 0 bin. Thus, we are spared the complication of treating
state-dependent reinsertion of probability, as was necessary for the 1DM
and 2DM master equations.

C.2 Generating Random Numbers of a General Hazard Function.
Random numbers with a general hazard function can be generated by the
thinning method as discussed in Devroye (1986) and summarized here. The
maximum of the hazard function, ρmax = maxτ,t(ρ(τ, t)), must be known.
Sequential event intervals are generated using a homogeneous Poisson
process with a rate of ρmax. The resulting spike train is then sequentially
thinned, given the event time t and time since last event τ , by the rule:

1. Generate a uniform random number, T, on [0, 1).

2. if ρ(τ, t)/ρmax > T, keep the event in the spike train; otherwise remove it.

The remaining event times are consistent with the prescribed hazard func-
tion.

For the case of random number generation for a GRP, evaluation of
ρ(τ, t) using equation 4.6 is numerically unstable for large τ and costly. An
implementation of the algorithm (Shea, 1988) for calculating the cumula-
tive hazard function of a gamma renewal process is available in pgamma.c

of the Mathlib of the R statistics environment (Ihaka & Gentleman, 1996)
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under the GNU Public License. Alternatively, the logarithm of the function
gsl_sf_gamma_inc_Q provided by the GNU Scientific Library can be used.
The hazard function can then be calculated by a simple discrete difference
calculation of the derivative. Time dependence can be introduced by giving
a time dependence to the parameters of the gamma distribution.
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