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Abstract

The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of
the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural
systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic
inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive
science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic
computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and
show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as
probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in
distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different
approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal
activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous
theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete
and continuous time. This provides a step towards closing the gap between abstract functional models of cortical
computation and more detailed models of networks of spiking neurons.
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Introduction

Attempts to understand the organization of computations in the

brain from the perspective of traditional, mostly deterministic,

models of computation, such as attractor neural networks or

Turing machines, have run into problems: Experimental data

suggests that neurons, synapses, and neural systems are inherently

stochastic [1], especially in vivo, and therefore seem less suitable for

implementing deterministic computations. This holds for ion

channels of neurons [2], synaptic release [3], neural response to

stimuli (trial-to-trial variability) [4,5], and perception [6]. In fact,

several experimental studies arrive at the conclusion that external

stimuli only modulate the highly stochastic spontaneous firing

activity of cortical networks of neurons [7,8]. Furthermore,

traditional models for neural computation have been challenged

by the fact that typical sensory data from the environment is often

noisy and ambiguous, hence requiring neural systems to take

uncertainty about external inputs into account. Therefore many

researchers have suggested that information processing in the

brain carries out probabilistic, rather than logical, inference for

making decisions and choosing actions [9–22]. Probabilistic

inference has emerged in the 1960’s [23], as a principled

mathematical framework for reasoning in the face of uncertainty

with regard to observations, knowledge, and causal relationships,

which is characteristic for real-world inference tasks. This

framework has become tremendously successful in real-world

applications of artificial intelligence and machine learning. A

typical computation that needs to be carried out for probabilistic

inference on a high-dimensional joint distribution p(z1, . . . ,
zl ,zlz1, . . . ,zK ) is the evaluation of the conditional distribution

p(z1, . . . ,zl jzlz1, . . . ,zK ) (or marginals thereof) over some vari-

ables of interest, say z1, . . . ,zl , given variables zlz1, . . . ,zK . In the

following, we will call the set of variables zlz1, . . . ,zK , which we

condition on, the observed variables and denote it by o.

Numerous studies in different areas of neuroscience and

cognitive science have suggested that probabilistic inference could

explain a variety of computational processes taking place in neural

systems (see [10,11]). In models of perception the observed

variables o are interpreted as the sensory input to the central

nervous system (or its early representation by the firing response of

neurons, e.g., in the LGN in the case of vision), and the variables

z1, . . . ,zl model the interpretation of the sensory input, e.g., the

texture and position of objects in the case of vision, which might be

encoded in the response of neurons in various higher cortical areas

[15]. Furthermore, in models for motor control the observed

variables o often consist not only of sensory and proprioceptive

inputs to the brain, but also of specific goals and constraints for a

planned movement [24–26], whereas inference is carried out over
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the variables z1, . . . ,zl representing a motor plan or motor

commands to muscles. Recent publications show that human

reasoning and learning can also be cast into the form of

probabilistic inference problems [27–29]. In these models learning

of concepts, ranging from concrete to more abstract ones, is

interpreted as inference in lower and successively higher levels of

hierarchical probabilistic models, giving a consistent description of

inductive learning within and across domains of knowledge.

In spite of this active research on the functional level of neural

processing, it turned out to be surprisingly hard to relate the

computational machinery required for probabilistic inference to

experimental data on neurons, synapses, and neural systems.

There are mainly two different approaches for implementing the

computational machinery for probabilistic inference in ‘‘neural

hardware’’. The first class of approaches builds on deterministic

methods for evaluating exactly or approximately the desired

conditional and/or marginal distributions, whereas the second

class relies on sampling from the probability distributions in

question. Multiple models in the class of deterministic approaches

implement algorithms from machine learning called message

passing or belief propagation [30–33]. By clever reordering of sum

and product operators occurring in the evaluation of the desired

probabilities, the total number of computation steps are drastically

reduced. The results of subcomputations are propagated as

"messages" or "beliefs" that are sent to other parts of the

computational network. Other deterministic approaches for

representing distributions and performing inference are probabi-

listic population code (PPC) models [34]. Although deterministic

approaches provide a theoretically sound hypothesis about how

complex computations can possibly be embedded in neural

networks and explain aspects of experimental data, it seems

difficult (though not impossible) to conciliate them with other

aspects of experimental evidence, such as stochasticity of spiking

neurons, spontaneous firing, trial-to-trial variability, and percep-

tual multistability.

Therefore other researchers (e.g., [16–18,35]) have proposed to

model computations in neural systems as probabilistic inference

based on a different class of algorithms, which requires stochastic,

rather than deterministic, computational units. This approach,

commonly referred to as sampling, focuses on drawing samples, i.e.,

concrete values for the random variables that are distributed

according to the desired probability distribution. Sampling can

naturally capture the effect of apparent stochasticity in neural

responses and seems to be furthermore consistent with multiple

experimental effects reported in cognitive science literature

[17,18]. On the conceptual side, it has proved to be difficult to

implement learning in message passing and PPC network models.

In contrast, following the lines of [36], the sampling approach

might be well suited to incorporate learning.

Previous network models that implement sampling in neural

networks are mostly based on a special sampling algorithm called

Gibbs (or general Metropolis-Hastings) sampling [9,17,18,37].

The dynamics that arise from this approach, the so-called Glauber

dynamics, however are only superficially similar to spiking neural

dynamics observed in experiments, rendering these models rather

abstract. Building on and extending previous models, we propose

here a family of network models, that can be shown to exactly

sample from any arbitrary member of a well-defined class of

probability distributions via their inherent network dynamics.

These dynamics incorporate refractory effects and finite durations

of postsynaptic potentials (PSPs), and are therefore more

biologically realistic than existing approaches. Formally speaking,

our model implements Markov chain Monte Carlo (MCMC)

sampling in a spiking neural network. In contrast to prior

approaches however, our model incorporates irreversible dynam-

ics (i.e., no detailed balance) allowing for finite time PSPs and

refractory mechanisms. Furthermore, we also present a continuous

time version of our network model. The resulting stochastic

dynamical system can be shown to sample from the correct

distribution. In general, continuous time models arguably provide

a higher amount of biological realism compared to discrete time

models.

The paper is structured in the following way. First we provide a

brief introduction to MCMC sampling. We then define the neural

network model whose neural activity samples from a given class of

probability distributions. The model will be first presented in

discrete time together with some illustrative simulations. An

extension of the model to networks of more detailed spiking

neuron models which feature a relative refractory mechanism is

presented. Furthermore, it is shown how the neural network model

can also be formulated in continuous time. Finally, as a concrete

simulation example we present a simple network model for

perceptual multistability.

Results

Recapitulation of MCMC sampling
In machine learning, sampling is often considered the ‘‘gold

standard’’ of inference methods, since, assuming that we can

sample from the distribution in question, and assuming enough

computational resources, any inference task can be carried out

with arbitrary precision (in contrast to some deterministic

approximate inference methods such as variational inference).

However sampling from an arbitrary distribution can be a difficult

problem in itself, as, e.g., many distributions can only be evaluated

modulo a global constant (the partition function). In order to

circumvent these problems, elaborate MCMC sampling tech-

niques have been developed in machine learning and statistics

[38]. MCMC algorithms are based on the following idea: instead

of producing an ad-hoc sample, a process that is heuristically

comparable to a global search over the whole state space of the

Author Summary

It is well-known that neurons communicate with short
electric pulses, called action potentials or spikes. But how
can spiking networks implement complex computations?
Attempts to relate spiking network activity to results of
deterministic computation steps, like the output bits of a
processor in a digital computer, are conflicting with
findings from cognitive science and neuroscience, the
latter indicating the neural spike output in identical
experiments changes from trial to trial, i.e., neurons are
‘‘unreliable’’. Therefore, it has been recently proposed that
neural activity should rather be regarded as samples from
an underlying probability distribution over many variables
which, e.g., represent a model of the external world
incorporating prior knowledge, memories as well as
sensory input. This hypothesis assumes that networks of
stochastically spiking neurons are able to emulate
powerful algorithms for reasoning in the face of uncer-
tainty, i.e., to carry out probabilistic inference. In this work
we propose a detailed neural network model that indeed
fulfills these computational requirements and we relate
the spiking dynamics of the network to concrete
probabilistic computations. Our model suggests that
neural systems are suitable to carry out probabilistic
inference by using stochastic, rather than deterministic,
computing elements.
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random variables, MCMC methods produce a new sample via a

‘‘local search’’ around a point in the state space that is already

(approximately) a sample from the distribution.

More formally, a Markov chain M (in discrete time) is defined

by a set S of states (we consider for discrete time only the case

where S has a finite size, denoted by jSj) together with a transition

operator T . The operator T is a conditional probability

distribution T(sjs’) over the next state s given a preceding state

s’. The Markov chain M is started in some initial state s(0), and

moves through a trajectory of states s(t) via iterated application of

the stochastic transition operator T . More precisely, if s(t{1) is

the state at time t{1, then the next state s(t) is drawn from the

conditional probability distribution T(sjs(t{1)). An important

theorem from probability theory (see, e.g., p. 232 in [39]) states

that if M is irreducible (i.e., any state in S can be reached from

any other state in S in finitely many steps with probability w0)

and aperiodic (i.e., its state transitions cannot be trapped in

deterministic cycles), then the probability p(s(t)~sjs(0)) converges

for t?? to a probability p(s) that does not depend on the initial

state s(0). This state distribution p is called the invariant

distribution of M. The irreducibility of M implies that it is the

only distribution over the states S that is invariant under its

transition operator T , i.e.

p(s)~
X
s’[S

T(sjs’):p(s’): ð1Þ

Thus, in order to carry out probabilistic inference for a given

distribution p, it suffices to construct an irreducible and aperiodic

Markov chain M that leaves p invariant, i.e., satisfies equation (1).

Then one can answer numerous probabilistic inference questions

regarding p without any numerical computations of probabilities.

Rather, one plugs in the observed values for some of the random

variables (RVs) and simply collects samples from the conditional

distribution over the other RVs of interest when the Markov chain

approaches its invariant distribution.

A convenient and popular method for the construction of an

operator T for a given distribution p is looking for operators T
that satisfy the following detailed balance condition,

T(sjs’):p(s’)~T(s’js):p(s) ð2Þ

for all s,s’[S. A Markov chain that satisfies (2) is said to be

reversible. In particular, the Gibbs and Metropolis-Hastings

algorithms employ reversible Markov chains. A very useful

property of (2) is that it implies the invariance property (1), and

this is in fact the standard method for proving (1). However, as our

approach makes use of irreversible Markov chains as explained

below, we will have to prove (1) directly.

Neural sampling
Let p(z1, . . . ,zK ) be some arbitrary joint distribution over K

binary variables z1, . . . ,zK that only takes on values w0. We will

show that under a certain computability assumption on p a network

N consisting of K spiking neurons n1, . . . ,nK can sample from p
using its inherent stochastic dynamics. More precisely, we show that

the stochastic firing activity of N can be viewed as a non-reversible

Markov chain that samples from the given probability distribution

p. If a subset o of the variables are observed, modelled as the

corresponding neurons being ‘‘clamped’’ to the observed values, the

remaining network samples from the conditional distribution of the

remaining variables given the observables. Hence, this approach

offers a quite natural implementation of probabilistic inference. It is

similar to sampling approaches which have already been applied

extensively, e.g., in Boltzmann machines, however our model is

more biologically realistic as it incorporates aspects of the inherent

temporal dynamics and spike-based communication of a network of

spiking neurons. We call this approach neural sampling in the

remainder of the paper.

In order to enable a network N of spiking neurons to sample

from a distribution p(z1, . . . ,zK ) of binary variables zk, one needs

to specify how an assignment (z1, . . . ,zK )[f0,1gK
of values to

these binary variables can be represented by the spiking activity of

the network N and vice versa. A spike, or action potential, of a

biological neuron nk has a short duration of roughly 1 ms. But the

effect of such spike, both on the neuron nk itself (in the form of

refractory processes) and on the membrane potential of other

neurons (in the form of postsynaptic potentials) lasts substantially

longer, on the order of 5 ms to 100 ms. In order to capture this

temporally extended effect of each spike, we fix some parameter t
that models the average duration of these temporally extended

processes caused by a spike. We say that a binary vector

(z1, . . . ,zK ) is represented by the firing activity of the network

N at time t for k~1, . . . ,K iff:

zk(t)~1unk has fired within the time interval (t{t, t�: ð3Þ

In other words, any spike of neuron nk sets the value of the

associated binary variable zk to 1 for a duration of length t.

An obvious consequence of this definition is that the binary

vector (z1, . . . ,zK ) that is defined by the activity of N at time t

does not fully capture the internal state of this stochastic system.

