Loic Matthey

Goodenough College Mecklenburg Square WC1N2AB London +44 7547 312367 27 years old, single

Swiss

loic.matthey@gatsby.ucl.ac.uk

COMPUTATIONAL NEUROSCIENTIST PhD at Gatsby Computational Neuroscience Unit (UCL)

Education		
PhD Computational Neuroscience	ce University College London (UCL)	2009-now
	Gatsby Computational Neuroscience Unit Supervisor: Peter Dayan.	
Master of Computer Science	Swiss Federal Institute of Technology (EPFL) Biocomputing specialization	2006-2008
	EPFL Excellency Scholarship	
	Swiss Informatics Society Prize	
	(Second best grade average award: 5.87 / 6.0)	
Bachelor of Computer Science	Swiss Federal Institute of Technology (EPFL)	2003-2006
	Adrien Tschumi Prize (Best average grade over first year; all academic departments considered)	2005
Experience		
R&D Engineer	DISAL Laboratory, EPFL	2008-2009
Master Thesis	GRASP Laboratory, University of Pennsylvania,	USA
Hybrid Reactions Modeling for	Published at IEEE ICRA 2009	
Top-down Design Framework	Annaheim Foundation Prize	
	(Rewards a high-quality Master Thesis bringing life	

R&D Engineer	DISAL Laboratory, EPFL	2008-2009
Master Thesis Hybrid Reactions Modeling for Top-down Design Framework	GRASP Laboratory, University of Pennsylvania, Published at IEEE ICRA 2009 Annaheim Foundation Prize (Rewards a high-quality Master Thesis bringing life science and computer science closer together)	USA 2008
Semester project Chaotic systems for escape and exploration in robots	BIRG Group, EPFL Published at IEEE IROS 2008	2008
Summer project Odor Source Localizations implementation on mobile robots	Swarm Intelligent System Group, EPFL Published at IEEE ICRA 2008	2007
IT Department, summer work	Johnson & Johnson, Neuchâtel	2002-2005

Lan	guages	5
-----	--------	---

French: Native language

English: IELTS Band 8. Fluency (spoken & written)

German: Proficiency

Japanese: Elementary knowledge of grammar and vocabulary

Technical knowledge

Mathematical Modeling	Non-linear Optimization	Bio-inspired Computing
Machine learning	Bioinformatics	Neurophysiology

4		. •	•		
Α	Ci	111	21.1	ie	?

Teaching Assistant:	Theoretical Neuroscience, Gatsby Unit course	2010
	Machine Learning, Gatsby Unit course	2010
	Swarm Intelligence, EPFL course	2007
	Models of biological sensory-motor systems, EPFL course	

Polymanga: Executive Committee for the 1st edition of the biggest manga

and videogames show of Switzerland.

Budget: CHF 40'000.-, 6000 spectators.

Business contacts, logistics, management of 30 volunteers.

Sports: Floor Hockey, Squash

Publications

Reservoir dynamics: Feedback and chaos in the network solution of a complex cognitive task

2011

2005

Loic Matthey, Peter Dayan

Computational and Systems Neuroscience 2011 conference. To be published in Frontiers in Systems Neuroscience

Aggregation-mediated collective perception and action in a group of miniature robots

2010

Gregory Mermoud, Loic Matthey, William C Evans and Alcherio Martinoli.

Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 10), Toronto, Canada.

Nominated for CoTeSys Best Robotics Paper Award

Stochastic Strategies for a Swarm Robotic Assembly System

2009

Loic Matthey, Spring Berman, and Vijay Kumar.

Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA 2009), Kobe, Japan.

Experimental Study of Limit Cycle and Chaotic Controllers for the Locomotion of Centipede Robots

2008

Loic Matthey, Ludovic Righetti and Auke Jan Ijspeert.

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2008), pages 1860 – 1865, Nice, France.

A comparison of casting and spiraling algorithms for odor source localization in laminar flow

2008

Thomas Lochmatter, Xavier Raemy, Loic Matthey, Saurabh Indra and Alcherio Martinoli.

Proceedings of the IEEE International Conference on Robotics and Automation, 2008. (ICRA 2008), pages 1138 - 1143, Pasadena, CA.

Research interests

PhD subject: memory models with transient states.

Behavior of large scale neuronal networks

Working memory and memory representation

Analysis of spatiotemporal computations in the brain

Main projects descriptions		
Hybrid Reactions Modeling for Top-down Design Framework	Master thesis	2008
GRASP Lab, University of Pennsylvania, Prof. Vijay Kumar.		
SWIS Group, EPFL, Prof. Alcherio Martinoli.		
We used a Chemical Reaction Network abstraction to represent, simulate and optimize a system of multiple robots performing an assembly task. Convergence results were derived for the optimization process and a physical simulation of the robotic platform confirmed the usability of the framework. The model was simulated using ODE approximations and exact stochastic simulations, with reaction rates theoretically initialized and iteratively fitted.		
Chaotic systems for escape and exploration in robots	Semester project	2007
Biologically Inspired Robotics Group, EPFL.		
We developed a coupled oscillator controller based on Rössler oscillators, able to generate both limit cycle and chaotic behaviors through bifurcation. We develop an experimental test bench to measure quantitatively the performance of different controllers on unknown terrains of increasing difficulty. Inspired by the work of Prof. Y. Kuniyoshi on Chaotic Fields.		
Animal learning and its optimality in the hole-box task	Course project	2008
W. Gerstner, Unsupervised and reinforcement learning in neural networks, EPFL		
We built and trained a temporal difference RL learning model of mouse behavior. We specifically addressed the effect of eligibility traces with respect to learning speed and power. Other projects in this course addressed principal component analysis and independent component analysis.		
Odor source localization algorithms on mobile robots	Summer project	2007
Swarm Intelligent System Group, EPFL.		
Known Odor Source Localization algorithms ('zigzag' and 'spiral') were implemented on the Khepera III robot. They were tested and compared in a wind tunnel with a real odor source. A fully working wind direction detector with thermistors was developed, based on a maximum likelihood decision approach.		
Simulation of immune system reaction to AIDS	Course project	2007
Modeling the Immune System course, EPFL		
We implemented and validated an existing model using a Hybrid System (de Boer, 2006) in Matlab. Its biological validity and relevance was discussed.		
Movement control and gait transition of a quadruped robot	Course project	2006

A.J. Ijspeert, Models of Biological Sensory-motor Systems course, EPFL

We studied locomotion of a quadruped Dog robot using different controller. We implemented a Central Pattern Generator of coupled oscillators. We then produced gait transition depending on an external drive signal. We also produced this transition using a biologically inspired CPG of saturating oscillators.