Theta Oscillation-Coupled Dendritic Spiking Integrates Inputs on a Long Time Scale

Zsófia Huhn, Gergő Orbán, Péter Érdi, and Máté Lengyel

ABSTRACT: Persistent neural activity lasting for seconds after transient stimulation has been observed in several brain areas. This activity has been taken to be indicative of the integration of inputs on long time scales. Intense synaptic bombardment, characteristic of in vivo states, was previously shown to further reduce the time scale of effective integration. We explored how long-term integration in single cells could be supported by dendritic spikes coupled with the theta oscillation, a prominent brain rhythm often observed during working memory tasks. We used a two-compartmental conductance-based model of a hippocampal pyramidal cell to study the interplay of intrinsic dynamics with periodic inputs in the theta frequency band. We show that periodic dendritic spiking integrates inputs by shifting the phase relative to an external oscillation, since spiking frequency is quasi-linearly modulated by current injection. The time-constant of this integration process is practically infinite for input intensities above a threshold (the integration threshold) and can be still several hundred milliseconds long below the integration threshold. The somatic compartment received theta frequency stimulation in antiphase with the dendritic oscillation. Consequently, dendritic spikes could only elicit somatic action potentials when they were sufficiently phase-shifted and thus coincided with somatic depolarization. Somatic depolarization modulated the frequency but not the phase of firing, endowing the cell with the capability to code for two different variables at the same time. Inputs to the dendrite shifted the phase of dendritic spiking, while somatic input was modulating its firing rate. This mechanism resulted in firing patterns that closely matched experimental data from hippocampal place cells of freely behaving rats. We discuss the plausibility of our proposed mechanism and its potential to account for the firing pattern of cells outside the hippocampus during working memory tasks. © 2005 Wiley-Liss, Inc.

KEY WORDS: active dendrites; persistent activity; working memory; place cells; phase precession

INTRODUCTION

Pyramidal cells in the cerebral cortex have extended dendritic arbors integrating inputs from thousands of presynaptic cells (Hauser et al., 2000). Active voltage-dependent conductances play a central role in shaping this integration process: they can boost distal inputs so that their effect on somatic firing becomes level with that of proximal inputs (Cook and Johnston, 1997), make the summation of postsynaptic potentials (PSPs) sub-or supralinear, defying the predictions of standard cable theory (Rall, 1959, 1989), and hence endow single neurons with computational powers identical to those of a network of point-neurons (Poirazi et al., 2003). In some cases, sufficiently strong stimulation is able to elicit dendritic spikes (Spencer and Kandel, 1961; Wong et al., 1979), which thus represent an extreme case of these nonlinear processing capabilities. Such dendritic regenerative potentials are considered to be the final outcomes of local dendritic integration, which ultimately influence somatic action potential generation (Golding and Spruston, 1998) or local synaptic plasticity (Golding et al., 2002).

Most of the studies of nonlinear dendritic processing focused on the spatial aspects of integration, while its temporal aspects have attracted relatively little attention. In this paradigm, PSPs are integrated in a potentially complicated way to produce a change in dendritic membrane potential depending on their amplitudes, slopes, and dendritic locations, but the membrane potential at any time depends only on the immediate past of the neuron’s input (Reyes, 2001). Crucially, the window of temporal integration is assumed to be small, as it is determined by the time constants of the PSPs and the membrane time constant, none of which exceeds usually tens of milliseconds (Rall, 1989; Destexhe et al., 1998).

Active conductances in some cases seem to further reduce the effective time constant of dendrites. Although dendritic cable filtering may smear out distally evoked PSPs by the time they reach the soma so they summate on a longer time scale (Rall, 1959), a voltage-dependent current, the hyperpolarization-activated Ih current, was shown to counteract this and produce location-independent PSP time-courses in the soma (Magee, 1999). This seems to be at odds with findings showing that many neuron types, including cortical pyramidal cells, are able to integrate inputs on long time scales. The most striking example of this is when transient inputs lead to persistent changes in neural firing rates that last for several hundred milliseconds or even seconds (Major and Tank, 2004).

Another often neglected factor is the effect that ongoing in vivo population activity has on the way a neuron integrates its inputs. Intense bombardment of

1Biophysics Department, KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, Budapest, Hungary; 2Collegium Budapest, Institute for Advanced Study, Budapest, Hungary; 3Center for Complex Systems Studies, Kalamazoo College, Kalamazoo, Michigan; 4Gatsby Computational Neuroscience Unit, University College London, London, UK

Grant sponsor: Gatsby Charitable Foundation; Grant sponsor: Hungarian Scientific Research Fund (OTKA); Grant number: T038140; Grant sponsor: Henry R. Luce Foundation.

*Correspondence to: Máté Lengyel, E-mail: lmate@gatsby.ucl.ac.uk
Accepted for publication 15 June 2005
DOI 10.1002/hipo.20112
Published online 17 August 2005 in Wiley InterScience (www.interscience.wiley.com).