Rather, one needs to take into account additional non-binary

variables (f1, . . . ,fK ), where the value of fk at time t specifies when

within the time interval (t{t, t� the neuron nk has fired (if it has

fired within this time interval, thereby causing zk~1 at time t).

The neural sampling process has the Markov property only with

regard to these more informative auxiliary variables f1, . . . ,fK .

Therefore our analysis of neural sampling will focus on the

temporal evolution of these auxiliary variables. We adopt the

convention that each spike of neuron nk sets the value of fk to its

maximal value t, from which it linearly decays back to 0 during

the subsequent time interval of length t.

For the construction of the sampling network N , we assume

that the membrane potential uk(t) of neuron nk at time t equals

the log-odds of the corresponding variable zk to be active, and

refer to this property as neural computability condition:

uk(t)~ log
p(zk~1jz\k)

p(zk~0jz\k)
, ð4Þ

where we write zk for zk(t) and z\k for the current values zi(t) of all

other variables zi with i=k. Under the assumption we make in

equation (4), i.e., that the neural membrane potential reflects the

log-odds of the corresponding variable zk, it is required that each

single neuron in the network can actually compute the right-hand

side of equation (4), i.e., that it fulfills the neural computability

condition.

A concrete class of probability distributions, that we will use as

an example in the remainder, are Boltzmann distributions:

p(z)~
1

Z
exp

X
i,j

1

2
Wijzizjz

X
i

bizi

 !
ð5Þ
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with arbitrary real valued parameters bi,Wij which satisfy

Wij~Wji and Wii~0 (the constant Z ensures the normalization

of p(z)). For the Boltzmann distribution, condition (4) is satisfied by

neurons nk with the standard membrane potential

uk(t)~bkz
XK

i~1

Wkizi(t), ð6Þ

where bk is the bias of neuron nk (which regulates its excitability),

Wki is the strength of the synaptic connection from neuron ni to

nk, and Wkizi(t) approximates the time course of the postsynaptic

potential in neuron nk caused by a firing of neuron ni with a

constant signal of duration t (i.e., a square pulse). As we will

describe below, spikes of neuron nk are evoked stochastically

depending on the current membrane potential uk and the auxiliary

variable fk.

The neural computability condition (4) links classes of

probability distributions to neuron and synapse models in a

network of spiking neurons. As shown above, Boltzmann

distributions satisfy the condition if one considers point neuron

models which compute a linear weighted sum of the presynaptic

inputs. The class of distributions can be extended to include more

complex distributions using a method proposed in [40] which is

based on the following idea. Neuron nk representing the variable

zk is not directly influenced by the activities z\k of the presynaptic

neurons, but via intermediate nonlinear preprocessing elements.

This preprocessing might be implemented by dendrites or other

(inter-) neurons and is assumed to compute nonlinear combina-

tions of the presynaptic activities z\k (similar to a kernel). This

allows the membrane potential uk, and therefore the log-odds ratio

on the right-hand side of (4), to represent a more complex function

of the activities z\k, giving rise to more complex joint distributions

p(z). The concrete implementation of non-trivial directed and

undirected graphical models with the help of preprocessing

elements in the neural sampling framework is subject of current

research. For the examples given in this study, we focus on the

standard form of the membrane potential (6) of point neurons. As

shown below, these spiking network models can emulate any

Boltzmann machine (BM) [36].

A substantial amount of preceding studies has demonstrated

that BMs are very powerful, and that the application of suitable

learning algorithms for setting the weights Wij makes it possible

to learn and represent complex sensory processing tasks by such

distributions [37,41]. In applications in statistics and machine

learning using such Boltzmann distributions, sampling is typically

implemented by Gibbs sampling or more general reversible

MCMC methods. However, it is difficult to model some neural

processes, such as an absolute refractory period or a postsynaptic

potential (PSP) of fixed duration, using a reversible Markov

chain, but they are more conveniently modelled using an

irreversible one. As we wish to keep the computational power

of BMs and at the same time to augment the sampling procedure

with aspects of neural dynamics (such as PSPs with fixed

durations, refractory mechanisms) to increase biological realism,

we focus in the following on irreversible MCMC methods

(keeping in mind that this might not be the only possible way to

achieve these goals).

Neural sampling in discrete time
Here we describe neural dynamics in discrete time with an

absolute refractory period t. We interpret one step of the Markov

chain as a time step dt in biological real time. The dynamics of the

variable fk, that describes the time course of the effect of a spike of

neuron nk, are defined in the following way. fk is set to the value t
when neuron nk fires, and decays by 1 at each subsequent discrete

time step. The parameter t is chosen to be some integer, so that fk

decays back to 0 in exactly t time steps. The neuron can only spike

(with a probability that is a function of its current membrane

potential uk) if its variable fkƒ1. If however, fkw1, the neuron is

considered refractory and it cannot spike, but its fk is reduced by 1

per time step. To show that these simple dynamics do indeed

sample from the given distribution p(z), we proceed in the

following way. We define a joint distribution p(f,z) which has the

desired marginal distribution
P

f p(f,z)~p(z). Further we for-

malize the dynamics informally described above as a transition

operator T operating on the state vector (f,z). Finally, in the

Methods section, we show that p(f,z) is the unique invariant

distribution of this operator T , i.e., that the dynamics described by

T produce samples z from the desired distribution p(z). We refer

to sampling through networks with this stochastic spiking

mechanism as neural sampling with absolute refractory period due to

the persistent refractory process.

Given the distribution p(z) that we want to sample from, we

define the following joint distribution p(f,z) over the neural

variables:

p(f,z) :~p(fjz):p(z) with p(fjz) :~ P
K

k~1
p(fkjzk)

where p(fkjzk) :~

t{1 for zk~1 ^ fkw0

1 for zk~0 ^ fk~0

0 otherwise:

8><
>:

ð7Þ

This definition of p(fkjzk) simply expresses that if zk~1, then

the auxiliary variable fk can assume any value in f1,2, . . . ,tg with

equal probability. On the other hand fk necessarily assumes the

value 0 if zk~0 (i.e., when the neuron is in its resting state).

The state transition operator T can be defined in a transparent

manner as a composition of K transition operators, T~

T10 . . . 0TK , where Tk only updates the variables fk and zk of

neuron nk, i.e., the neurons are updated sequentially in the same

order (this severe restriction will become obsolete in the case of

continuous time discussed below). We define the composition as

(Tk0Tl)(:)~(Tk(Tl(:)), i.e., Tl is applied prior to Tk. The new

values of fk and zk only depend on the previous value f’k and on

the current membrane potential uk(z\k). The interesting dynamics

take place in the variable fk. They are illustrated in Figure 1 where

the arrows represent transition probabilities greater than 0.

If the neuron nk is not refractory, i.e., f’kƒ1, it can spike (i.e., a

transition from f’kƒ1 to fk~t) with probability

Tk(fk~tjf’k,z\k)~s(uk{ log t), ð8Þ

where s(x)~(1ze{x){1 is the standard sigmoidal activation

function and the log denotes the natural logarithm. The term uk is

the current membrane potential, which depends on the current

values of the variables zi for i=k. The term log t in (8) reflects the

granularity of a chosen discrete time scale. If it is very fine (say one

step equals one microsecond), then t is large, and the firing

probability at each specific discrete time step is therefore reduced.

If the neuron in a state with f’kƒ1 does not spike, fk relaxes into

the resting state fk~0 corresponding to a non-refractory neuron.

If the neuron is in a refractory state, i.e., f’kw1, its new variable

fk assumes deterministically the next lower value fk~f’k{1,

reflecting the inherent temporal process:

Neural Dynamics as Sampling
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Tk(fk~f’k{1jfk’,z\k)~1: ð9Þ

After the transition of the auxiliary variable fk, the binary

variable zk is deterministically set to a consistent state, i.e., zk~1 if

fk§1 and zk~0 if fk~0.

It can be shown that each of these stochastic state transition

operators Tk leaves the given distribution p invariant, i.e., satisfies

equation (1). This implies that any composition or mixture of these

operators Tk also leaves p invariant, see, e.g., [38]. In particular,

the composition T~T10 . . . 0TK of these operators Tk leaves p
invariant, which has a quite natural interpretation as firing

dynamics of the spiking neural network N : At each discrete time

step the variables fk,zk are updated for all neurons nk, where the

update of fk,zk takes preceding updates for fi,zi with iwk into

account. Alternatively, one could also choose at each discrete time

step a different order for updates according to [38]. The

assumption of a well-regulated updating policy will be overcome

in the continuous-time limit, i.e., in case where the neural

dynamics are described as a Markov jump process. In the methods

section we prove the following central theorem:

Theorem 1. p(f,z) is the unique invariant distribution of operator T ,

i.e., T is aperiodic and irreducible and satisfies

p(f,z)~
X
z’,z’

T(f,zjf0 ,z0 ):p(f
0
,z
0
): ð10Þ

The proof of this Theorem is provided by Lemmata 1 – 3 in the

Methods section. The statement that T (which is composed of the

operators Tk) is irreducible and aperiodic ensures that p is the

unique invariant distribution of the Markov chain defined by T , i.e.,

that irrespective of the initial network state the successive

application of T explores the whole state space in a non-periodic

manner.

This theorem guarantees that after a sufficient ‘‘burn-in’’ time

(more precisely in the limit of an infinite ‘‘burn-in’’ time), the

dynamics of the network, which are given by the transition

operator T , produce samples from the distribution p(f,z). As by

construction
P

f p(f,z)~p(z), the Markov chain provides samples

from the given distribution p(z). Furthermore, the network N can

carry out probabilistic inference for this distribution. For example,

N can be used to sample from the posterior distribution

p(z1 . . . ,zl jzlz1, . . . ,zK ) over z1 . . . ,zl given zlz1, . . . ,zK . One

just needs to clamp those neurons nlz1, . . . ,nK to the correspond-

ing observed values. This could be implemented by injecting a

strong positive (negative) current into the units with zj~1 (zj~0).

Then, as soon as the stochastic dynamics ofN has converged to its

invariant distribution, the averaged firing rate of neuron n1 is

proportional to the following desired marginal probability

p(z1~1jzlz1, . . . ,zK )~
X

z2,...,zl

p(z1~1,z2, . . . ,zl jzlz1, . . . ,zK ):

In a biological neural system this result of probabilistic inference

could for example be read out by an integrator neuron that counts

spikes from this neuron n1 within a behaviorally relevant time

window of a few hundred milliseconds, similarly as the

experimentally reported integrator neurons in area LIP of monkey

cortex [20,21]. Another readout neuron that receives spike input

from nk could at the same time estimate p(zk~1jzlz1, . . . ,zK ) for

another RV zk. But valuable information for probabilistic

inference is not only provided by firing rates or spike counts, but

also by spike correlations of the neurons n1, . . . ,nl in N . For

example, the probability p(z1~1,z2~1jzlz1, . . . ,zK ) can be

estimated by a readout neuron that responds to superpositions of

EPSPs caused by near-coincident firing of neurons n1 and n2

within a time interval of length t. Thus, a large number of

different probabilistic inferences can be carried out efficiently in

parallel by readout neurons that receive spike input from different

subsets of neurons in the network N .

Variation of the discrete time model with a relative

refractory mechanism. For the previously described simple

neuron model, the refractory process was assumed to last for t
time steps, exactly as long as the postsynaptic potentials caused by

each spike. In this section we relax this assumption by introducing

a more complex and biologically more realistic neuron model,

where the duration of the refractory process is decoupled from the

duration t of a postsynaptic potential. Thus, this model can for

example also fire bursts of spikes with an interspike interval vt.

The introduction of this more complex neuron model comes at the

price that one can no longer prove that a network of such neurons

samples from the desired distribution p. Nevertheless, if the

sigmoidal activation function s is replaced by a different activation

function f , one can still prove that the sampling is ‘‘locally

correct’’, as specified in equation (12) below. Furthermore, our

computer simulations suggest that also globally the error

introduced by the more complex neuron model is not

functionally significant, i.e. that statistical dependencies between

the RVs z are still faithfully captured.

