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Introduction

Recently, recurrent microcircuits have been used to learn complex
temporal computations.

However, the effect of feedback and chaos is still poorly understood.

Using a challenging temporal task, we show how they contribute to
the performance and their effect on the network’s behaviour.
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Task

second aspect of shaping that has been studied is associ-
ated with robot learning or reinforcement learning (Dorigo
& Colombetti, 1998; Savage, 1998, 2001; Saksida, Ray-
mond, & Touretzky, 1997; Singh, 1992), typically in the
context of navigation.

By contrast with these suggestions, we consider shaping
for the adult learning of the sort of complex cognitive tasks
that are popular for the elucidation of the prefrontal neural
architecture of cognition (Shallice & Burgess, 1991; Gilbert,
Frith, & Burgess, 2005; Koechlin, Ody, & Kouneiher, 2003;
Badre, Poldrack, Pare-Blagoev, Juliana amd Insler, & Wag-
ner, 2005). The main emphasis in the computational mod-
eling of these tasks has so far been in developing
architectural mechanistic elaborations (Frank, Loughry, &
O’Reilly, 2001; O’Reilly & Frank, 2005), to overcome the
complexity of learning. However, shaping is extensively
used in training human and animal subjects in order to
simplify complex learning; here, we seek to model it and
understand aspects of its power.

O’Reilly and Frank (2005), Hazy, Frank, and O’Reilly
(2007) suggested one of the most powerful and effective
architectures in their prefrontal, basal ganglia, working
memory (PBWM) model. This employs a gated working
memory (adapted from the long short-term memory
(LSTM), architecture of Hochreiter & Schmidhuber, 1997;
Gers, Schmidhuber, & Cummins, 2000) in an elaborate
overall structure. O’Reilly and Frank (2005), Hazy et al.
(2007) illustrated their model using an abstract, hierarchi-
cal, version of the continuous performance working mem-
ory task (CPT) called the 12-AX task, which they invented
for the purpose. The complexity of this task arises from its
hierarchical organization, which involves what amounts to
subroutines.

Here, we build an unelaborated LSTM model (which
O’Reilly & Frank, 2005; Hazy et al., 2007, used as a compar-
ison point for the learning performance of PBWM) and
study the additional role that shaping might play in gener-
ating complex behavior in tasks such as the 12-AX. We
consider a straightforward shaping path for this task, high-
light the importance of the allocation of resources in shap-
ing, and assess the improvements in training times that
come from the external guidance, as a function of paramet-
ric task complexity. Finally, we look at the effects of shap-
ing on the flexibility of the network in dealing with
variations of the stimulus statistics (while keeping the
rules constant), and with a shift in the task rules
themselves.

2. General methods

In this section, we describe the 12-AX task, the unelab-
orated LSTM network used to solve it, the particular shap-
ing path that decomposes the task into its elements, and
the learning methodology. One of the most important
questions in shaping is how to increase the capacity or
power of the network as new elements of a task are pre-
sented. In order to focus cleanly on the effects of shaping,
the main results in Section 3 depend onmanually allocating
new LSTM components at each additional step of shaping.
However, in Section 4, we show results from a simple

(uncertainty-based, Yu & Dayan, 2005; or error-based,
Zacks, Speer, Swallow, Braver, & Reynolds, 2007; Reynolds,
Zacks, & Braver, 2007) scheme for automatically allocating
these components. This proves that shaping can still be
effective without extra external intervention.

2.1. The 12-AX task

The 12-AX task (Fig. 1) is a complex problem involving
inner and outer loops of memory and control (signalled by
numerical, and particular alphabetic, inputs, respectively).
In the task, subjects see a sequence drawn from an alpha-
bet of the eight symbols 1, 2, A, B, C, X, Y, Z; every sym-
bol has to be followed by a response. The ‘target’ key (‘R’)
must be pressed for symbols defined as targets by the rules
of the task, and the distractor key (‘L’) for all other symbols.
There are two different inner loops, both of which are CPT
1-back tasks: subjects must declare as a target either X
when preceded by A (i.e., to the segment AX) or Y when
preceded by B (BY). These pairs appear without warning
in a stream of uniformly-selected random distractor pairs.
Every symbol not defining the end of a target pair should
be declared as a distractor. The outer loop is signalled by
the numbers, with a 1 meaning that the AX task should
be performed until the next context marker; and a 2mean-
ing that the BY task should be performed instead. The
numbers 1 and 2 themselves should also be declared to
be distractors (‘L’).

Different statistics and contents of the inner loops de-
fine different variants of the task. For ease of comparison,
we work with the version defined by O’Reilly and Frank
(2005) unless otherwise specified. In this, each random
pair consists of one of {A, B, C} followed by one of {X, Y,
Z}, and there are n ¼ 1 . . .4 pairs in each outer loop. The
outer loops are equiprobably 1 and 2. At least 50% of the
inner loops consist of potential target sequences AX or
BY. The other 50% are drawn uniformly from all 9 possible
inner loop sequences. An epoch is (arbitrarily) defined as
25 outer loops, and network activity is reset after each
epoch.

O’Reilly and his colleagues (Frank et al., 2001; O’Reilly &
Frank, 2005) defined successful acquisition of the task by
the absence of errors in two consecutive epochs. In our
simulations, we find this not to be sufficient, as a substan-

Fig. 1. The 12-AX task. Each symbol within a rectangle represents the
stimulus presented to the network at a single timestep. Required
responses are indicated by the letters above (‘L’, distractor, and ‘R’,
target). The outer loop, beginning with either a 1 or 2, determines the
correct target sequence (AX or BY) for the following n duplets (inner
loops). Adapted from O’Reilly and Frank (2005).
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Network solves the shaping subtask perfectly.

But Full 12AX task isn’t solved properly.

12AX: feedback

errors/epoch weak strong

non
chaotic

6.68 6.4

chaotic 6.31 5.2

Error patterns % errors coverage

1 · BY / 2 · AX 11.15 7.0 /1000

1 · AX · BY 7.7 6.5 /1000

2 · AX · BY 7.5 6.1 /1000

2 · BY · AX · BY 4.4 2.4 /1000

Memory capacity

How long can the network report a context?
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Important measure of context memory stability and outer loop size

Feedback stabilises memory

Slow decay of non-chaotic reflects variety of nonlinearity work points.

Chaos increases period of efficient recall, but reduces the stability.

Dimensionality reduction analysis [6]
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PCA analysis of reservoir activation reveals memory-state separation
and feedback effect.
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Not always a clear state separation anymore.

Computation is still localised in space.

Multiscale network

Build a network operating with distinct multiple timescales.

Helps with the conflicting memory scales needs of the 12AX task.
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Conclusions

Networks with temporal dynamics can solve shaping subtask, yet
fail on full task

Feedback increases relevant state separation

Chaos improves transient memory storage

Test case for dimensionality reduction

12AX Task requires multiple processing timescales, further work
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