© 2005 WILEY-LISS, INC.
the dendritic tree with synaptic inputs is the characteristic of in vivo states (Destexhe et al., 2003), and this was shown to decrease the membrane resistance (Williams, 2004). As a consequence, it should also decrease the membrane time constant (Bernander et al., 1991), thereby, further reducing the effective time scale of dendritic integration. In accordance with this, morphologically and electrophysiologically realistic computational modeling showed that neurons can process their inputs with a high temporal resolution under these conditions (Rudolph and Destexhe, 2003a). However, previous studies used constant (Williams, 2004) or stationary (Bernander et al., 1991; Rudolph and Destexhe, 2003a,b) background activity as a model of in vivo network activity, while cortical networks are known to exhibit behavior-dependent oscillations on several time scales (Buzsáki and Draguhn, 2004). In particular, blocking theta oscillation in rodents was shown to cause impairment in both spatial and nonspatial working memory tasks, for which persistent activity seems to be crucial (Winson, 1978; Givens and Olton, 1990; Mizumori et al., 1990). Moreover, human and nonhuman primate experiments have shown that execution of working memory tasks is often accompanied by cortical theta oscillations (Gevins et al., 1997; Tesche and Karhu, 2000; Kahana et al., 2001; Jensen and Tesche, 2002).

Persistent neuronal activity has been extensively studied and was implicated as the neural basis of working memory (Fuster, 2001). Although proposed network mechanisms for generating persistent activity proliferate (Seung, 1996; Koulakov et al., 2002; Goldman et al., 2003; Machens et al., 2005), long-term integration has also been observed in in vitro entorhinal cortex preparations in which synaptic transmission was blocked, suggesting potent single-cell mechanisms (Egorov et al., 2002). Graded persistent activity in this case is generated by self-sustaining plateau potentials, which, in turn, were shown to depend on a muscarinic-activated calcium-sensitive nonspecific current (Andrade, 1991; Klink and Alonso, 1997; Fransen et al., 2002). While this mechanism allows for multistability of firing rates, it does not account for firing rates changing within trials (ramping up, down, etc.; reviewed in Major and Tank, 2004), nor is it clear how robust this mechanism is in the face of massive in vivo-like, potentially oscillating synaptic activity. Moreover, induction of plateau potentials usually requires long (over 500 μs) stimulation. Depolarizing after potentials have also been suggested to underlie persistent network activity during working memory tasks, also taking into account the possible effects of theta oscillations (Jensen et al., 1996), but this class of models still predicts constant strictly within-trial firing rates.

Here, we use a simplified biophysical model neuron to investigate how periodic dendritic spiking contributes to the integration of inputs on long time scales during one of the most prominent brain rhythms, the hippocampal theta oscillation (Vanderwolf, 1969; Buzsáki, 2002). In vivo population activity was shown to facilitate the compartmentalization of dendrites, so that they integrate their inputs independently of somatic events (Williams, 2004), and also to promote the generation and propagation of dendritic spikes (Destexhe and Pare, 1999; Williams, 2004). Regular dendritic spiking was observed in the hippocampus during theta oscillations (Kamondi et al., 1998; Gillies et al., 2002), and the frequency of dendritic oscillations could be modulated by the amount of current injected (Kamondi et al., 1998). We propose that under these conditions, periodic dendritic spiking integrates inputs in its spiking phase relative to the ongoing field potential oscillation, and the decay time constant of this integration can be several orders of magnitude longer than the membrane time constant.

The somatic membrane potential of hippocampal pyramidal cells is periodically modulated during theta oscillations (Leung and Yim, 1986; Fox, 1989; Soltész and Deschenes, 1993; Ylinen et al., 1995), and the ability of dendritic spikes evoking somatic action potentials was shown to depend on the level of somatic depolarization (Golding and Spruston, 1998; Williams, 2004). We show that this provides a potential mechanism for transforming the phase code of dendritic spikes into a firing rate code, as the number of somatic action potentials fired within a theta cycle depends on the phase of the dendritic spiking relative to the somatic membrane potential oscillation. The phase of somatic action potentials also reflects the phase of the dendritic spike, but it can be decoupled from the rate code by changing levels of somatic depolarization, so that the firing phase and rate of a cell code for different variables, just as seen in recent experiments in behaving animals (Huxter et al., 2003). We test further predictions of our model on the firing patterns of hippocampal pyramidal cells by comparing them with data recorded from place cells in rats.

METHODS

We used a modified Pinsky–Rinzel (Pinsky and Rinzel, 1994) two-compartmental conductance-based model of a hippocampal CA3 pyramidal cell. Active conductances were the fast Na⁺ current, the delayed rectifier K⁺ current in the somatic, the nonactivating Ca²⁺ current, and the Ca²⁺-dependent K⁺ current in the dendritic compartment. For detailed description of the equations and model parameters see the Appendix.

Dendritic input was the sum of two terms: \(I_d(t) = I_d\theta(t) + I_d\theta(t) \). \(I_d\theta(t) \) was a sinusoid depolarizing current: \(I_d\theta(t) = (A_d/2) \cos(2\pi f_d t) + I_d \), where \(f_d = 8 \) Hz, and other parameters were \(A_d = 0.5 \mu A/cm^2 \) and \(I_d = 1.615 \mu A/cm^2 \) (Figs. 1 and 2) or \(1.9 \mu A/cm^2 \) (Fig. 3) or 1.78 μA/cm² (Figs. 4 and 5), unless otherwise noted. \(I_d\theta(t) \) was a current proportional to the variable that was to be integrated by dendritic dynamics. This variable was \(\psi(t) \), the running speed of the rat within the place field of the cell in Figures 4 and 5: \(I_d\theta(t) = k_d\psi(t) \), where \(k_d = 0.024 \) (μA/cm²)/cm s⁻¹.