The neuron model with a relative refractory period is defined in

the following way. Consider some arbitrary refractory function

g : ½0, . . . ,t�?R with g(t)~0, g(0)~1, and g(l)§0 for

l~1, . . . ,t{1. The idea is that g(fk) models the readiness of

the neuron to fire in its state fk. This readiness has value 0 when

the neuron has fired at the preceding time step (i.e., fk~t), and

assumes the resting state 1 when fk has dropped to 0. In between,

the readiness may take on any non-negative value according to the

function g(fk). The function g does not need to be monotonic,

allowing for example that it increases to high values in between,

yielding a preferred interspike interval of a oscillatory neuron. The

Figure 1. Neuron model with absolute refractory mechanism.
The figure shows a schematic of the transition operator Tk for the
internal state variable fk of a spiking neuron nk with an absolute
refractory period. The neuron can fire in the resting state fk~0 and in
the last refractory state fk~1.
doi:10.1371/journal.pcbi.1002211.g001
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firing probability of neuron nk in state fk is given by g(fk):f (uk),
where f (uk) is an appropriate function of the membrane potential

as described below. Thus this function g is closely related to the

function g (called afterpotential) in the spike response model [5] as

well as to the self-excitation kernel in Generalized Linear Models

[42]. In general, different neurons in the network may have

different refractory profiles, which can be modeled by a different

refractory function for each neuron nk. However for the sake of

notational simplicity we assume a single refractory function in the

following.

In the presence of this refractory function g one needs to replace

the sigmoidal activation function s(uk{ log t) by a suitable

function f (uk) that satisfies the condition

exp(u)~f (u)

Pt
g~1 P

t
f~gz1 (1{g(f):f (u))

Pt
f~1 (1{g(f):f (u))

ð11Þ

for all real numbers u. This equation can be derived (see Methods

section Lemma 0) if one requires each neuron nk to represent the

correct distribution p(zkjz\k) over zk conditioned the variables z\k.

One can show that, for any g as above, there always exists a

continuous, monotonic function f which satisfies this equation (see

Lemma 0 in Methods). Unfortunately (11) cannot be solved

analytically for f in general. Hence, for simulations we

approximate the function f for a given g by numerically solving

(11) on a grid and interpolating between the grid points with a

constant function. Examples for several functions g and the

associated f are shown in Figure 2B and Figure 2C respectively.

Furthermore, spike trains emitted by single neurons with these

refractory functions g and the corresponding functions f are

shown in Figure 2D for the case of piecewise constant membrane

potentials. This figure indicates, that functions g that define a

shorter refractory effect lead to higher firing rates and more

irregular firing. It is worth noticing that the standard activation

function s(uk{ log t) is the solution of equation (11) for the

absolute refractory function, i.e., for g(0)~g(1)~1 and g(l)~0
for 1vlƒt.

The transition operator Tk is defined for this model in a very

similar way as before. However, for 1vf’kƒt, when the variable

f’k was deterministically reduced by 1 in the simpler model

(yielding fk~f’k{1), this reduction occurs now only with

probability 1{g(f’k):f (uk). With probability g(f’k):f (uk) the

operator Tk sets fk~t, modeling the firing of another spike of

neuron nk at this time point. The neural computability condition

(4) remains unchanged, e.g., uk~bkz
PK

i~1 Wkizi for a Boltz-

mann distribution. A schema of the stochastic dynamics of this

local state transition operator Tk(fkjf’k,z’\k) is shown in Figure 2A.

This transition operator Tk has the following properties. In

Lemma 0 in Methods it is proven that the unique invariant

distribution of Tk, denoted as q�k(fk,zkjf\k,z\k), gives rise to the

correct marginal distribution over zk, i.e.

Xt

fk~0

q�k(fk,zkjf\k,z\k)~p(zkjz\k):

This means that a neuron whose dynamics is described by Tk

samples from the correct distribution p(zkjz\k) if it receives a static

input from the other neurons in the network, i.e., as long as its

membrane potential uk is constant. Hence the ‘‘local’’ computa-

Figure 2. Neuron model with relative refractory mechanism. The figure shows the transition operator Tk , refractory functions g and
activation functions f for the neuron model with relative refractory mechanism. (A) Transition probabilities of the internal variable fk given by Tk . (B)
Three examples of possible refractory functions g. They assume value 0 when the neuron cannot spike, and return to value 1 (full readiness to fire
again) with different time courses. The value of g at intermediate time points regulates the current probability of firing of neuron nk (see A). The x-axis
is equivalent to the number of time steps since last spike (running from 0 to t from left to right). (C) Associated activation functions f according to
(11). (D) Spike trains produced by the resulting three different neuron models with (hypothetical) membrane potentials that jump at time ½0:25�s from
a constant low value to a constant high value. Black horizontal bars indicate spikes, and the active states zk~1 are indicated by gray shaded areas of
duration t:dt~20ms after each spike. It can be seen from this example that different refractory mechanisms give rise to different spiking dynamics.
doi:10.1371/journal.pcbi.1002211.g002
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tion performed by such neuron can be considered as correct. If

however, several neurons in the network change their states in a

short interval of time, the joint distribution over z is in general not

the desired one, i.e.,
P

f q�(f,z)=p(z), where q�(f,z) denotes the

invariant distribution of T~T10 . . . 0TK . In the Methods section,

we present simulation results that indicate that the error of the

approximation to the desired Boltzmann distributions introduced

by neural sampling with relative refractory mechanism is rather

minute. It is shown that the neural sampling approximation error

is orders of magnitudes below the one introduced by a fully

factorized distribution (which amounts to assuming correct

marginal distributions p(zk) and independent neurons).

To illustrate the sampling process with the relative refractory

mechanism, we examine a network of K~40 neurons. We aim to

sample from a Boltzmann distribution (5) with parameters Wij , bi

being randomly drawn from normal distributions. For the neuron

model, we use the relative refractory mechanism shown in the mid

row of Figure 2B. A detailed description of the simulation and the

parameters used is given in the Methods section. A spike pattern of

the resulting sampling network is shown in Figure 3A. The

network features a sparse, irregular spike response with average

firing rate of 13:9 Hz. For one neuron n26, indicated with orange

spikes, the internal dynamics are shown in Figure 3B. After each

action potential the neuron’s refractory function g(f26) drops to

zero and reduces the probability of spiking again in a short time

interval. The influence of the remaining network z\26 is

transmitted to neuron n26 via PSPs of duration t:dt~20 ms and

sums up to the fluctuating membrane potential u26. As reflected in

the highly variable membrane potential even this small network

exhibits rich interactions. To represent the correct distribution

p(z26jz\26) over z26 conditioned on z\26, the neuron n26

continuously adapts its instantaneous firing rate. To quantify the

precision with which the spiking network draws samples from the

target distribution (5), Figure 3C shows the joint distribution of 5
neurons. For comparison we accompany the distribution of

sampled network states with the result obtained from the standard

Gibbs sampling algorithm (considered as the ground truth). Since

the number of possible states z grows exponentially in the number

of neurons, we restrict ourselves for visualization purposes to the

distribution p(z24, . . . ,z28) of the gray shaded units and margin-

alize over the remaining network. The probabilities are estimated

from 107 samples, i.e., from 107 successive states z of the Markov

chain. Stochastic deviations of the estimated probabilities due to

the finite number of samples are quite small (typical errors

Dp(z)=
ffiffiffiffiffiffiffiffi
p(z)

p
&10{3) and are comparable to systematic deviations

due to the only locally correct computation of neurons with

relative refractory mechanism. In the Methods section, we present

further simulation results showing that the proposed networks

consisting of neurons with relative refractory mechanism approx-

imate the desired target distributions faithfully over a large range

of distribution parameters.

In order to illustrate that the proposed sampling networks

feature biologically quite realistic spiking dynamics, we present in

the Methods section several neural firing statistics (e.g., the inter-

spike interval histogram) of the network model. In general, the

statistics computed from the model match experimentally

observed statistics well. The proposed network models are based

on the assumption of rectangular-shaped, renewal PSPs. More

precisely, we define renewal (or non-additive) PSPs in the

following way. Renewal PSPs evoked by a single synapse do not

add up but are merely prolonged in their duration (according to

equation (6)); renewal PSPs elicited at different synapses

nevertheless add up in the normal way. In Methods we investigate

the impact of replacing the theoretically ideal rectangular-shaped,

renewal PSPs with biologically more realistic alpha-shaped,

additive PSPs. Simulation results suggest that the network model

with alpha-shaped PSPs does not capture the target distribution as

accurately as with the theoretically ideal PSP shapes, statistical

dependencies between the RVs z are however still approximated

reasonably well.

Figure 3. Sampling from a Boltzmann distribution by spiking neurons with relative refractory mechanism. (A) Spike raster of the
network. (B) Traces of internal state variables of a neuron (# 26, indicated by orange spikes in A). The rich interaction of the network gives rise to
rapidly changing membrane potentials and instantaneous firing rates. (C) Joint distribution of 5 neurons (gray shaded area in A) obtained by the
spiking neural network and Gibbs sampling from the same distribution. Active states zi~1 are indicated by a black dot, using one row for each
neuron ni , the columns list all 25~32 possible states (z24, . . . ,z28) of these 5 neurons. The tight match between both distributions suggests that the
spiking network represents the target probability distribution p with high accuracy.
doi:10.1371/journal.pcbi.1002211.g003
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Neural sampling in continuous time
The neural sampling model proposed above was formulated in

discrete time of step size dt, inspired by the discrete time nature of

MCMC techniques in statistics and machine learning as well as to

make simulations possible on digital computers. However, models

in continuous time (e.g., ordinary differential equations) are

arguably more natural and ‘‘realistic’’ descriptions of temporally

varying biological processes. This gives rise to the question

whether one can find a sensible limit of the discrete time model in

the limit dt?0, yielding a sampling network model in continuous

time. Another motivation for considering continuous time models

for neural sampling is the fact that many mathematical models for

recurrent networks are formulated in continuous time [5], and a

comparison to these existing models would be facilitated. Here we

propose a stochastically spiking neural network model in

continuous time, whose states still represent correct samples from

the desired probability distribution p(z) at any time t. These types

of models are usually referred to as Markov jump processes. It can

be shown that discretizing this continuous time model yields the

discrete time model defined earlier, which thus can be regarded as

a version suitable for simulations on a digital computer.

We define the continuous time model in the following way. Let

tl
k, for l~0,1, . . ., denote the firing times of neuron nk. The

refractory process of this neuron, in analogy to Figure 1 and

equation (8)-(9) for the case of discrete time, is described by the

following differential equation for the auxiliary variable fk, which

may now assume any nonnegative real number 0ƒfkƒ1:

d

dt
fk(t)~

{
1

t
for fkw0P

l d(t{tl
k) for fk~0:

8<
: ð12Þ

Here d(t{tl
k) denotes Dirac’s Delta centered at the spike time

tl
k. This differential equation describes the following simple

dynamics. The auxiliary variable fk(t) decays linearly with time

constant t when the neuron is refractory, i.e., fk(t)w0. Once fk(t)
arrives at its resting state 0 it remains there, corresponding to the

neuron being ready to spike again (more precisely, in order to

avoid point measures we set it to a random value in ½{2E,{E�, see

Methods). In the resting state, the neuron has the probability

density
1

t
exp (uk(t)) to fire at every time t. If it fires at tl

k, this

results in setting fk(tl
k)~1, which is formalized in equation (12) by

the sum of Dirac Delta’s
P

l d(t{tl
k). Here the current membrane

potential uk(t) at time t is defined as in the discrete time case, e.g.,

by uk~bkz
PK

i~1 Wkizi(t) for the case of a Boltzmann

distribution (5). The binary variable zk(t) is defined to be 1 if

fk(t)w0 and 0 if the neuron is in the resting state fk(t)~0.

Biologically, the term Wkizi(t) can again be interpreted as the

value at time t of a rectangular-shaped PSP (with a duration of t)

that neuron ni evokes in neuron nk. As the spikes are discrete

events in continuous time, the probability of two or more neurons

spiking at the same time is zero. This allows for updating all

neurons in parallel using a differential equation.

In analogy to the discrete time case, the neural network in

continuous time can be shown to sample from the desired

distribution p(z), i.e., p(z) is an invariant distribution of the

network dynamics defined above. However, to establish this fact,

one has to rely on a different mathematical framework. The

probability distribution pt(f) of the auxiliary variables

f1(t), . . . ,fK (t) as a function of time t, which describes the

evolution of the network, obeys a partial differential equation, the

so-called Differential-Chapman-Kolmogorov equation (see [43]):

Ltpt(f)~(Tpt)(f), ð13Þ

where the operator T , which captures the dynamics of the

network, is implicitly defined by the differential equations (12) and

the spiking probabilities. This operator T is the continuous time

equivalent to the transition operator T in the discrete time case.

The operator T consists here of two components. The drift term

captures the deterministic decay process of fk(t), stemming from

the term {1=t in equation (12). The jump term describes the non-

continuous aspects of the path fk(t) associated with ‘‘jumping’’

from fk(tl
k{dt)~0 to fk(tl

k)~1 at the time tl
k when the neuron

fires.

