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Abstract

This report presents the work accomplished by Löıc Matthey during his Master project from
Ecole Polytechnique Federale de Lausanne (EPFL). This project was a joint work between the
Distributed Intelligent System and Algorithms (DISAL) Laboratory at EPFL, Switzerland
and the General Robotics, Automation, Sensing and Perception (GRASP) Laboratory at
University of Pennsylvania, United States of America. It took place in the Master spring-
summer semester 2008.

We present a theoretical framework to design Top-down control scheme for arbitrary
systems. Being able to control a complex system using high-level instructions only is a
promising and attractive paradigm. Our approach is based on the use of a Chemical Reaction
Network model, used as a proxy to derive the control schemes. To test the application of
our method, we consider the Top-down control of a realistic multi-robots assembly platform,
simulated using a 3D physics simulator, Webots.

First we present the modeling of the robotic platform using a Chemical Reaction Net-
work. The free parameters are precisely fitted. We simulate the system using an ODE
approximation and an exact stochastic simulation. We find that the model can be made
to fit quantitatively to the experimental data, especially when using a stochastic simulation
approach.

Second we define an optimization and control scheme for a class of Chemical Reaction
Networks. We prove convergence results and write the optimization problem as a linear
program of the time of convergence of the system under constraints on the equilibrium value.
It allows us to design sets of reaction rates producing a specified converged behavior, in
polynomial time. This optimization provides precise controls of the system using only high-
level goals.

Finally, we map the optimized model down onto the realistic physical assembly platform.
We find that the system can be controlled using the optimized parameters of the model level,
but that small discrepancies can have disruptive effects.
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Chapter 1 Introduction

1.1 Problem overview

Self-assembly is everywhere.

At every scale, systems interact, collaborate and combine to create new bigger scale sys-
tems. Crystals are formed by nanoscale assembly of carbon atoms, cell membranes by the
arrangement of fatty acids into a lipid bilayer and human beings by the organization and
cooperation of their trillions of living cells.

Yet this process, being maybe so general and vast, is still tremendously unknown.
The study of self-organizing systems gives insight into the organization patterns of their

parts, and could help understanding and then modifying them.
The recent field of Swarm intelligence applies the self-organizing principle to many systems

and applications, ranging from algorithmic procedures (routing of packets, meta heuristics)
to team of multiple robots. This approach makes sense when the number of robots increases
to the point where a centralized or classical control methodology is not tractable anymore.
Interestingly, a similar problem occurs when the scale of robots and components starts to
shrink down dramatically. If the environment is intrinsically random and unknown, the
robustness factor promoted by self-organizing systems becomes a key factor.

Our interest goes towards that direction. We want to study systems whose dimension is
shrinking to the level where classical approaches are not applicable anymore. Furthermore,
we want to model those systems, and create a framework providing a complete control flow
to modify the behavior of those systems.

This might seem fairly trivial, but when the system under consideration is hard to study
by definition and not well-known, even the simplest control over them or insight in their
behavior becomes an appreciable achievement.

Our approach is the following:

• We propose an abstract way of describing the problem under study and the actions
needed to achieve its control. Our main claim is that it is possible to divide the
problem into two parts: an intrinsic system, on which we have no control, and an
augmented system, which encompass our additions and modifications made to modify
the behavior.

7
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• We propose to use a Chemical Reaction Network mathematical framework through all
this process to model the system under study. This framework will proves itself useful
for its flexibility and expressive power at the scale we are studying.

• We present a way to control the system via a Top-down design approach, first working
on the model and then mapping it back onto the studied system. Top-down design
peaks the interest nowadays, as being able to control a complex system using high-level
instructions only is a promising characteristic.

• Everything is presented and verified by referring to a specific system that we create
and study: a robotic platform performing a self-assembly of products.

We call it the Hybrid Reactions Modeling for Top-down Design Framework
(HyRToD). “Hybrid” because we will use both ordinary differential equations approximations
and stochastic simulations to simulate the model, depending on the context.

The robotic platform is actually simulated on a computer, by using a realistic 3D physics
simulator named Webots [1]. Webots is based on ODE, an open source physics engine for
simulating 3D rigid body dynamics [2]. Such a simulator allows us to performs systematic
experiments faster than real-time and with null fabrication costs.

This might seems strange to apply a framework we claim to be thought for micrometer
scale dynamics onto a high level robotic platform. We actually design the robotic platform
to give it characteristics usually shown at a smaller scale, and therefore only take advantage
of the robotic platform as a model system easy to measure and modify. This work focuses on
this robotic platform as a first test for our framework. Further works will consider smaller
scale applications to assess our initial assumption on our framework.