Somatic input was also a sum of two terms: \(I_s(t) = I_s\theta(t) + I_s(t) \). \(I_s\theta(t) \) was a sinusoid current oscillating with theta frequency in antiphase with the dendritic sinusoid input: \(I_s\theta(t) = (A_s/2) \cos(2\pi f_d t + \pi) + I_s \), where \(A_s = 5 \mu A/cm^2 \), and \(I_s = -3.5 \mu A/cm^2 \) (Fig. 3) or \(I_s = -4.9 \mu A/cm^2 \) (Figs. 4 and 5), unless otherwise noted. \(I_s(t) \) was a current proportional to the variable to be encoded in somatic firing rate. This variable was again
FIGURE 1

A

![Graph showing the relationship between dendritic spiking frequency and DC component of injected current](image)

B1

![Phase response](image)

B2

![Phase response](image)

C1

![Phase response](image)

C2

![Phase response](image)

FIGURE 1
the running speed of the rat within the place field of the cell in Figures 4 and 5: $I_n(t) = k_0 v(t)$, where $k_0 = 0.1 \, \mu A/cm^2/(cm/s)$.

For Figures 4 and 5, a total of 50 traversals of the place field were simulated. In each lap, a random running speed profile was generated by choosing a different speed between 10 and 30 cm/s for the rat, with a uniform distribution after every 100 ms. To ensure that the rat could enter the place field at any phase of theta, the time of the first speed change was randomly chosen from the 0 to 100 ms interval, with a uniform distribution. Finally, speed profiles were smoothed with a Gaussian kernel of 100 ms standard deviation, and position was calculated as the time integral of the respective speed profile. In Figure 5, “fast” and “slow” runs were chosen to be the fastest and slowest 15 runs based on average running speed within the place field. Moving direction of the animal was always from left to right (Figs. 4 and 5).

RESULTS

Dendritic Spiking

We used a biophysical conductance-based model composed of a dendritic and a somatic compartment to investigate the integration of inputs in pyramidal cells. The dendritic compartment contained active currents that enabled it to generate slow Ca^{2+} spikes in response to sufficiently strong depolarization (Fig. 1A, gray line). The frequency–current (f–I) curve of the dendrite showing the frequency of dendritic spiking as a function of the amplitude of tonic depolarization exhibited clear Type-1 behavior (Ermentrout, 1996): as depolarization exceeded the threshold for spike generation, spiking frequency increased monotonically from 0 Hz.

Superimposing a small oscillatory component on the tonic depolarizing current (the DC component) changed the f–I relationship substantially (Fig. 1A, black line), resulting in three qualitatively different regimes of dendritic dynamics. Below spiking threshold no dendritic spikes were generated (regime I). The spiking threshold was decreased and above it the f–I curve quickly became flat over a range of depolarization strengths (regime II). In this regime, dendritic spiking frequency was determined by the frequency of the oscillatory component of external stimulation and was independent of the DC component. As further depolarization exceeded a second threshold, the integration threshold, it led to increasing spiking frequency, which was primarily determined by the DC component of external stimulation, as the f–I curve quickly became overlapping with the curve recorded in response to nonoscillatory stimulation (regime III).

Importantly, in regime III, the frequency of dendritic spiking was higher than the frequency of the oscillatory component of the stimulus. When two oscillations have different frequencies, they cannot be phase locked anymore, and the amount of phase shift between them will be proportional both to their frequency difference and to the length of time for which their frequencies differed. In other words, frequency modulated oscillations integrate inputs in their phase: as long as the frequency is an approximate linear function of the input, the phase of the oscillation will be the time integral of the input (Lengyel et al., 2003). To demonstrate this, we injected a strong depolarizing current into the dendrite that elicited periodic dendritic spiking at about 8 Hz (Fig. 1B). A short perturbing pulse current on top of this depolarization caused a phase shift in the dendritic

FIGURE 1. Characteristics of periodic dendritic spiking induced by constant and oscillatory stimulation. A: Spiking frequency of the dendritic compartment as a function of the DC component of injected current (f–I curve). Above firing threshold (gray arrow), tonic stimulation (thick gray line) resulted in increasing spiking frequencies. Oscillatory stimulation (thin black line) resulted in a decreased spiking threshold (black arrow, regime I) and frequency locking to the oscillatory input (dotted line) in a wide range of the DC component (regime II). Above integration threshold (black arrowhead, see text), the frequency of dendritic firing quickly converged to the tonic depolarization induced f–I curve (regime III). B: Phase responses of the dendritic oscillation to transient stimulation. B1: Illustration of the stimulation protocol. Constant stimulation (lower black line) caused periodic spiking in the dendrite of the pyramidal cell model (upper black trace). A 1 ms pulse current superimposed on the constant depolarization (lower gray lines) induced a shift in dendritic spiking (upper gray traces). This phase response depended on the timing of the pulse relative to the spiking cycle (τ), as well as its amplitude (light and dark gray membrane potential traces). Note that both the phase response and τ are measured in degrees relative to the dendritic interspike interval (ISI). B2: Phase responses of the dendrite resulting from periodic stimulation. A single cycle of sinusoid current with a given offset and phase superimposed on the tonic stimulation (lower panel) caused either both delay and advance of dendritic spiking (upper panel) or only advance (middle panel), depending on stimulus offset. Upper and middle panels: black traces are dendritic membrane potentials with tonic stimulation, gray traces correspond to dendritic membrane potentials resulting from transient periodic stimulation. Labels and colors correspond to those used in the lower panel. Note that here τ denotes the time of the peak of the oscillatory component relative to the ongoing dendritic oscillation. C: Phase response curves of the dendritic compartment as a result of current pulse stimulation (C1) and oscillatory stimulation (C2). Positive phase response means advance (shorter ISI) and negative means delay (longer ISI). C1: Current pulse stimulation with positive pulse-amplitudes (positive labels) resulted in strictly positive phase response curves. Phase response curves scaled linearly with pulse amplitude (labels denote pulse amplitudes in $\mu A/cm^2$). C2: Oscillatory phase response curves (oPRCs), calculated with the protocol illustrated in B2, at different offset currents (0 and 0.3 $\mu A/cm^2$ for the black and gray lines, respectively). While at low offset-levels, both positive and negative phase shifts could be achieved, causing advanced or delayed spiking (black line), and at high offset levels only positive phase shifts were available (gray line). At zero-crossing a stable (black arrow) and an unstable fixed point (white arrow) are present depending on the slope of the oPRC. At high offset-levels, no fixed points are present, causing a continuous shift in the phase of spiking. Note that the black curve corresponds to regime II while the gray curve corresponds to regime III of the f–I curve (A).
oscillation (Fig. 1B1). The amount of the phase shift depended on the phase of the dendritic oscillation at which the perturbing current was delivered: perturbation was effective only in the second half of the spiking cycle (Fig. 1C1). Moreover, the size of the phase shift was linear in the amplitude of the perturbing current, within a range of pulse amplitudes (Fig. 1C1).