In the Methods section we prove that the resulting time

invariant distribution, i.e., the distribution that solves Ltpt(f)~0,

now denoted p(f) as it is not a function of time, gives rise to the

desired marginal distribution p(z) over z:

ð
dfd(z,fw0)p(f)~p(z), ð14Þ

where d(z,fw0)~(d(z1,fw0
1 ), . . . ,d(zK ,fw0

K )) and fw0
k ~1 if fkw0

and fw0
k ~0 otherwise. d(zk,fw0

k )~1 denotes Kronecker’s Delta

with d(zk,fw0
k )~1 if zk~fw0

k and d(zk,fw0
k )~0 otherwise. Thus,

the function d(z,fw0) simply reflects the definition that zk(t)~1 if

fk(t)w0 and 0 otherwise. For an explicit definition of T , a proof of

the above statement, and some additional comments see the

Methods section.

The neural samplers in discrete and continuous time are closely

related. The model in discrete time provides an increasingly more

precise description of the inherent spike dynamics when the

duration dt of the discrete time step is reduced, causing an increase

of t (such that t:dt is constant) and therefore a reduced firing

probability of each neuron at any discrete time step (see the term

log t in equation (8)). In the limit of dt approaching 0, the

probability that two or more neurons will fire at the same time

approaches 0, and the discrete time sampler becomes equal to the

continuous time system defined above, which updates all units in

parallel.

It is also possible to formulate a continuous time version of the

neural sampler based on neuron models with relative refractory

mechanisms. In the Methods section the resulting continuous time

neuron model with a relative refractory mechanism is defined.

Theoretical results similar to the discrete time case can be derived

for this sampler (see Lemmata 9 and 10 in Methods): It is shown

that each neuron ‘‘locally’’ performs the correct computation

under the assumption of static input from the remaining neurons.

However one can no longer prove in general that the global

network samples from the target distribution p.

Demonstration of probabilistic inference with recurrent
networks of spiking neurons in an application to
perceptual multistability

In the following we present a network model for perceptual

multistability based on the neural sampling framework introduced

above. This simulation study is aimed at showing that the

proposed network can indeed sample from a desired distribution

and also perform inference, i.e., sample from the correct

corresponding posterior distribution. It is not meant to be a

highly realistic or exhaustive model of perceptual multistability nor

of biologically plausible learning mechanisms. Such models would

naturally require considerably more modelling work.

Neural Dynamics as Sampling
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Perceptual multistability evoked by ambiguous sensory input,

such as a 2D drawing (e.g., Necker cube) that allows for different

consistent 3D interpretations, has become a frequently studied

perceptual phenomenon. The most important finding is that the

perceptual system of humans and nonhuman primates does not

produce a superposition of different possible percepts of an

ambiguous stimulus, but rather switches between different self-

consistent global percepts in a spontaneous manner. Binocular

rivalry, where different images are presented to the left and right

eye, has become a standard experimental paradigm for studying

this effect [44–47]. A typical pair of stimuli are the two images

shown in Figure 4A. Here the percepts of humans and nonhuman

primates switch (seemingly stochastically) between the two

presented orientations. [16–18] propose that several aspects of

experimental data on perceptual multistability can be explained if

one assumes that percepts correspond to samples from the

conditional distribution over interpretations (e.g., different 3D

shapes) given the visual input (e.g., the 2D drawing). Furthermore,

the experimentally observed fact that percepts tend to be stable on

the time scale of seconds suggests that perception can be

interpreted as probabilistic inference that is carried out by MCMC

sampling which produces successively correlated samples. In [18]

it is shown that this MCMC interpretation is also able to

qualitatively reproduce the experimentally observed distribution of

dominance durations, i.e., the distribution of time intervals

between perceptual switches. However, in lack of an adequate

model for sampling by a recurrent network of spiking neurons,

theses studies could describe this approach only on a rather

abstract level, and pointed out the open problem to relate this

algorithmic approach to neural processes. We have demonstrated

in a computer simulation that the previously described model for

neural sampling could in principle fill this gap, providing a

modelling framework that is on the one hand consistent with the

dynamics of networks of spiking neurons, and which can on the

other hand also be clearly understood from the perspective of

probabilistic inference through MCMC sampling.

In the following we model some essential aspects of an

experimental setup for binocular rivalry with grating stimuli (see

Figure 4A) in a recurrent network of spiking neurons with the

previously described relative refractory mechanism. We assigned

to each of the 217 neurons in the networkN a tuning curve Vk(Q),
centered around its preferred orientation �QQk as shown in Figure 4B.

The preferred orientations �QQk of the neurons were chosen to cover

the entire interval ½0,p) of possible orientations and were randomly

assigned to the neurons. The neurons were arranged on a

hexagonal grid as depicted in Figure 4F. Any two neurons with

distance ƒ8 were synaptically connected (neighboring units had

distance 1). We assume that these neurons represent neurons in

the visual system that have roughly the same or neighboring

receptive field, and that each neuron receives visual input from

either the left or the right eye. The network connections were

chosen such that neurons that have similar (very different)

preferred orientations are connected with positive (negative)

weights (for details see Methods section).

We examined the resulting distribution p(z) over the 217
dimensional network states. To provide an intuitive visualization

of these high dimensional network states z, we resort to a 2-

dimensional projection, the population vector of a state z (see

Methods for details of the applied population vector decoding

scheme). Only the endpoints of the population vectors are drawn

(as colored points) in Figure 4D,E. The orientation of the

population vector is assumed to correspond to the dominant

orientation of the percept, and its distance from the origin

encodes the strength of this percept. We also, somewhat

informally, call the strength of a percept its coherence and a

network state which represents a coherent percept a coherent

network state. A coherent network state hence results in a

population vector of large magnitude. Each direction of a

population vector is color coded in Figure 4D,E, using the color

code for directions shown on the right hand side of Figure 4F. In

Figure 4D the distribution p(z) of the network is illustrated by

sampling of the network for ½20�s, with samples z taken every

millisecond. Each dot equals a sampled network state z. In a

biological interpretation the spike response of the freely evolving

network reflects spontaneous activity, since no observations, i.e.,

no external input, was added to the system. Figure 4D shows that

the spontaneous activity of this simple network of spiking neurons

moves preferably through coherent network states for all possible

orientations due to the chosen recurrent network connections

(being positive for neurons with similar preferred orientation and

negative otherwise). This can directly be seen from the rare

occurrence of population vectors with small magnitude (vectors

close to the ‘‘center’’) in Figure 4D.

To study percepts elicited by ambiguous stimuli, where inputs

like in Figure 4A are shown simultaneously to the left and right eye

during a binocular rivalry experiment, we provided ambiguous

input to the network. Two cells with preferred orientation �QQk&450

and two cells with �QQk&1350 were clamped to 1. Additionally four

neurons with �QQk&00 resp. 900 were muted by clamping to 0. This

ambiguous input is incompatible with a coherent percept, as it

corresponds to two orthogonal orientations presented at the same

time. The resulting distribution over the state of the 209 remaining

neurons is shown for a time span of 20 s of simulated biological

time (with samples taken every millisecond) in Figure 4E. One

clearly sees that the network spends most of the time in network

states that correspond to one of the two simultaneously presented

input orientations (45o and 135o), and virtually no time on

orientations in between. This implements a sampling process from

a bimodal conditional distribution. The black line marks a 500 ms
trace of network states z around a perceptual switch: The network

remained in one mode of high probability – corresponding to one

percept – for some period of time, and then quickly traversed the

state space to another mode – corresponding to a different percept.

Three of the states z around this perceptual switch (z(t1), z(t2)
and z(t3) in Figure 4E) are explicitly shown in Figure 4F. Neurons

nk that fired during the preceding interval of 20 ms (marked in

gray in Figure 4G) are drawn in the respective color of their

preferred orientation. Inactive neurons are drawn in white, and

clamped neurons are marked by a black dot (.).

Figure 4G shows the action potentials of the 209 non-clamped

neurons during the same 500 ms trace around the perceptual

switch. One sees that the sampling process is expressed in this

neural network model by a sparse, asynchronous and irregular

spike response. It is worth mentioning that the average firing rate

when sampling from the posterior distribution is only slightly

higher than the average firing rate of spontaneous activity

(16:1 Hz and 15:4 Hz respectively), which is reminiscent of

related experimental data [7]. Thus on the basis of the overall

network activity it is indistinguishable whether the network carries

out an inference task or freely samples from its prior distribution. It

is furthermore notable, that a focus of the network activity on the

two orientations that are given by the external input can be

achieved in this model, in spite of the fact that only two of the 217
neurons were clamped for each of them. This numerical

relationship is reminiscent of standard data on the weak input

from LGN to V1 that is provided in the brain [48,49], and raises

the question whether the proposed neural sampling model could

provide a possible mechanism (under the modelling assumptions

Neural Dynamics as Sampling
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made above) for cortical processing of such numerically weak

external inputs.

The distribution of the resulting dominance durations, i.e., the

time between perceptual switches, for the previously described

setup with ambiguous input is shown for a continuous run of 104 s

in Figure 4C (a similar method as in [18] was used to measure

dominance durations, see Methods). This distribution can be

approximated quite well by a Gamma distribution, which also

provides a good fit to experimental data (see the discussion in

[18]). We expect that also other features of the more abstract

Figure 4. Modeling perceptual multistability as probabilistic inference with neural sampling. (A) Typical visual stimuli for the left and
right eye in binocular rivalry experiments. (B) Tuning curve of a neuron with preferred orientation �QQ. (C) Distribution of dominance durations in the
trained network under ambiguous input. The red curve shows the Gamma distribution with maximum likelihood on the data. (D) 2-dimensional
projection (via population vector) of the distribution p(z) encoded in the spiking network showing that it strongly favors coherent global states of
arbitrary orientation to incoherent ones (corresponding to population vectors of small magnitude). (E) 2-dimensional projection of the bimodal
posterior distribution under an ambiguous input consisting of two different orientations reminiscent of the stimuli shown in A. The black trace shows
the temporal evolution of the network state z for 500 ms around a perceptual switch. (F) Network states at 3 time points t1,t2,t3 marked in E.
Neurons that fired in the preceding 20 ms (see gray bar in G) are plotted in the color of their preferred orientation. Inactive neurons are shown in
white. While states z(t1) and z(t3) represent rather coherent orientations, z(t2) shows an incoherent state corresponding to a perceptual switch.
Clamped neurons (which the posterior is condition on) are marked by a black dot. (G) Spike raster of the unclamped neurons during a 500 ms epoch
marked by the black trace in E. Gray bars indicate the 20 ms time intervals that define the network states shown in F. Altogether this figure shows
that a theoretically rigorous probabilistic inference process can be carried out by a network of spiking neurons with a spike raster that is similar to
generic recorded data.
doi:10.1371/journal.pcbi.1002211.g004
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MCMC model for biological vision of [17,18], such as contextual

biases and traveling waves, will emerge in larger and more detailed

implementations of the MCMC approach through the proposed

neural sampling method in networks of spiking neurons.

Discussion

We have presented a spiking neural network that samples from

a given probability distribution via its inherent network dynamics.

In particular the network is able to carry out probabilistic

inference through sampling. The model, based on assumptions

about the underlying probability distribution (formalized by the

neural computability condition) as well as on certain assumptions

regarding the underlying MCMC model, provides one possible

neural implementation of the ‘‘inference-by-sampling paradigm’’

emerging in computational neuroscience.

During inference the observations (i.e., the variables which we

wish to condition on) are modeled in this study by clamping the

corresponding neurons by strong external input to the observed

binary value. Units which receive no input or input with vanishing

contrast (stimulus intensity) are treated as unobserved. Using this

admittedly quite simplistic model of the input, we observed in

simulations that our network model exhibits the following

property: The onset of a sensory stimulus reduces the variability

of the firing activity, which represents (after stimulus onset) a

conditional distribution, rather than the prior distribution (see the

difference between panels D and E of Figure 5. It is tempting to

compare these results to the experimental finding of reduced firing

rate variability after stimulus onset observed in several cortical

areas [50]. We wish to point out however, that a consistent

treatment of zero contrast stimuli requires more thorough

modelling efforts (e.g., by explicitly adding a random variable

for the stimulus intensity [35,51]), which is not the focus of the

presented work.

Virtually all high-level computational tasks that a brain has to

solve can be formalized as optimization problems, that take into

account a (possibly large) number of soft or hard constraints. In

typical applications of probabilistic inference in science and

engineering (see e.g. [52,53]) such constraints are encoded in

e.g., conditional probability tables or factors. In a biological setup

they could possibly be encoded through the synaptic weights of a

recurrent network of spiking neurons. The solution of such

optimizations problems in a probabilistic framework via sampling,

as implemented in our model, provides an alternative to

deterministic solutions, as traditionally implemented in neural

networks (see, e.g., [54] for the case of constraint satisfaction

problems). Whereas an attractor neural network converges to one

(possibly approximate) solution of the problem, a stochastic

network may alternate between different approximate solutions

and stay the longest at those approximate solutions that provide

the best fit. This might be advantageous, as given more time a

stochastic network can explore more of the state space and avoid

shallow local minima. Responses to ambiguous sensory stimuli

[44–47] might be interpreted as an optimization with soft

constraints. The interpretation of human thinking as sampling

process solving an inference task, recently proposed in cognitive

science [28,55,56], further emphasizes that considering neural

activity as an inferential process via sampling promises to be a

fruitful approach.