1.1.1 Relations to biological processes

Even though we apply our method to a robotic implementation, a fairly high scale system
by all means, we claim that this method is applicable to many different systems, especially
the ones governed by random dynamics.

We chose to create a robotic platform performing a self-assembly task on purpose. Having
robots carrying the building blocks and assembling them can be thought of as an idealization
of the self-assembly process taking place into the cell, for example the protein synthesis. If
we allow the building blocks to move around and assemble on their own, the added robots
will behave like enzymes, promoting some reactions.

Moreover, our method, using a Chemical Reaction Network model, is very easy to apply
on biological processes. This model has been extensively used in the study of biological
systems, and is very well understood by the community working in this field. This is an
added factor to the development of further interdisciplinary cooperations for the systems to
study.

1.2 Outline

This report is organized as follows: Chapter 2 defines precisely our goals and the abstract
problem definition and control flow we aim to study. Chapter 3 goes over the theoretical
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notions used in our work, and gives pointers to the available literature on the subject. Chap-
ter 4 presents extensively the specific system we are studying, namely the physical robotic
simulation of an assembly task. Chapter 5 introduces the representation of our specific sys-
tem into a Chemical Reaction Network notation, presents how we fitted the free parameters
and compare the simulated results with the physical measurements. Chapter 6 is dedicated
to the optimization step applied on our mathematical model in order to control its behav-
ior. Chapter 7 presents the Top-down mapping of the modified model towards the physical
system. Chapter 8 concludes the work and assess its validity and shortcomings.
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Chapter 2 Project description

2.1 Problem definition

We phrase the problem to solve as follows:

Consider an intrinsic complex system with observable dynamics and a measurable
performance metric. Let this intrinsic system attains a performance metric value
X. Introduce agents into the system with designed specific behaviors, getting an
augmented system. Can we design such behaviors so that the performance metric
of the augmented system attains an new value Y , corresponding to a better or
specific behavior?

We will refer at that question as the Intrinsic System Augmentation Problem
(ISAP). We believe that this formulation accurately describe an engineering methodology
for different applications. Moreover, we argue that it is easy to represent different problems
with that framework.

The problem is decomposed in its most abstract formulation in Section 2.2. But for this
project and thus the rest of this report, we only look at a specific instance of it. Referring
to the vocabulary and decomposition of Figure 2.1, we have:

1. An intrinsic complex system representing an assembly task of a puzzle (Section 4.1).
This assembly task is either a self-assembly process or an assembly process depending
on the components we put in and how we look at it. This intrinsic complex system is
created on a simulated robotic platform (Section 4.3).

2. A mathematical model based on a Chemical Reaction Networks formulation (Chap-
ter 5). We chose this formulation for its versatility and power, and because it is a well
studied model with efficient simulations and theoretical insights.

3. An control/optimization of the model using a Convergence time optimization scheme,
following the work done on Rapid Mixing Markov Chains for redistribution of a swarm
of robots on multiple sites [3]. This performs a continuous optimization of our Chemical
Reaction Network, namely its reaction rates. We do not address directly in this work
the discrete optimal design of this Chemical Reaction Network. See Chapter 6.

4. An augmented system presented in two different ways: either modifying the behavior
of the available agents or introducing new agents with designed behaviors. These are

11
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two aspects of the same augmentation process, which have different applicability fields
and intrinsic difficulties. See Chapter 7.

2.2 Decomposition

Starting from the definition of the ISAP, we derive a very abstract decomposition into smaller
scale components. See Figure 2.1 for the general decomposition of the problem. See Sec-
tion 2.2.1 for a precise definition of each elements.

Intrinsic Complex 
System Mathematical Model

Optimized 
Mathematical Model

Augmented Complex 
System

fit

control problem 
implementation

conduct 
augmentation

modify

verify

Figure 2.1: Intrinsic System Augmentation Problem decomposition, top-level components
only.

Here is the rationale behind this decomposition:

1. We have an Intrinsic Complex System that we are able to measure in some way. We
will actually present a different formulation of this Intrinsic Complex System, for cases
where the real system is not easily measurable, the Compliant Platform. We need
to have some insight on this Intrinsic Complex System, because we want to model it
mathematically.
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2. We construct and fit a Mathematical Model of this Intrinsic Complex System. We
can use this Mathematical Model to predict the Intrinsic Complex System, and will do
several iterations to get the best model possible. Different modeling approaches can be
taken, as well as simulations strategies for each of them.