To analyze the effect of an oscillatory current injection, a full cycle of sine wave stimulus was applied on top of the baseline stimulus, with different starting phases and offset values (Fig. 1B2). Oscillatory inputs with small offsets could both advance or delay the next dendritic spike, depending on the starting phase of the stimulation (Fig. 1B2, upper trace). Spiking was advanced when the dendritic spike lagged behind the peak of the sine wave stimulus and delayed when the dendritic spike occurred before the peak of the sine wave stimulus (Fig. 1C2, black line). This means that applying the same oscillatory current for several cycles drives dendritic spiking so that it becomes phase-locked to this external oscillation. As long as the oscillatory phase response curve (oPRC) crosses zero with a negative slope there is a stable phase lag for dendritic spiking (a crossing with positive slope indicates an unstable phase lag), and thus, its frequency is kept at the frequency of the external

FIGURE 2. Comparison of input integration in dendritic membrane potential and in the phase of dendritic spiking. Note the difference between the scale bars in A and B, indicating the difference of the integration time scale in the two cases. A: Below spiking threshold, current pulses of increasing length (A1, lower traces) induced saturating membrane potential change (A1, upper traces). Time scale of the integration process was determined by the membrane time constant (A2, 4 and 2.86 μs for the upper and lower trace, respectively). B: Above integration threshold, current pulses (B1, middle traces) induced the advancement of dendritic spiking (upper traces) relative to the periodic stimulation (lower trace). Total amount of phase precession increased monotonously and without saturation as the length of stimulation was increased. Phase of dendritic firing settled to the stable phase after stimulation returned to baseline level (regime II). Time course of decay dynamics of dendritic spiking-phase (B2) was determined by the amplitude of the oscillatory component (0.5 and 0.05 μA/cm² for the upper and lower trace, respectively). C: After cessation of stimulation, phase of dendritic spiking relative to the periodic stimulation component settled to the stable phase either by advancing spiking phase (upper panel, lower two traces) or by delaying it (upper panel, upper two traces). Whether phase precession or phase recession occurred depended on the spiking phase at the end of regime III stimulation. Here, different exit phases were achieved by slight changes in the DC components (middle panel, duration of the simulation corresponds to the extent of the lines, and DC levels correspond to respective traces of the upper panel in a reversed order).
stimulation (regime II of the f–I curve, Fig. 1A). Oscillatory
current injection with an elevated offset could only cause spike
advance (Fig. 1B2, lower trace), shifting the oPRC above zero
at all phase lags (Fig. 1C2, gray line), as it amounted to an
overall excitation above the integration threshold (regime III of
the f–I curve, Fig. 1A).

We compared the integrative properties of two dynamical
modes of the dendritic membrane. Without strong baseline
depolarization, the dendrite integrated inputs in its membrane
potential (Fig. 2A) as determined by its passive properties
(Rall, 1959). Long time scale integration in this mode was
hampered in two ways. First, the membrane potential became
quickly saturated for long inputs, instead of increasing linearly
with stimulus length. Second, after the cessation of the stimulus
the membrane potential returned to its resting value within
tens of milliseconds (Fig. 2A1), instead of staying constant.
The rate of this decay and, therefore, the time constant of
integration was determined by the membrane time constant
(Fig. 2A2).

Strong oscillatory baseline stimulation (regime II) elicited
periodic dendritic spiking, and the phase precession of den-
dritic spiking was roughly proportional to the length of
dendritic stimulation above the integration threshold (Fig. 2B1).
The slight curvature in the phase shift curve was attributable to
the sinusoid shape of the oPRC (Fig. 1C2, gray line): its dis-
tance from the zero axis was uneven, and therefore, phase shifts
were bigger or smaller when dendritic spiking lagged or led the
peak of the external oscillation, respectively. In the absence of
extra stimulation, the oscillatory component of baseline stimu-
lation drove dendritic spiking back to the stable phase lag
shown in Figure 1C2 in a few theta cycles. However, the speed
of this decay could be slowed down dramatically by decreasing
the amplitude of the oscillatory component to the input (Fig.
2B2). As spiking phase is a circular variable, decay back to
baseline phase could occur in one of two ways. It occurred
either through phase precession or through phase recession,
depending on what the spiking phase was at the end of stimu-
lation (Fig. 2C), just as predicted by the oPRC of the dendritic
membrane (Fig. 1C2). In summary, in the periodically spiking
regime, the dendrite integrated inputs above the integration
threshold near-perfectly, and behaved as a leaky integrator with
a time constant much longer than its membrane time constant
for inputs below this threshold.