Our approach builds on, and extends, previous work where

recurrent networks of non-spiking stochastic neurons (commonly

considered in artificial neural networks) were shown to be able to

carry out probabilistic inference through Gibbs sampling [36]. In

[57] a first extension of this approach to a network of recurrently

connected spiking neurons had been presented. The dynamics of

the recurrently connected spiking neurons are described as

stepwise sampling from the posterior of a temporal Restricted

Boltzmann Machine (tRBM) by introducing a clever interpretation

of the temporal spike code as time varying parameters of a

multivariate Gaussian distribution. Drawing one sample from the

posterior of a RBM is, by construction, a trivial one-step task. In

contrast to our model, the model of [57] does not produce multiple

samples from a fixed posterior distribution, given the fixed input,

but produces exactly one sample consisting of the temporal

sequence of the hidden nodes, given a temporal input sequence.

Similar temporal models, sometimes called Bayesian filtering, also

underlie the important contributions of [58] and [32]. In [32]

every single neuron is described as hidden Markov Model (HMM)

with two states. Instead of drawing samples from the instantaneous

posterior distribution using stochastic spikes, [32] presents a

deterministic spike generation with the intention to convey the

analog probability value rather than discrete samples. The

approach presented here can be interpreted as a biologically

more realistic version of Gibbs sampling for a specific class of

Figure 5. Firing statistics of neural sampling networks. (A) Shown is the membrane potential histogram of a typical neuron during sampling.
The data is that of neuron n26 from the simulation shown in Figure 3 (the membrane potential and spike trace of n26 are highlighted in Figure 3). (B)
The plot shows the ISI distribution of a typical neuron (again n26 from Figure 3) during sampling. The distribution is roughly gamma-shaped,
reminiscent of experimentally observed ISI distributions. (C) A scatter plot of the coefficient of variation (CV) versus the average interspike interval (ISI)
of each neuron taken from the simulation shown in Figure 3. The value of neuron n26 from Figure 3 is marked by a cross. The simulated data is in
accordance with experimentally observed data.
doi:10.1371/journal.pcbi.1002211.g005
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probability distributions by taking into account a spike-based

communication, finite duration PSPs and refractory mechanisms.

Other implementations based on different distributions (e.g.,

directed graphical models) and different sampling methods (e.g.,

reversible MCMC methods) are of course conceivable and worth

exploring.

In a computer experiment (see Figure 4, we used our proposed

network to model aspects of biological vision as probabilistic

inference along the lines of argumentation put forward in [16–18].

Our model was chosen to be quite simplistic, just to demonstrate

that a number of experimental data on the dynamics of

spontaneous activity [51,59,60] and binocular rivalry [44–47]

can in principle be captured by this approach. The main point of

the modelling study is to show that rather realistic neural dynamics

can support computational functions rigorously formalized as

inference via sampling.

We have also presented a model of spiking dynamics in

continuous time that performs sampling from a given probability

distribution. Although computer simulations of biological networks

of neurons often actually use discrete time, it is desirable to also

have a sound approach for understanding and describing the

network sampling dynamics in continuous time, as the latter is

arguable a natural framework for describing temporal processes in

biology. Furthermore comparison to many existing continuous

time neuron and network models of neurons is facilitated.

We have made various simplifying assumption regarding neural

processes, e.g., simple symbolic postsynaptic potentials in the form

of step-functions (reminiscent of plateau potentials caused by

dendritic NMDA spikes [61]). More accurate models for neurons

have to integrate a multitude of time constants that represent

different temporal processes on the physical, molecular, and

genetic level. Hence the open problem arises, to which extent this

multitude of time constants and other complex dynamics can be

integrated into theoretical models of neural sampling. We have

gone one first step in this direction by showing that in computer

simulations the two temporal processes that we have considered

(refractory processes and postsynaptic potentials) can approxi-

mately be decoupled. Furthermore, we have presented simulation

results suggesting that more realistic alpha-shaped, additive EPSPs

are compatible with the functionality of the proposed network

model.

Finally, we want to point out that the prospect of using networks

of spiking neurons for probabilistic inference via sampling suggests

new applications for energy-efficient spike-based and massively

parallel electronic hardware that is currently under development

[62,63].

Methods

We first provide details and proofs for the neural sampling

models, followed by details for the computer simulations. Then we

investigate typical firing statistics of individual neurons during

neural sampling and examine the approximation quality of neural

sampling with different neuron and synapse models.

Mathematical details
Notation. To keep the derivations in a compact form, we

introduce the following notations. We define the function fw0
k of

fk to be 1 if fkw0 and 0 otherwise. Analogously we define

fw0
\k ~(fw0

1 , . . . ,fw0
k{1,fw0

kz1, . . . ,fw0
K ). Let d(:,:) denote Kronecker’s

Delta, i.e., d(x,y)~1 if x~y and 0 whereas d(:) denotes Dirac’s

Delta, i.e.,

ð
f (x)d(x)dx~f (0). Furthermore xI (x) is the

indicator function of the set I , i.e., xI (x)~1 if x[I and xI (x)~0
if x=[I .

Details to neural sampling with absolute refractory

period in discrete time. The following Lemmata 1 – 3

provide a proof of Theorem 1. For completeness we begin this

paragraph with a recapitulation of the definitions stated in Results.

We then identify some central properties of the joint probability

distribution p(f,z) and proof that the proposed network samples

from the desired invariant distribution.

For a given distribution p(z) over the binary variables z[f0,1gK

with Vz[f0,1gK
p(z)=0, the joint distribution over (f,z) with

f[f0,1, . . . ,tgK
is defined in the following way (see equation 7):

p(fkjzk) :~

t{1 for zk~1 ^ fkw0

1 for zk~0 ^ fk~0

0 otherwise

8>><
>>:

p(fjz) :~ P
K

k~1
p(fkjzk)

p(f,z) :~p(fjz)p(z):

The assumption p(z)=0 for all z is required to show the

irreducibility of the Markov chain, a prerequisite to ensure the

uniqueness of the invariant distribution of the MCMC dynamics.

Furthermore, for the given distribution p(z) we define the

functions uk : f0,1gK{1?R for k[f1, . . . ,Kg which map

z\k.uk(z\k):

uk(z\k) :~logit(p(zk~1jz\k))~ log
p(zk~1jz\k)

p(zk~0jz\k)
:

Instead of uk(z\k) we simply write uk in the following.

Lemma 1. The distribution p(f,z) has conditional distributions of the

following form:

p(fkjf\k,z\k)~p(fkjz\k)~

s(uk)

t
for fkw0

1{s(uk) otherwise

8<
:

p(zkjf,z\k)~p(zkjfk)~

1 for fkw0 ^ zk~1

1 for fk~0 ^ zk~0

0 otherwise:

8>><
>>:

These results can also be written more compactly in the following form:

p(fkjz\k)~s(uk)xf1,...,tg(fk)
1

t
z(1{s(uk))d(fk,0) and p(zkjfk)~

d(zk,fw0
k ).

Proof. Here we use the fact that the logistic function s is the

inverse of the logit function, i.e., p(zk~1jz\k)~s(uk).

p(fkjf\k,z\k)~
X1

zk~0

p(f,z)

p(f\k,z\k)
~
X1

zk~0

p(f,z)

p(f\kjz\k)p(z\k)

~
X1

zk~0

Pl=k p(fl jzl)ð Þp(fkjzk)p(z)

Pl=k p(fl jzl)ð Þp(z\k)

~
X1

zk~0

p(fkjzk)p(zkjz\k)~s(uk)xf1,...,tg(fk)
1

t
z(1{s(uk))d(fk,0):
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This also shows that fk is independent from f\k given z\k, i.e.,

p(fkjf\k,z\k)~p(fkjz\k). Now we show the second relation using

Bayes’ rule:

p(zkjf,z\k)~
p(fkjf\k,z)

p(fkjf\k,z\k)
p(zkjf\k,z\k)

~
zkxf1,...,tg(fk)

1

t
z(1{zk)d(fk,0)

s(uk)xf1,...,tg(fk)
1

t
z(1{s(uk))d(fk,0)

p(zkjz\k)

~
zk for fkw0

1{zk for fk~0

(

~d(zk,fw0
k ):

In order to facilitate the verification of the next two Lemmata, we

first restate the definition of the operators Tk in a more concise way:

T :~T10 . . . 0TK

Tk(f,zjf’,z’) :~Tk(fk,zkjf’,z’)d(f\k,f’\k)d(z\k,z’\k)

Tk(fk,zkjf’,z’) :~d(zk,fw0
k ):Tk(fkjf’k,z’\k)

Tk(fkjf’k,z’\k):~

s(u’k{ log t) for fk~t ^ f’k~0,1

1{s(u’k{logt) for fk~0 ^ f’k~0,1

1 for fk~f’k{1 ^ f’kw1

0 otherwise

8>>>>><
>>>>>:

,

where u’k : ~uk(z’\k)~logit(p(zk~1jz’\k)).

Lemma 2. For all k~1, . . . ,K the operator Tk(fkjf’k,z’\k) leaves the

conditional distribution p(fkjz’\k) invariant.

Proof. For sake of simplicity, denote Tk(fk~ijf’k~j,z’\k)~Tk
ij

for i,j[f0,1, . . . ,tg and p(fk~ijz’\k)~pi. We have to show

pi ~
! Pt

j~0 Tk
ij pj for i[f0,1, . . . ,tg.

First we show pt~
Pt

j~0 Tk
tjpj using p0~1{s(uk) and

p1~p2~ . . . ~pt~s(uk)t{1 (which results from Lemma 1):

Xt

j~0

Tk
tjpj~Tk

t0p0zTk
t1p1

~s(uk{ log t)(1{s(uk))zs(uk{ log t)s(uk)t{1

~s(uk{ log t)s(uk)t{1 t exp ({uk)z1ð Þ

~s(uk{ log t)s(uk)t{1(s(uk{ log t)){1~s(uk)t{1 ~
!

pt:

Here we used the definition of the logistic function

s(x)~(1z exp ({x)){1 and s(x)(1{s(x)){1~ exp (x).

Now we show p0~
Pt

j~0 Tk
0jpj :Xt

j~0

Tk
0jpj~Tk

00p0zTk
01p1

~(1{s(uk{ log t))(1{s(uk))z(1{s(uk{ log t))s(uk)t{1

~(1{s(uk{ log t))(1{s(uk)) 1z exp (uk)t{1
� �

~s({ukzlog t)(1{s(uk))(s({ukz log t)){1~1{s(uk) ~
!

p0:

Here we used 1{s(x)~s({x).
It is trivial to show pi~

Pt
j~0 Tk

ij pj for i~1, . . . ,t{1 asPt
j~0 Tk

ij pj~Tk
i,iz1piz1~piz1~pi. Here we used the facts that

Tk
i,iz1~1 and pi~piz1 for i~1, . . . ,t{1 by definition.

Lemma 3. For all k~1, . . . ,K the operator Tk(z,fjf’,z’) leaves the

distribution p(f,z) invariant.

Proof. We start from Lemma 2, which states that

Tk(fkjf’k,z’\k) leaves the conditional distribution p(fkjz’\k) invari-

ant:

X
f’k

Tk(fkjf’k,z’\k)p(f’kjz’\k)~p(fkjz’\k)

u
X

f’k ,z
\k
0 d(z\k,z’\k)Tk(fkjf’k,z’\k)p(f’kjz’\k)

~
X
z’
\k

d(z\k,z’\k)p(fkjz’\k)~p(fkjz\k)

u
X

f’k ,z
\k
0 d(zk,fw0

k )d(z\k,z’\k)Tk(fkjf’k,z’\k)p(f’kjz’\k)

~d(zk,fw0
k )p(fkjz\k)~p(zkjfk)p(fkjz\k)

u
X

f’k ,z’
d(zk,f

w0
k )d(z\k,z’\k)Tk(fkjf’k,z’\k)p(z’k,f’kjz’\k)~p(zk,fkjz\k)

u
X

f’k ,z’
d(zk,f

w0
k )d(z\k,z’\k)Tk(fkjf’k,z’\k)p(z’k,f’kjz’\k)p(z\kjz’\k)p(z’\k)

~p(zk,fkjz\k)p(f\kjz\k)p(z\k)

u
X

f’k ,z’
d(zk,fw0

k )d(z\k,z’\k)Tk(fkjf’k,z’\k)p(f’k,z\k,z’)~p(f,z)

u
X

f’,z’
Tk(zk,fkjf’,z’)d(f\k,f’\k)d(z\k,z’\k)p(z’,f’)~p(f,z)

u
X

f’,z’
Tk(z,fjf’,z’)p(z’,f’)~p(f,z):

Here we used the relations d(zk,fw0
k )~p(zkjfk) and

p(fk,zkjz\k)~p(zkjfk)p(fkjz\k) as well as p(fkjz\k)~p(fkjf\k,z\k)
which directly follow from the definitions of Tk(f,z,jf’,z’) and

p(f,z).
Finally, we can verify that the composed operator

T~T10 . . . 0TK samples from the given distribution p.