3. We take this Mathematical Model and express it as a control problem to be solved. The
goal can be to optimize the model for a given metric, or to change its behavior towards
a specific one. This can take a lot of forms, depending on the modeling framework used
and the level of plasticity available in the model and initial system. This new model
can also be simulated, to verify its behavior.

4. This Augmented Mathematical Model is used to direct the augmentation of the Intrinsic
Complex System into an Augmented Complex System. By “augmented”, we mean
modifying the system global behavior using one of some of the following ideas: adding
new components, modifying behaviors, modifying components. This is a Top-down
approach to complex system control. Once we know how to augment the intrinsic
system, we have to verify that it indeed behaves like the optimized model. Hence we
perform several iterations of the augmentation, so that the optimized mathematical
model actually captures the new Augmented Complex System.

5. We can then study the Augmented Complex System, to see what was changed for it to
behave accordingly to our goals. This could give insights for processes that are hard to
study, especially when taking the Compliant Platform approach.

2.2.1 Project components

Intrinsic Complex System

See Figure 2.2 for the diagram. This component represent the actual system we want to
study and modify.

There are two possibilities for this component:

 Intrinsic Complex System

System state 
measure

Existing system Created system

Compliant Platform 
instanceSystem definition

Performance 
measure

Figure 2.2: Intrinsic Complex System component. Black arrows show inter-component com-
munication, with other top-level components. Compliant Platform Instance in bold is defined
in another diagram.
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Existing system: In that case, we have a complex system already existing. Such applica-
tions could be existing platforms for self-assembly, or an existing natural process. We
need to be able to measure the state of this system in some way, as well as assessing its
performance according to a desired metric. These informations are then used by the
Mathematical Model component or to assess the performance of the system.

Created system: If we do not have a complex system to observe, or if the actual complex
system is not measurable, we can bypass that by creating an intrinsic complex system.
For that we introduce a Compliant Platform instance. A Compliant Platform is a
real or simulated platform allowing a big variety of problems reproduction. The aim is
to propose a set of agents that can reproduce any given problem compatible with their
hardware capabilities. Moreover, it is possible to ensure certain properties, for example
a well-mixed property.

In this work, we use a Created system approach to reproduce a self-assembly task using
a macro-scale robotic platform. The system is created using a physical simulator, Webots.
More on that is presented in Chapter 4.

Mathematical model

The Mathematical model component aims at reproducing as well as possible the Intrinsic
Complex System, while being quicker to simulate. See Figure 2.3 for the diagram of this
component.

Mathematical Model

Model creation SBML file 
definition

Model fitting

Model simulation

System 
prediction

Figure 2.3: Mathematical Model component. Black arrows show inter-component communi-
cation. Dotted arrows show termination dependencies between components.

• The first step is to create the model. This creation consists on the choice of a modeling
notation and depends on the knowledge we have about the system. As precised earlier,
we are working with Chemical Reaction Networks, so our models will be done in this
framework. A convenient and standardized format for such networks exists: System
Biology Markup Language (SBML) [4]. This is a XML-based file format designed to
store systems of chemical reactions. This is the closest to an accepted standard we
found to write our mathematical models.
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• The model has to be fitted in some way to the Intrinsic Complex System. If we are
using an existing complex system, then this is a quite complex problem, especially if
we do not have precise insight in the behavior of the system. We can use methods like
Bayesian Inference or MCMC (Markov Chain Monte Carlo) to fit the model on the
experimental data. If we are using the Compliant Platform, than we assume that we
can measure much more precisely the processes taken place, and this model fitting is
more straightforward.

• We also need a simulation framework for the mathematical model. For Chemical Reac-
tion Networks, a lot of literature is available on that. As we will present in Section 3.2.2,
we use either a direct Stochastic simulation or a simple ordinary differential equation
solver.

Optimized Mathematical model

We use the mathematical model of our system as a thinking abstraction and an optimization
medium. The model is easier to manipulate and adapted to common optimization and design
techniques.

Moreover, we will use optimizations scheme that work “blindly”, that is which have no
insight into the system concepts. We think it makes the optimization more fair. Humans
tend to make bad assumptions or look only for particular patterns when trying to optimize
a system, we think enforcing the “blindness” in the algorithm could prevent that.

Our models are multi-affine systems of equations, which are not trivial systems to analyze
and optimize. We will address this issue and how we tackled it in Chapter 6.

See Figure 2.4 for this component’s diagram.