Somatic Firing

The somatic compartment of the model cell contained cur-
rents for firing fast Na⁺ action potentials. In response to a sub-
threshold theta-frequency current injection, its membrane
potential went through periodic cycles of depolarization and
hyperl polarization. This provided a straightforward read-out
mechanism for the phase code of dendritic spiking (Fig. 3).

If the dendrite spiked in the hyperpolarized phase of the
soma, the dendritic spike could not invade and no somatic
action potentials were fired. However, the more the dendritic
spike overlapped with somatic depolarization, the more action
FIGURE 4. Rate and phase coding in place cells as reproduced by the model. A: While phase of somatic firing (black dots) is a monotonically decreasing function of position, the firing rate has a unimodal profile (gray line). Comparison of firing phase data plotted against position (A) and that plotted against the time spent in the place field (B) reveals a higher correlation (r) with position than with time. Black lines are regression lines fitted on data points. Aggregate data from multiple traversals of the place field is presented, where speed of the animal was subject to change both during a single traversal and across traversals. C: Phase precession did not require precise tuning of place field size: whether the phase precession was less than a full cycle of theta oscillation (left panel) or was longer than a cycle (right panel), the place cell ceased to fire action potentials shortly after leaving the place field.

 potentials the soma could fire. This resulted in doubly coded somatic firing (Lengyel et al., 2003): dendritic spiking phase was reflected in both the phase of somatic spikes and the number of spikes during a theta cycle (Fig. 3A).

The DC component of somatic input could decouple the phase and rate code of somatic firing (Fig. 3A, gray lines). Firing phase was largely unaffected by increasing DC somatic input, as it was still determined by the timing of dendritic spikes, while firing rate increased because depolarization of the somatic membrane between consecutive action potentials was accelerated. This decoupling has not been demonstrated in previous models (Lengyel et al., 2003).

As the sinusoid components of dendritic and somatic inputs were set to be in antiphase and dendritic spikes were phase-locked to the dendritic oscillation at baseline (Figs. 1C2 and 2B1), somatic firing rate was low without extra excitation (Fig. 3B). When the input current exceeded the integration threshold, dendritic spikes began to phase shift, thus, becoming increasingly in-phase with somatic depolarization and resulting in an increasing number of somatic action potentials. As phase precession of dendritic spiking continued because of sustained input, dendritic spikes became out-of-phase with somatic depolarization and somatic firing rate decreased accordingly. This periodic waxing and waning of somatic firing rate could continue as long as dendritic input was present (data not shown).

Comparison with Place Cell Data

Pyramidal cells of the hippocampus are known to exhibit location-specific firing in the behaving rat: a “place cell” only fires when the rat is in a circumscribed region of the environment, the “place field” of the cell (O’Keefe and Dostrovsky, 1971). Place cell recordings thus provide detailed quantitative in vivo data on the firing patterns of hippocampal pyramidal cells, against which we tested the predictions of our model.

As suggested by earlier modeling (Lengyel et al., 2003; Lengyel and Erdi, 2004), we took dendritic input to be proportional to the running speed of the animal. Because position is the time-integral of velocity, the phase of dendritic spiking
became proportional with the position of the animal as it kept integrating running speed. The somatic read-out mechanism (Fig. 3) thus ensured that both firing rate and firing phase of somatic action potentials coded for the position of the animal. In line with earlier modeling studies using abstract models (Lengyel et al., 2003), this produced a unimodal firing rate tuning curve and a monotonically decreasing phase precession curve spanning a full cycle of theta oscillation (Fig. 4A), where firing phase was more correlated with position than with time spent in the place field (Fig. 4B), just as seen in experiments (O’Keefe and Recce, 1993; Huxter et al., 2003). Our simulations did not seem to show the occasionally observed scalloped shape of phase precession data (Skaggs et al., 1996, but see O’Keefe and Recce, 1993; Huxter et al., 2003).

However, overall phase shift of place cells always amounts to an integer number of theta cycles (usually just a single theta cycle) (O’Keefe and Recce, 1993; Skaggs et al., 1996). This may not seem to be reproduced by our model unless the integral of dendritic input is exactly matched, so that dendritic spiking is ensured to precess an integer number of theta cycles. Furthermore, if phase precession does not stop after spanning a full cycle of theta oscillation, the model predicts sustained firing after the animal leaves the place field of the cell. Contrary to these inauspicious expectations, the model stopped firing even when the integral of dendritic input was not exactly matched to produce one cycle of dendritic phase precession (Fig. 4C). This happened because after the cessation of input, free-running phase shift drove dendritic spiking back to the stable baseline firing phase at which it was phase-locked to the dendritic oscillation (Figs. 1C2 and 2C) and therefore could not evoke somatic firing (Fig. 3). Such an inertia-like behavior of place cell firing was observed in experiments when rats were made to turn around before reaching the end of a place field (Redish et al., 2000). As changes in firing phase are determined by the internal dynamics of the dendrite during free-running phase shift, this mechanism also predicts a smaller correlation between firing phase and position of the animal in the second half of the place field than in the first half. A decline in correlations between firing phase and position within the place field was also demonstrated in experiments (Mehta et al., 2002; Yamaguchi et al., 2002).