Theorem 1. p(f,z) is the unique invariant distribution of operator T .

Proof. As all Tk leave p(f,z) invariant, so does the concatenation

T~T10 . . . 0TK . To ensure that p(f,z) is the unique invariant

distribution, we have to show that T is irreducible and aperiodic.

T is aperiodic as the transition probabilities Tk
00~1{

s(uk{ log t)w0 and Tk
00v1 (this follows from the assumption

Vz p(z)=0 made above).

The operator T is also irreducible for the following reason. First

we see that from any state (f’,z’) in at most t steps we can get to

the zero-state (f,z)~02K (and stay there) with non-zero probabil-

ity, as Tk
i,iz1~1 for i~1, . . . ,t{1 and Tk

01~1{s(uk{ log t)w0.

Furthermore, it can be seen that any state (f̂f,ẑz) can be reached

from the zero-state (f,z)~02K in at most t steps since

Tk
N0~s(uk{ log t)w0 for any value of uk. Hence every final

state (f̂f,ẑz) can be reached from every starting state (f’,z’) in at

most 2t steps with non-vanishing probability.
Details to neural sampling with a relative refractory

period in discrete time. We augment the neuron model with a

relative refractory period described by a function g(fk). We first

ensure existence of the corresponding function f (uk). Based on

these functions we then introduce the transition operator T of the

Markov chain. This operator is shown to entail correct ‘‘local’’

computations.
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Lemma 4. Let (g1, . . . ,gt)[(Rz
0 )t be a tuple of non-negative real

numbers, with gt~0 and at least one element gi§1. This defines the

refractory function via g(fk) :~gfk
. There exists a unique C? function

f : R?(0,1) with the following property Vu[R:

f (u)

Pt
i~1 P

t
j~iz1 (1{gjf (u))

Pt
j~1 (1{gjf (u))

~ exp (u): ð15Þ

Furthermore, the function f has the property:

Vi[f1, . . . ,tg Vu[R : 0ƒgif (u)v1

Ai[f1, . . . ,tg Vu[R : 0vgif (u)v1:

Proof. Let gmax :~maxj[f1,...tggj ; we know that gmax§1. We

define the function F : (0,1=gmax)?Rz:

F (x) : ~x
Xt

i~1

1

Pi
j~1 (1{gjx)

 !

We can see that F is a positive C? function on (0,1=gmax).
Furthermore, F (x)=x is defined as a sum of functions of the form

1

Pi
j~1 (1{gjx)

. Each factor 1=(1{gjx) is positive and strictly

monotonous. Therefore, F is strictly monotonous on (0,1=gmax)
with the limits:

lim
x?0

F(x)~0

lim
x?1=gmax

F (x)~?:

Hence the equation F (x)~ exp (u) has a unique solution for x

called f (u)[(0,1=gmax) for all u[R. From applying the implicit

function theorem to F (x,u) :~F (x){ exp (u) it follows that f is

C?.

From here on, with the letter f we will denote the function

characterized by the above Lemma for the given tuple g (which

denotes the chosen refractory function).

Definition 1. Define g0~1. The transition operator Tk is defined in the

following way for all k~1, . . . ,K :

Tk(fk,zkjf’,z’) :~d(zk,fw0
k )Tk(fkjf’k,z’\k)

Tk(fkjf’k,z’\k) :~

gfk’
f (uk) for fk~t

1{gfk’
f (uk) for fk~fk’{1 ^ fk’w0

1{f (uk) for fk~0 ^ fk’~0

0 otherwise

8>>>>><
>>>>>:

,

with uk~uk(z’\k).

Lemma 5. For all k~1, . . . ,K the unique invariant distribution

q�(zk,fkjf’\k,z’\k) of the operator Tk(zk,fkjf’,z’) fulfillsP
fk

q�(zk,fkjf’\k,z’\k)~p(zkjz’\k). This means, for a constant configu-

ration z’\k, the operator Tk produces samples z�k from the correct conditional

distribution p(zkjz’\k).

Proof. We define:

q�(zk,fkjf0\k,z0\k) :~d(zk,fw0
k )q(fkjz0\k) :~

d(zk,fw0
k ) s(uk)h(fkjz0\k)z(1{s(uk))d(fk,0)
� �

,

where the function h(fkjz’\k) is defined as:

h(fkjz’\k) :~

Pt
j~fkz1 (1{gjf (uk))Pt

a~1 P
t
j~az1 (1{gjf (uk))

for fkw0

0 otherwise

8><
>: :

It is trivial to see that q� has the correct marginal distribution over

zk:

X
fk

q�(zk,fkjf’\k,z’\k)

~
X
fk

d(zk,fw0
k ) s(uk)h(fkjz’\k)z(1{s(uk))d(fk,0)
� �

~s(uk)zk (1{s(uk))1{zk ~p(zkjz’\k):

We now show that q� is the unique invariant distribution of Tk.

Because of the definition of Tk, we only have to show that

q�(fkjz’\k) is the unique invariant distribution of Tk(fkjf’k,z’\k).
We denote q�(fk~ijz’\k)~: qi and Tk(fk~ijf’k~j,z’\k)~: Tij ,

i.e., we have to show Vi[f0,1, . . . ,tg : qi~
P

j Tijqj .

It is trivial to show qi~
P

j Tijqj for 1ƒiƒt{1, as there is only

one non-vanishing element of transition operator, namely Ti,iz1:

Xt

j~0

Tijqj~Ti,iz1qiz1~(1{giz1f (uk))qiz1

~(1{giz1f (uk))h(fk~iz1jz\k)s(uk)

~h(fk~ijz\k)p(zk~1jz\k) ~
!

qi:

Here we used qi~h(fk~ijz\k)s(uk) for iw0 and the definition

of h(fkjz\k).

Now we show q0~
P

j T0jqj starting from equation (15) and

additionally using the relations exp (uk)~s(uk)=(1{s(uk)) and

q0~1{s(uk) as well as the definition of q1. We define for the sake

of simplicity y :~
Pt

a~1 P
t
j~az1 (1{gjf (uk)):

Xt

j~0

T0jqj~(1{f (uk))q0z(1{g1f (uk))q1

~(1{f (uk))(1{s(uk))z
s(uk)

y
P
t

j~1
(1{gjf (uk))

~(1{f (uk))(1{s(uk))zs(uk)f (uk) exp ({uk)

~(1{f (uk))(1{s(uk))zf (uk)(1{s(uk)) ~
!

q0:

We finally show qt~
P

j Ttjqj , using the definition of

qt~s(uk)h(fk~tjz\k)~
s(uk)

y
:
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Xt

i~0

Ttiqi~
Xt

i~1

gif (uk)qizf (uk)q0

~
Xt

i~1

gif (uk) P
t

j~iz1
(1{gj f (uk))

s(uk)

y
zf (uk)q0

~
s(uk)

y

Xt

i~1

gif (uk) P
t

j~iz1
(1{gj f (uk))z(1{g1f (uk)) P

t

j~2
(1{gjf (uk))

 !

~
s(uk)

y
{
Xt

i~1

(1{gif (uk)) P
t

j~iz1
(1{gjf (uk))

 

z
Xt

i~1

P
t

j~iz1
(1{gjf (uk))z P

t

j~1
(1{gj f (uk))

!

~
s(uk)

y
{
Xt

i~1

P
t

j~i
(1{gjf (uk))z

Xt

i~0

P
t

j~iz1
(1{gjf (uk))

 !

~
s(uk)

y
{
Xt{1

i~0

P
t

j~iz1
(1{gj f (uk))z

Xt

i~0

P
t

j~iz1
(1{gj f (uk))

 !

~
s(uk)

y
P
t

j~tz1
(1{gj f (uk))

� �
~

s(uk)

y
~

!
qt:

The argument that the transition operator Tk is aperiodic and

irreducible is similar to the one presented in Lemma 1.

Details to neural sampling with an absolute refractory

period in continuous time. In contrast to the discrete time

model we define the state space of fk to be Rz|½{2E,{E� for

Ew0, i.e., as the union of the positive real numbers and a small

interval ½{2E,{E�. We will define the sampling operator in such a

way that after neuron k was refractory for exactly its refractory

period t, its refractory variable fk is uniformly placed in the small

interval ½{2E,{E�, which represents now the resting state and

replaces fk~0. This avoids point measures (Dirac’s Delta) on the

value fk~0. This system is still exactly equivalent to the system

discussed in the main paper, as all spike-transition probabilities of

T for fkv0 are constant. Hence, it does not matter which values

fk assumes with respect to the spike mechanism during its non-

refractory period as long as fkv0.

Definition 2. For a given distribution p(z) over the binary

variables z[f0,1gK
with Vz[f0,1gK

p(z)=0, we define a joint

distribution over (f,z) with f[RK in the following way:

p(fkjzk) :~

1 for 1§fkw0 ^ zk~1

E{1 for fk[Ie ^ zk~0

0 otherwise

8>><
>>:

p(fjz) :~ P
K

k~1
p(fkjzk)

p(f,z) :~p(fjz)p(z),

where IE : ~½{2E,{E� is the refractory resting state interval. In

accordance with this definition we can also write

p(fkjzk)~zkx½0,1�(fk)z

(1{zk)E{1xIE (fk).

Lemma 6. The distribution p(f,z) has the following marginal distribution:

p(fkjf\k)~s(uk)x½0,1�(fk)z(1{s(uk))E{1xIE (fk)

~
s(uk) for 1§fkw0

(1{s(uk))E{1 for fk[IE

(
,

where uk :~uk(fw0
\k ).

Definition 3. For k[f1, . . . ,Kg and x[R the operator Tk
x is defined in

the following way for a function q : R?R:

(Tk
xq)(fk):~t{1(Lfk

(q(fk)xRz(fk)){d(fk)F(q)zexp(x)d(fk{1)

ð
IE

q(f’k)df’k

z xIE (fk) E{1F(q){exp(x)q(fk)
� �

):

where the functional F is defined as the one-sided limit from above at 0:

F (q) :~ lim
x?0z

q(x):

The operator T is defined in the following way for a probability distribution

q(f) on RK :

(Tq)(f) :~
XK

k~1

(Tk
uk

q(f1, . . . ,fk{1,:,fkz1,fK ))(fk),

where q(f1, . . . ,fk{1,:,fkz1,fK ) : R?R denotes the function q(f) of fk

where f\k is held constant and uk :~uk(fw0
\k ).

The transition operator T defines the following Fokker-Planck

equation for a time-dependent distribution qt(f):

Ltqt(f)~(Tqt)(f):

The jump and drift functions W k(fjf’) and Ak(f) associated to

the operator T are given by:

Wk(fjf’)~(Et){1xIE(fk)d(fk’)zd(fk{1)exp(uk(f’\k){logt)xIE(fk’)
� �

d(f\k{f’\k)

Ak(f)~{t{1xRz (fk)

[ (Tqt)(f)~{
XK

k~1

Lfk
(Ak(f)qt(f))z

XK

k~1

ð
W k(fjf’)p(f’){Wk(f’jf)p(f)
� �

df’:

Lemma 7. The operator Tk
uk

leaves the conditional distribution p(fkjf\k)
invariant with uk~uk(fw0

\k ), i.e.:

(Tk
uk

p(:jf\k))(fk)~0:

Proof. This is easy to proof using calculus and the relations

Lfk
xRz (fk)~d(fk) and F (p(:jf\k))~s(uk)~ exp (uk)(1{s(uk)).

Lemma 8. p(f) is an invariant distribution of T , i.e., it is a solution to the

invariant Fokker-Planck equation:

Ltp(f)~(Tp)(f)~0:

Proof. We observe that Tk(ap)~aTkp for a constant a[R (which

is not a function of fk). Hence:

Tk
uk

p(f1, . . . ,fk{1,:,fkz1, . . . ,fK )~Tk
uk

(p(:jf\k)p(f\k))

~p(f\k)(Tk
uk

p(:jf\k))

~0:

Neural Dynamics as Sampling
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The Lemma follows then from the definition of T :~
P

k Tk
uk

.