Our two-compartmental model also predicted that the DC component of the somatic input should modulate the firing rate of the cell while leaving firing phases relatively unaffected (Fig. 3A). If this somatic input is proportional to the running speed of the animal, then this results in a specific decoupling of the rate and phase code of place cells (Fig. 5). Faster runs through the same place field should be associated with higher firing rates while the firing phase–position relationship should not show any systematic changes (Fig. 5A and B). Indeed, such a decoupling of firing phase and rate has been found in place cells (Huxter et al., 2003), and the relative magnitude of correlation coefficients found in experiments were well-matched by the predictions of our model (Fig. 5C). Thus, the two-compartmental mechanism proposed here was capable of encoding (the integral of) one variable in the firing phase of the neuron while modulating its firing rate depending on a second variable.

FIGURE 5. Decoupling the rate and phase code. Firing phase data collected from fast (A, black) and slow (gray) place field traversals had an overlapping profile. Firing rate tuning curves (B), however, were significantly different, faster runs peaking at higher levels than slower runs. C: Analysis of the running speed-dependence of the rate and phase code. Correlation coefficients between running speed and various characteristics of place cell firing were calculated (lower panel). Labels denote number of spikes fired in the place field (spike number), average firing frequency (spike freq.), position of the animal in the place field when the first (pos. first sp.) and last (pos. last sp.) spike was fired, phase of the first (phase first sp.) and last (phase last sp.) spike relative to theta oscillation, and the total phase shift in the place field. The most significant correlation was measured between running speed and average firing frequency. Data obtained from simulations and experiments (upper panel, Huxter et al., 2003) were closely matching.
DISCUSSION

Plausibility of Periodic Dendritic Spiking

Dendritic spikes are traditionally considered to be the final outcomes of dendritic integration: they signal that net local input to the dendrite exceeds a given threshold (the spike generation threshold) (Williams and Stuart, 2003). We propose that periodic dendritic spikes convey information by the change in their timing rather than by their appearance per se. A similar scenario has been suggested earlier (Marder et al., 1996) for somatic firing, but because periodic firing is a prerequisite for this type of coding, constant firing rates had to be assumed. This does not seem to be consistent with the firing pattern of cortical pyramidal cells undergoing substantial firing rate modulations (Major andTank, 2004). In our model, although the dendrite regularly generates spikes, somatic action potentials are only triggered when a dendritic spike coincides with somatic depolarization, thereby resulting in systematically varying somatic firing rates (Figs. 3, 4).

The mechanism for dendritic spike generation in our model is admittedly simplified: it is an interplay of a low-threshold noninactivating Ca\(^{2+}\) current, and a Ca\(^{2+}\)- and voltage-dependent K\(^+\) current (Pinsky and Rinzel, 1994). Pyramidal cell dendrites possess a much richer repertoire of voltage-gated channels, and therefore exhibit more complex dynamics than that demonstrated here (Magee et al., 1998; Hauser et al., 2000; Reyes, 2001). Nevertheless, we expect the main findings of our work to apply as long as dendrites are shown to be able to behave as Type I oscillators (Fig. 1). Periodic Ca\(^{2+}\) spikes in pyramidal cell dendrites during hippocampal theta oscillations were observed in vitro (Gillies et al., 2002) and in vivo (Kamondi et al., 1998), and the frequency of dendritic oscillations could be modulated by the amount of depolarization (Kamondi et al., 1998), in line with the predictions of the model (Fig. 1). However, whether these suprathreshold oscillations are of Type I remains to be tested, as there have yet been no systematic studies on the f-I curves or PRCs of pyramidal cell dendrites.

The amplitude of experimentally observable dendritic spikes also tends to be smaller (around 10 mV, Kamondi et al., 1998; Gillies et al., 2002) than that of the full-blown Ca\(^{2+}\) spikes seen in the model (Fig. 1B, 3B). This is important because these spikes may then not be able to propagate to the soma and ever elicit somatic action potentials, thus undermining a crucial assumption of our model. Yet, in other studies, dendritic spikes were shown to actively propagate towards the soma and trigger fast action potentials there in vitro (Golding and Spruston, 1998) and under emulated in vivo-like conditions (Williams, 2004). It is not clear what causes this discrepancy in experimental findings. One possibility is that the amplitude of dendritic spikes appeared smaller in some experiments (Kamondi et al., 1998; Gillies et al., 2002) because they were not recorded at the site of their generation. This also raises an interesting issue about how multiple potential spike-generating compartments may interact in the same dendritic tree, or how dendritic morphology may influence the propagation of dendritic spikes (Vetter et al., 2001). Models with more detailed morphology than the extremely simplified two-compartmental structure used here will be needed for studying such interactions.

Firing Patterns Indicative of Theta Oscillation-Coupled Long-Time Scale Integration in Behaving Animals

Current experimental techniques do not yet permit routine dendritic recordings in freely behaving animals, although they may soon become available (Helmchen et al., 2001). We used data from place cell recordings to test whether the neural firing patterns seen in exploring rats are consistent with our proposed dendritic integration mechanism (Fig. 4, 5). We found that even fine details of place cell firing were accounted for by the model, such as relative correlations between firing phase and position (Fig. 4A and C) or time spent in the place field (Fig. 4B) (O’Keefe and Recce, 1993; Huxter et al., 2003), and correlations between running speed and various quantitative characteristics of firing (Fig. 5) (Huxter et al., 2003). Results on phase precession at low firing rates (~1 spike per second) are controversial (Harris et al., 2002; Huxter et al., 2003). Although we did not address this issue in our simulations explicitly, the structure of the model predicts phase precession even at minimal frequencies.

Our modeling of place cell data is also consistent with several earlier proposals that the hippocampus and surrounding areas may be involved in path integration (McNaughton et al., 1996; Redish and Touretzky, 1997; Samsonovich and McNaughton, 1997; Sharp, 1997). However, a recent study by Zugaro et al. (2005) showed that hippocampal cells continued phase precessing after transient intrahippocampal perturbation that otherwise seemed to disrupt hippocampal theta activity. This renders the interpretation of simple integration models like the one presented here (O’Keefe and Recce, 1993; Lengyel et al., 2003) less straightforward, and points to alternative or, at least, additional mechanisms for explaining place cell firing (Burgess et al., 1994; Jensen and Lisman, 1996; Tsodyks et al., 1996; Wallenstein and Hasselmo, 1997; Mehta et al., 2002; Yamaguchi, 2003). These models assume that an area outside the hippocampus keeps track of the current position of the animal and thus may still be consistent with the experiments of Zugaro et al. (2005) in which the entorhinal cortex was shown to be unaffected by the perturbation. In our model, the integration process takes place in the distal dendrite of hippocampal pyramidal cells that receives perforant path input from the entorhinal cortex. Thus, if the dynamics of Ca\(^{2+}\) spike generation are resistant enough to commissural (proximal) perturbation, our mechanism might still be able to account for the Zugaro et al. (2005) data. Calcium dynamics underlying plateau potentials have been shown to be robust to prolonged hyperpolariza-
tions (Fransen et al., 2002); further studies are needed to investigate the robustness of calcium spiking mechanisms.

Persistent activity of putative pyramidal cells in the hippocampus was also observed during the delay period of a delayed nonmatch-to-sample task (Deadwyler and Hampson, 2004). Although field potentials were not recorded in these experiments, other studies had found hippocampal theta activity while animals performed tasks similar to these (Givens and Olton, 1990; Givens, 1996). Hence, our model predicts that if the ramping activity seen in these cells is really generated within the hippocampus and not transmitted from upstream areas, these cells should also show gradual phase precession during the delay period.

In a recent study, Lee et al. (2005) recorded neurons in monkey extrastriate visual cortex during a working memory task. They also found a significant enhancement of theta oscillations during the delay period, where theta power was shown to be directly related to the memory component of the task and not to other nonspecific effects. Several neurons showed elevated firing rates during the same period, and most importantly, their firing rate and phase strongly covaried (cf. our Fig. 3A). Moreover, the preferred phase of firing was very similar across neurons. These data are highly consistent with the behavior of our model.

The Role of Theta Oscillations

Three aspects of theta oscillations are essential for the integration mechanism of our model. (1) The dendritic membrane has to be depolarized sufficiently over the spike generation threshold, so that dendritic spikes can integrate inputs in their timing (Fig. 1). In line with this, the dendritic membrane of hippocampal pyramidal cells was found to be depolarized during theta oscillations and spontaneously generates spikes with theta frequency (Kamondi et al., 1998, and see above). (2) Depolarization of the dendritic membrane needs to have a periodic component with theta frequency, so that there is a threshold (the integration threshold, Fig. 1) under which noisy inputs do not influence dendritic integration. The oscillatory dendritic input also serves as a reference signal against which the timing of dendritic spikes can be “measured.” Pyramidal cell dendrites also showed subthreshold theta frequency oscillations and dendritic spikes rode on the peaks of these oscillations (Kamondi et al., 1998), just as predicted by the model under baseline conditions (Figs. 1C2, 1B and C, and 3B). (3) The somatic membrane needs to be periodically hyperpolarized with the same frequency, so that somatic action potentials are fired depending on the relative phase of dendritic spikes. The somatic and dendritic oscillations have to be in antiphase, so that the cell fires minimally under baseline conditions (Fig. 3). Hyperpolarizing somatic membrane potential oscillations have been described in pyramidal cells during theta oscillation, and these oscillations were in antiphase with the dendritic oscillation (Kamondi et al., 1998; Gillies et al., 2002).

Thus it seems that all conditions are provided for our model to perform long time scale integration—at least in the hippocampus. In particular, the activity of different subclasses of interneurons, specifically innervating different regions of the dendritic trees of pyramidal cells (Freund and Buzsáki, 1996), as well as the input from the entorhinal cortex are strongly theta modulated (Csicsvári et al., 1999; Frank et al., 2001; Klausberger et al., 2003) and their preferred firing phases support the specific theta-related effects required by our theory. Yet, integration on long time scales was observed in several brain areas (Major and Tank, 2004) and was suggested to serve a number of purposes from stabilizing eye position (Seung, 1996) to integrating evidence for decision making (Gold and Shadlen, 2002). Whether theta oscillations satisfy the above conditions in brain regions other than the hippocampus remains to be tested.