Details to neural sampling with a relative refractory

period in continuous time. As already assumed in the case of

the absolute refractory sampler in continuous time, we define the

state space of fk to be Rz|½{2E,{E� for Ew0.

Lemma 9. Let g be a continuous, non-negative function g : ½0,1�?Rz
0

with g(fk)~1 for fkƒ0. There exists a unique C? function f : R?Rz

with the following property Vu[R:

f (u)

ð 1

0

exp f (u)

ð fk

0

g(fk’)dfk’

� �
dfk~ exp (u): ð16Þ

Proof. We define the function F : Rz
0 ?R in the following way:

F (x) :~x

ð 1

0

exp xa(fk)ð Þdfk,

where a(r) :~
Ð r

0
g(fk’)dfk’. From g(fk)§0 we can follow that

a : ½0,1�?Rz
0 is non-negative. F (x) is differentiable with the

derivative:

F ’(x)~

ð 1

0

exp xa(fk)ð Þdfkzx

ð 1

0

exp xa(fk)ð Þa(fk)dfk

[F ’(x)w0:

Hence F is strictly monotonously increasing. Furthermore, the

following relations hold:

F (0)~0

F (x)§x:

Therefore the equation:

F (x)~ exp (u),

has exactly one solution f (u) with F (f (u))~ exp (u) in Rz. From

applying the implicit function theorem to F (x,u) :~F (x){
exp (u) it follows that f is C?.

Definition 4. For all k[f1, . . . ,Kg and x[R the operator Tk
x is defined

in the following way for a function q : R?R:

(Tk
x q)(fk) :~t{1(Lfk

(q(fk)xRz (fk)){d(fk)q(fk)

zf (x)d(fk{1)

ð
R

g(fk0 )q(fk0 )dfk0

z xIe (fk)e{1F (q){f (x)q(fk)g(fk)):

The transition operator Tk
x defines the following Fokker-Planck

equation for a time-dependent distribution qt(fk):

Ltqt(fk)~(Tk
x qt)(fk):

The jump and drift functions W k(fkjfk’) and Ak(fk) associated

to the operator Tk
x are given by:

W k(fkjfk’)~(et){1xIe (fk)d(fk’)zt{1d(fk{1)f (x)g(fk’)

Ak(fk)~{t{1xRz (fk)

[ (Tk
xqt)(fk)~{Lfk

(Ak(fk)qt(fk))z

ð
Wk(fkjfk’)p(fk’){Wk(fk’jfk)p(fk)
� �

dfk’:

Lemma 10. For all k~1, . . . ,K the invariant distribution q�(fkjz\k) of

the operator Tk
uk

fulfills
Ð

d(zk,fw0
k )q�(fkjz\k)dfk~p(zkjz\k).

Proof. We define the distribution q�(fkjz\k) as:

q�(fkjz\k)~(1{s(uk)) f (uk)x½0,1�(fk)exp(f (uk)a(fk))zE{1xIE (fk)
� �

,

where a(fk) :~
Ð 1

0
g(f’k)df’k. By applying the operator Tk

uk
to q�

one can verify that Tk
uk

q�~0 holds using the definition of f (uk)

given in (16). Furthermore we can compute the ratio:

ð 1

0

q�(fkjz\k)dfkð
IE

q�(fkjz\k)dfk

~
p(zk~1jz\k)

p(zk~0jz\k)

~f (uk)

ð 1

0

exp f (uk)

ð fk

0

g(fk’)dfk’

� �
dfk~ exp (uk):

Details to the computer simulations
The simulation results shown in Figure 2, Figure 3 and Figure 4

used the biologically more realistic neuron model with the relative

refractory mechanism. During all experiments the first second of

simulated time was discarded as burn-in time. The full list of

parameters defining the experimental setup is given in Table 1. All

occurring joint probability distributions are Boltzmann distribu-

tions of the form given in equation (5). Example Python [64]

scripts for neural sampling from Boltzmann distributions are

available on request and will be provided on our webpage. The

example code comprises networks with both absolute and relative

refractory mechanism. It requires standard Python packages only

and is readily executable.

Details to Figure 2: Neuron model with relative refractory

mechanism. The three refractory functions g(f) of panel (B) as

well as all other simulation parameters are listed in Table 1. Panel

(C) shows the corresponding functions f (u), which result from

numerically solving equation (11). The spike patterns in panel (D)

show the response of the neurons when the membrane potential is

low (uk~{1 for 0vtv250 ms) or high (uk~z2 for

250 msvtv500 ms). These membrane potentials encode

p(zk~1)~0:269 and p(zk~1)~0:881, respectively according to

(3) and (4). The binary state zk~1 is indicated by gray shaded

areas of duration t:dt~20 ms after each spike.

Details to Figure 3: Sampling from a Boltzmann

distribution by spiking neurons with relative refractory

mechanism. We examined the spike response of a network of

40 randomly connected neurons which sampled from a Boltzmann

distribution. The excitabilities bk as well as the synaptic weights

Wki(~Wik) were drawn from Gaussian distributions (with

diagonal elements Wii~0). For the full list of parameters please

refer to Table 1. One second of the arising spike pattern is shown

in panel (A). The average firing rate of the network was 13:9 Hz.

Neural Dynamics as Sampling
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To highlight the internal dynamics of the neuron model, the values

of the refractory function g(f26), the membrane potential u26 and

the instantaneous firing rate r26 of neuron n26 (indicated with red

spikes) are shown in panel (B). Here, the instantaneous firing rate

r26 is defined for the discrete time Markov chain as

r26~p(spike)=dt~T26(tjf26,z\26)=dt~g(f26):f (u26)=dt: ð17Þ

As stated before, the neuron model with relative refractory

mechanism gk(f) does not entail the correct overall invariant

distribution p(z). To estimate the impact of this approximation on

the joint network dynamics, we compared the distribution

p(z24, . . . ,z28) over five neurons (indicated by gray background in

A) in the spiking network with the correct distribution obtained from

Gibbs sampling. The probabilities were estimated from 107 samples.

A more quantitative analysis of the approximation quality of neural

sampling with a relative refractory mechanism is provided below.

Details to Figure 4: Modeling perceptual multistability as

probabilistic inference with neural sampling. We

demonstrate probabilistic inference and learning in a network of

orientation selective neurons. As a simple model we consider a

network of 217 neurons on a hexagonal grid as shown in panel (F).

Any two neurons with distance ƒ8 were synaptically connected

(neighboring units had distance 1). For the remaining parameters

of the network and neuron model please refer to Table 1. Each

neuron featured a p-periodic tuning curve as depicted in panel (B):

Vk(Q)~v0zC: exp k: cos 2(Q{�QQk)ð Þ{k½ � ð18Þ

Table 1. List of parameters of the computer simulations.

Description Variable Value Figure Comment

Simulation Time

Simulation step size dt ½1�ms 2–7 interpretation of an MCMC step

Burn-in time tburn ½1�s 2–7 before recording spikes

Simulation time tsim ½0:5�s 2

½104�s 3,5–7

½20�s 4 ½104�s for Figure 3C

Network

Number of neurons K 3 2 unconnected

40 3,5,6 randomly connected

217 4

10 7 100 networks

Connection radius 0 2

? 3,5–7

8 4

Recurrent weights Wki N (0,0:32) 3,5–7 from Gaussian distribution

Falling edge tz [20]ms 6,7 for realistic PSP shapes

Rising edge t{ [3]ms 6,7

Scaling factor l 20/17 6,7

Neuron Model

Number recovery steps t 20 2–7 PSP duration ~t:dt~½20�ms

Refractory function g(f)
4(1{f)z

1

2p
sin (8pf)

	 

2: normalized to f[½0,1�,

1{fz
1

2p
sin (2pf)

	 

2–7 ½x� :~ minf1, maxf0,xgg

1{2fz
1

2p
sin (4pf)

	 

2;,7

Excitability bk {1 or 2 2 defines membrane potential uk

N ({1:5,0:52) 3,5–7 from Gaussian distribution

0 4 initial value

Tuning Function, Training and Inference (Figure 4)

Peakedness k 3 4 measured: 1:78+0:15

Base sensitivity v0 0:05 4 measured: 0:017+0:009

Sensitivity contrast C 0:9 4 measured: 0:760+0:020

Training samples Ntrain 105 4

Decorrelation steps 20 4 for contrastive divergence

Learning rate g 10{4 4

Number of neurons clamped on/off 4=4 4

doi:10.1371/journal.pcbi.1002211.t001

Neural Dynamics as Sampling

PLoS Computational Biology | www.ploscompbiol.org 17 November 2011 | Volume 7 | Issue 11 | e1002211



with base sensitivity v0, contrast C, peakedness k and preferred

orientation �QQk. The preferred orientations �QQk of the neurons were

chosen to cover the entire interval ½0,p) of possible orientations

with equal spacing and were randomly assigned to the neurons.

For simplicity we did not incorporate the input dynamics in our

probabilistic model, but rather trained the network directly like a

fully visible Boltzmann machine. We used for this purpose a

standard Boltzmann machine learning rule known as contrastive

divergence [41,65]. This learning rule requires posterior samples ~zz,

i.e., network states under the influence of the present input, and

approximate prior samples z?, which reflect the probability

distribution of the network in the absence of stimuli. The update

rules for synaptic weights and neuronal excitabilities read:

DWki~gki
:(~zzk~zzi{z?kz?i )

Dbk~g:(~zzk{z?k)

gki~
g if nk and ni are connected

0 otherwise :

( ð19Þ

While more elaborate policies can speed up convergence, we

simply used a global learning rate g which was constant in time.

The values of Wki and bk were initialized at 0. We generated

binary training patterns in the following way:

1. A global orientation Q was drawn uniformly from ½0,p),

2. each neuron was independently set to be active with probability

p(zk~1)~Vk(Q),

3. the resulting network state ~zz was taken as posterior sample.

To obtain an approximate prior sample z? we let the network

run for a short time freely starting from (~ff,~zz). The variables ~zz were

also assumed to be observed with ~ffk* iid. uniformly in f1, . . . ,tg
if ~zzk~1 and ~ffk~0 otherwise. After evolving freely for 20 time

steps, the resulting network state z? was taken as approximate

prior sample and W and b were updated according to (19). This

process was repeated Ntrain~105 times. As a result, neurons with

similar preferred orientations featured excitatory synaptic connec-

tions (Wki~6:4:10{3+6:7:10{3 = mean + standard deviation

of weight distribution), those with dissimilar orientations main-

tained inhibitory synapses (Wki~{4:9:10{3+5:2:10{3). Here,

preferred orientations �QQi and �QQj are defined as similar if

Vi(�QQj){v0~Vj(�QQi){v0w0:5C, otherwise they are dissimilar.

Neuronal biases converged to bk~{0:08+0:03.

We illustrate the learned prior distribution p(z) of the network

through sampled states when the network evolved freely. As seen

in panel (D), the population vector – a 2-dimensional projection of

the high dimensional network state – typically reflected an

arbitrary, yet coherent, orientation (for the definition of the

population vector see below). Each dot represents a sampled

network state z.

To apply an ambiguous cue, we clamped 8 out of 217 neurons:

Two units with �QQk&p=4 and two with �QQk&3p=4 were set active,

two units with �QQk&0 and two with �QQk&p=2 were set inactive. This

led to a bimodal posterior distribution as shown in panel (E). The

sampling network represented this distribution by encoding either

global perception separately: The trace of network states z(t)
roamed in one mode for multiple steps before quickly crossing the

state space towards the opposite percept.

We define the population vector x of a network state z as a

function of the preferred orientations of all active units:

x~(x0,xp=4)~
XK

k~1

zk
:( cos 2~QQk, sin 2~QQk): ð20Þ

This definition of x is not based on the preferred orientations �QQk

which are used for generating external input to the network from a

given stimulus with orientation Q. It is rather based on the

preferred orientations ~QQk measured from the network response.

We used population vector decoding based on the measured

values ~QQk, as they are conceptually closer to experimentally

measurable preferred orientations, and this decoding hence does

not require knowledge of the (unobservable) �QQk. For every neuron

nk the preferred orientation ~QQk was measured in the following way.

We estimated a tuning curve ~VVk(Q) by a van-Mises fit (of the form

(18)) to data from stimulation trials in which neuron nk was not

clamped, i.e., where nk was only stimulated by recurrent input

(feedforward input was modeled by clamping 8 out of 217 neurons

as a function of stimulus orientation Q as before). Due to the

structured recurrent weights, the experimentally measured tuning

curves ~VVk(Q) were found to be reasonably close to the tuning

curves Vk(Q) used for external stimulation. ~QQk was set to the

preferred orientation of ~VVk(Q) (localization parameter of the van-

Mises fit). The measured values ~QQk turned out to be consistent with

the preferred orientations �QQk (�QQk{~QQk~6:10{4+8:3:10{3 aver-

aged over all K neurons). The mean and standard deviation of the

remaining parameter values v0, C and k of the fitted tuning curves
~VVk(Q) are listed in Table 1 next to the ones used for stimulation.