It is, nevertheless, suggestive that short-term memory tasks are often accompanied by theta oscillations (Kahana et al., 2001; Jensen and Lisman, 2005), and the presence of theta oscillations was shown to be necessary for successful performance in these tasks (Winson, 1978; Givens and Olton, 1990; Mizumori et al., 1990; Pan and McNaughton, 1997). Other models have been proposed to account for this (Lisman and Idiart, 1995; Jensen and Lisman, 1998), but they predict relatively constant firing rates within trials, while our model accommodates time-varying firing rates, such as the ramping behavior often seen in these experiments (Baeg et al., 2003; Brody et al., 2003; Deadwyler and Hampson, 2004). Modulatory effects of theta oscillations on synaptic plasticity are suggested to account for reversal learning in the model of Hasselmo et al. (2002). These authors did not address the issue of working memory, explicitly, and the memory trace necessary for performing reversal correctly in the simulated task was encoded in synaptic weights rather than persistent activity. It would be interesting to see how similar modulatory effects could be incorporated into our model framework.

As the sensitivity of the dendritic membrane to inputs in our model depends on the phase at which the input arrives (Fig. 1C), the timing of inputs has a profound effect on the efficacy of dendritic integration. This may also offer some insight into why different brain areas show synchronization and an increase in coherency in the theta band during short-term memory tasks (Macrides et al., 1982; Sarnthein et al., 1998; Stam et al., 2002; Fell et al., 2003; Seidenbecher et al., 2003; Mizuhara et al., 2004; Sauseng et al., 2004).

Acknowledgments

We thank Peter Latham for useful discussions, and John Hueter for kindly providing experimental data on place field statistics (Fig. 5C).

REFERENCES

APPENDIX

The membrane potential of the conductance-based two-compartmental model was described by Hodgkin–Huxley formal-
ism. Somatic and dendritic membrane potentials obeyed standard current balance equations:

\[
C_m \dot{V}_s(t) = -I_{Ls}(t) - I_{Na}(t) - I_{K-DR}(t) + I_{Na}(t) + I_d(t)
\]

\[
C_m \dot{V}_d(t) = -I_{Ld}(t) - I_{Ca}(t) - I_{K-C}(t) + I_{Na}(t) + I_d(t)
\]

Leak currents were

\[
I_{Ls}(t) = g_L[V_s(t) - V_L]
\]

\[
I_{Ld}(t) = g_L[V_d(t) - V_L]
\]

Axial currents were

\[
I_{Na}(t) = g_{Na}/(1 - p)[V_s(t) - V_{Na}]
\]

\[
I_{Na}(t) = g_{Na}/(1 - p)(V_s(t) - V_{Na})
\]

Voltage-dependent currents were the fast Na\(^+\) current, the delayed rectifier K\(^+\) current, the nonactivating Ca\(^{2+}\) current, and the Ca\(^{2+}\)-dependent K\(^+\) current

\[
I_{Na}(t) = g_{Na}/(1 - p)[V_s(t) - V_{Na}]
\]

\[
I_{K-DR}(t) = g_{K-DR}n^4(t)[V_s(t) - V_K]
\]

\[
I_{Ca}(t) = g_{Ca}A(t)[V_d(t) - V_{Ca}]
\]

\[
I_{K-C}(t) = g_{K-C}c(t)\chi(t)[V_d(t) - V_K]
\]

where \(\chi(t) = \min[Ca(t)/750, 1]\) and \(Ca(t) = -0.13 I_{Ca}(t) - 0.075 Ca(t)\). Gating variables \(m, h, n, s, \) and \(c\) obeyed first order kinetics: for any \(x\) gating variable \(\dot{x}(t) = \alpha_x[V(t)] [1 - \alpha_x(t)] - \beta_x[V(t)] x(t)\); however, \(m\) was approximated with its steady-state value \(m_\infty(t) = \alpha_m[V(t)]/[\alpha_m[V(t)] + \beta_m[V(t)]\]. Rate variables were

\[
\alpha_m[V_s(t)] = 0.32[-46.9 - V_s(t)]/\exp([-46.9 - V_s(t)]/4 - 1)
\]

\[
\beta_m[V_s(t)] = 0.28[V_s(t) + 19.9]/\exp([-43 - V_s(t)]/18 - 1)
\]

\[
\alpha_n[V_s(t)] = 0.25\exp[0.5 - 0.425(V_s(t) + 60)]
\]

\[
\beta_n[V_s(t)] = 1.6/(1 + \exp[-0.072(V_s(t) - 5)])
\]

\[
\alpha_d[V_d(t)] = 0.02[2(V_d(t) + 8.9)]/\exp([V_d(t) + 8.9]/5 - 1)
\]

\[
\beta_d[V_d(t)] = \exp([V_d(t) + 50]/11 - [V_d(t) + 53.5]/27)/18.975
\]

\[
\mathcal{H}[-V_d(t) - 10] + 2\exp([-V_d(t) - 53.5]/27)
\]

\[
\mathcal{H}[V_d(t) + 10]
\]

where \(\mathcal{H}\) is the Heaviside function.

Passive parameters of the model were \(C_m = 1\ \mu F/cm^2\), membrane capacitance; \(g_L = 0.3\ \text{mS/cm}^2\), leak conductance (except in Fig. 2A2); \(V_L = -60\ \mu V\), leak reversal potential; \(g_L = 0.005\ \text{mS/cm}^2\), axial conductance between the soma and the dendrite; and \(P = 0.1\), soma/cell surface area ratio. Equilibrium potentials (in mV) and maximal channel conductances (in mS/cm\(^2\)) of active conductances were \(V_{Na} = 60, V_K = -75, V_{Ca} = 80\) and \(g_{Na} = 30, g_{K-DR} = 15, g_{Ca} = 10, g_{K-C} = 15\).