The population vector x was defined in (20) with the argument

2~QQk (instead of ~QQk) as orthogonal orientations should cancel each

other and neighborhood relations should be respected. For

example neurons with ~QQk~E and ~QQk~p{E contribute similarly

to the population vector for small e. But counter to intuition the

population vector of a state z with dominant orientation Qz will

point into direction Qx~2Qz. For visualization in panel (D) and (E)

we therefore rescaled the population vector: If (x0,xp=4).(rx,Qx)
in polar coordinates, then the dot is located at (rx,Qx=2) in accord

with intuition. The black semicircles equal jxj~rx~45.

The population vector (x0,xp=4)[R2 was also used for

measuring the dominance durations shown in panel (C). To this

R2 was divided into 3 areas: (a) xp=4v{35, (b) {35ƒxp=4ƒ35,

(c) 35vxp=4. We detected a perceptual switch when the network

state entered area (a) or (c) while the previous perception was (c) or

(a), respectively.

In panel (F) neurons nk with zk~1 are plotted with their

preferred orientation color code, inactive neurons are displayed in

white. Cells marked by a dot (.) were part of the observed

variables o. The three network states correspond to z(ti) with

t1~100 ms, t2~250 ms and t3~400 ms in the spike pattern in

panel (G). The spike pattern shows the response of the freely

evolving units around a perceptual switch during sampling from

the posterior distribution. The corresponding trace of the

population vector is drawn as black line in panel (E). The width

of the light-gray shaded areas in the spike pattern equals the PSP

duration t:dt, i.e., neurons that spiked in these intervals were

active in the corresponding state in (F).

Firing statistics of neural sampling networks
In previous sections it was shown that a spiking neural network

can draw samples from a given joint distribution which is in a well-

defined class of probability distributions (see the neural comput-

ability condition (4)). Here, we examine some statistics of

individual neurons in a sampling network which are commonly

Neural Dynamics as Sampling
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used to analyze experimental data from recordings. The spike

trains and membrane potential data are taken from the simulation

presented in Figure 3.

Figure 5A,B exemplarily show the distribution of the membrane

potential uk and the interspike interval (ISI) histogram of a single

neuron, namely neuron n26 which was already considered in

Figure 3B. The responses of other neurons yield qualitatively

similar statistics. The bell-shaped distribution of the membrane

potential is commonly observed in neurons embedded in an active

network [66]. The ISI histogram reflects the reduced spiking

probability immediately after an action potential due the

refractory mechanism. Interspike intervals larger than the

refractory time constant t:dt~20 ms roughly follow an exponen-

tial distribution. Similar ISI distributions were observed during in-

vivo recordings in awake, behaving monkeys [67].

Figure 5C shows a scatterplot of the coefficient of variation (CV)

of the ISIs versus the average ISI for each neuron in the network.

The neurons exhibited a variety of average firing rates between

3:5 Hz and 31:5 Hz. Most of the neurons responded in a highly

irregular manner with a CV &1. Neurons with high firing rates

had a slightly lower CV due to the increased influence of the

refractory mechanism The dashed line marks the CV of a Poisson

process, i.e., a memoryless spiking behavior. The CV of neuron

n26 is marked by a cross. The structure of this plot resembles, e.g.,

data from recordings in behaving macaque monkeys [68] (but note

the lower average firing rate).

Approximation quality of neural sampling with different
neuron and synapse models

The theory of the neuron model with absolute refractory

mechanism guarantees sampling form the correct distribution. In

contrast, the theory for the neuron model with a relative refractory

mechanism only shows that the sampling process is ‘‘locally

correct’’, i.e., that it would yield correct conditional distributions

p(zkjz\k) for each individual neuron if the state of the remaining

network z\k stayed constant. Therefore, the stationary distribution

of the sampling process with relative refractory mechanism only

provides an approximation to the target distribution. In the

following we examine the approximation quality and robustness of

sampling networks with different refractory mechanisms for target

Boltzmann distributions with parameters randomly drawn from

different distributions. Furthermore, we investigate the effect of

additive PSP shapes with more realistic time courses.

We generated target Boltzmann distributions with randomly

drawn weights Wki and biases (excitabilities) bk and computed the

similarity between these reference distributions and the corre-

sponding neural sampling approximations. The setup of these

simulations is the same as for the simulation presented in Figure 3.

As we aimed to compare the distribution q�(z) sampled by the

network with the exact Boltzmann distribution p(z), we reduced

the number of neurons per network to K~10. This resulted in a

state space of 210 possible network states z for which the

normalization constant for the target Boltzmann distribution

could be computed exactly. The weight matrix W was constraint

to be symmetric with vanishing diagonal. Off-diagonal elements

were drawn from zero-mean normal distributions with three

different standard deviations s~0:03, s~0:3 and s~3, whereas

the bk were sampled from the same distribution as in Figure 3. For

every value of the hyperparameter s we generated 100 random

distributions. For Boltzmann distributions with small weights

(s~0:03), the RVs are nearly independent, whereas distributions

with intermediate weights (s~0:3) show substantial statistical

dependencies between RVs. For very large weights (s~3), the

probability mass of the distributions is concentrated on very few

states (usually 90% on less than 10 out of the 210 states). Hence,

the range of the hyperparameter 0:03ƒsƒ3 considered here

covers a range a very different distributions.

The approximation quality of the sampled distribution was

measured in terms of the Kullback-Leibler divergence between the

target distribution p and the neural approximation q�

DKL(pjjq�)~
X

z

p(z) log
p(z)

q�(z)
: ð21Þ

We estimated q� from 107 samples for each simulation trial

using a Laplace estimator, i.e., we added a priori 1 to the number

of occurrences of each state z.

Table 2 shows the means and the standard deviations of the

Kullback-Leibler divergences between the target Boltzmann

distributions and the estimated approximations stemming from

neural sampling networks with three different neuron and synapse

models: the exact model with absolute refractory mechanism and

two models with different relative refractory mechanisms shown in

the bottom and middle row in Figure 2B. Additionally, as a

reference, we provide the (analytically calculated) Kullback-Leibler

divergences for fully factorized distributions, i.e., q�(z)~Pk q�(zk)
with correct marginals q�(zk)~p(zk) but independent variables

zi, zj for i=j.

The absolute refractory model provides the best results as we

expected due to the theoretical guarantee to sample from the

correct distribution (the non-zero Kullback-Leibler divergence is

caused by the estimation from a finite number of samples). The

models with relative refractory mechanism provide faithful

approximations for all values of the hyperparameter s considered

here. These relative refractory models are characterized by the

theory to be ‘‘locally correct’’ and turn out to be much more

Table 2. Approximation quality of networks with different refractory mechanisms.

s Absolute refractory Rel. late recovery Rel. moderate recovery Prod. of marginals

0.03 (3:10+0:18):10{4 (3:21+0:15):10{4 (3:33+0:17):10{4 (4:65+1:28):10{4

0.3 (2:98+0:19):10{4 (3:20+0:15):10{4 (3:58+0:3):10{4 (4:94+1:91):10{2

3.0 (1:32+0:45):10{4 (4:20+8:70):10{3 (1:00+1:82):10{2 (5:36+6:71):10{1

Mean and standard deviation of the Kullback-Leibler divergence DKL(pjjq�) between reference Boltzmann distributions p and neural sampling approximations q� for
three different neuron models (corresponding to columns) and three different values for the reference distribution hyperparameter s (corresponding to rows). The
parameter s controls the standard deviation of the weights of the reference distributions p(z). In case of very strong synaptic interactions (leading to sharply peaked
distributions, s~3) the approximation quality of the spiking network degrades, if the neurons feature a relative refractory mechanism. The data was computed from
100 randomly generated Boltzmann distributions and their neural approximations for each value of s.
doi:10.1371/journal.pcbi.1002211.t002
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accurate approximations than fully factorized distributions if

substantial statistical dependencies between the RVs are present

(i.e., s~0:3, s~3). As expected, a late recovery of the refractory

function g(f) is beneficial for the approximation quality of the

model as it is closer to an absolute refractory mechanism. Figure 6

shows the full histograms of the Kullback-Leibler divergences for

the intermediate weights group (s~0:3). Systematic deviations

due to the relative refractory mechanism are on the same order as

the effect of estimating from finite samples (as can be seen, e.g.,

from a comparison with the absolute refractory model which has

0 systematic error). For completeness, we mention that the

divergences of the fully factorized distributions of 2 out of the 100
networks with DKLw0:1 are not shown in the plot.

The theorems presented in this article assumed renewed (i.e.,

non-additive), rectangular PSPs. In the following we examine the

effect of additive PSPs with more realistic time courses. We define

additive, alpha-shaped PSPs in the following way. The influence

Duki of each presynaptic neuron ni on the postsynaptic membrane

potential uk is modeled by convolving the input spikes with a

kernel k:

Duki(t)~Wki
:
X

f

k(t{t
f
i ) ð22Þ

where k(s)~l:(e{s=tz{e{s=t{ ) for s§0 and k(s)~0 for sv0,

and t
f
i for f [N are the spike times of the presynaptic neuron ni.

The time constant governing the rising edge of the PSPs was set to

t{~3 ms. The time constant controlling the falling edge was

chosen equal to the duration of rectangular PSPs,

tz~t:dt~20 ms. The scaling parameter l was set such that

the time integral over a single PSP matches the time integral

over the theoretically optimal rectangular PSP, i.e., l~

t:dt=(tz{t{)~20=17. These parameters display a simple and

reasonable choice for the purpose of this study (an optimization of

l, tz and t{ is likely to yield an improved approximation quality).

Figure 7A shows the resulting shape of the non-rectangular PSP.

Furthermore the time course of the function g(fk(t)) caused by a

single spike of neuron nk is shown in order to illustrate that the

time constants of g and of a PSP are closely related due to the

Figure 6. Comparison of neural sampling with different neuron and synapse models. The figure shows a histogram of the Kullback-Leibler
divergence between 100 different Boltzmann distributions over K = 10 variables (with parameters randomly drawn, see setup of Figure 3) and
approximations stemming from different neural sampling networks. Networks with absolute refractory mechanism provide the best approximation
(as expected from theoretical guarantees). Networks consisting of neurons with relative refractory mechanisms, with only ‘‘locally’’ correct sampling,
also provide a close fit to the true distribution (see inset) compared to a fully factorized approximation (assuming correct marginals and independent
variables). Furthermore, it can be seen that sampling networks with more realistic, alpha-shaped, additive PSPs still fit the true distribution reasonably
well.
doi:10.1371/journal.pcbi.1002211.g006

Figure 7. Sampling from a Boltzmann distribution with more realistic PSP shapes. (A) The upper panel shows the shape of a single PSP
elicited at time t~0. The lower panel shows the time course of the refractory function g(fk(t)) caused by a single spike of neuron nk at t~0. The grey-
shaded area of length t:dt~20ms indicates the interval of neuron nk being active (i.e., zk~1) due to a single spike of neuron nk at time t~0. (B)
Shown is the probability distribution of 5 out of 40 neurons. The plot is similar to Figure 3C, however it is generated with a sampling network that
features alpha-shaped, additive PSPs. It can be seen that the network still produces a reasonable approximation to the true Boltzmann distribution
(determined by Gibbs sampling).
doi:10.1371/journal.pcbi.1002211.g007
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assumption tz~t:dt made above. Preliminary and non-exhaus-

tive simulations seem to suggest that the choice tz~t:dt yields

better approximation quality than setting tz&t:dt or tz%t:dt;
however it is very well possible that a mismatch between tz and

t:dt can be compensated for by adapting other parameters, e.g.,

the PSP magnitude or a specific choice of the refractory function

g. Figure 7B shows the results of an experiment, similar to the one

presented in Figure 3C , with additive, alpha-shaped PSPs and

relative refractory mechanism. While differences to Gibbs

sampling results are visible, the spiking network still captures

dependencies between the binary random variables quite well.

For a quantitative analysis of the approximation quality, we

repeated the experiment of Figure 6 with additive, alpha-shaped

PSPs (shown as green bars). The Kullback-Leibler divergence

DKL(pjjq�) to the true distribution is clearly higher compared to

the case of renewed, rectangular PSPs. Still networks with this

more realistic synapse model account for dependencies between

the random variables z and yield a better approximation of p(z)
than fully factorized distributions.
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