Optimized Mathematical Model

Control problem definition and 
resolution

Model simulationControlled model 
predictions

Augmented Complex 
System creation

Figure 2.4: Augmented Mathematical model component. Black arrows show inter-component
communication. Dotted arrows show termination dependencies between components.
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Augmented Complex System

We then need to map the new mathematical model onto the complex system, a step we call
system augmentation. This is a Top-down optimization approach, which we think is more
appropriate for the kind of complex systems we are handling. This makes even more sense if
we do not know a-priori how to change the behavior of the intrinsic complex system, because
of its complexity. Working on the model gives another level of abstraction that helps to
understand the acting processes of the complex system.

Identifying what has to be changed to produce the behavior of the modified model is a
great challenge. As we will see in Section 6.3, our test case is actually very easy to modify.

See Figure 2.5 for the component’s diagram.

 Augmented Complex System

Augmentations 
definition

Controlled 
augmentations

System state 
measure

Performance 
measure

Figure 2.5: Augmented Complex System model component. Black arrows show inter-
component communication. Dotted arrows show termination dependencies between com-
ponents.

2.3 Examples

We quickly present some examples of several systems into our Intrinsic System Augmentation
Problem framework.

2.3.1 Nanoscale self-assembly

The intrinsic system consists of the possible interactions and bonds. The augmented sys-
tem can be abstracted as any modification applied to the system, that modify the intrinsic
behavior. For example, changing the pH of the solution so as to activate different sticking
surfaces is an action of the augmented system.

2.3.2 LEURRE project

LEURRE is a project on building and controlling mixed societies composed of animals and
artificial agents [5]. A small robot capable of infiltrating a cockroach group was developed.
The cockroach group is put in a arena with several shelters of specific luminosity. Cockroaches
decide on a shelter according to the luminosity and the number of cockroaches under it. This
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is a self-organized decision process. The robot were able to infiltrate this group and to direct
the global decision of the group. The infiltrated robots made the cockroaches go under a
light shelter, a configuration which was never attained with the cockroaches group only.

Intrinsic system: the cockroach group. The metric is the probability of the different shel-
ters as final decision.

Augmented system: the cockroaches and the robots. The robots choose a different shelter,
this action in turn modify the final probability of the shelters.

2.3.3 Enzymes

In living cells, chemical reactions takes place whenever compounds needs to be transformed
or created. For chemical processes needing energy to occur, one usually see a energy barrier
mechanism, see Figure 2.6. Before a reaction can occur, activation energy has to be provided,
to pass the barrier. When adding enzymes to the system, they catalyze the reaction and
produce a virtual decrease of the needed activation energy. Enzyme can act by improving
fitting of compounds, stabilizing transitions or modifying orientations.

Figure 2.6: Energy barrier and catalyst effect of enzymes.

Intrinsic system: The original chemical reaction, with specific activation energy and rates.

Augmented system: The catalyzed chemical reaction with the introduction of the enzyme.
The enzyme performs an action (binding with change of conformation) that reduces
the activation energy and increase the rate of the chemical reaction.

2.3.4 RNA translation into proteins

In living cells, DNA contains the blueprints for every functional proteins. In the cell nucleus,
it is first transcripted into RNA, which is translocated to the cytoplasm to be translated
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into proteins. The RNA strands contains the building plan, and special proteins, called
ribosomes, attach on it in order to “read” it and assemble amino acids (the basic building
blocks of proteins) according to this plan. These amino acids are created as a linear chain (first
structure), that fold onto itself according to low-energy bounds, acquiring a tridimensional
structure called a conformation (second and tertiary structure). A protein is a sequence of
amino acids in a specific conformation that allows its functional activity.

Intrinsic system: Ribosomes assemble amino acids according to the RNA code. The ob-
tained first structure protein then folds itself into a specific conformation.

Augmented system: Chaperone protein helps the folding of the protein, possibly modify-
ing the obtained conformation or allowing the initial one under different environment
conditions (heat-shock response).



Chapter 3 Field overview

3.1 Self-assembly engineering

This work has been triggered by an interest in the simulation and modeling of self-assembling
processes. Such process can take many forms, from nano-scale assembly [6, 7, 8] to control
of biomolecules [9, 10, 11, 12] up to modular robotics [13, 14]. This field is gaining more and
more attention nowadays [15].

3.1.1 Microscale assembly

Of all these applications, microscale assembly is the one which gathered the most interest in
the last few years and which promises the most interesting future applications [15, 16].

While pursuing the race towards even more miniaturization, we are facing new problems
that current technologies and methodologies have trouble solving. The lithography process,
used to create all the microchip used now, is getting to its limit [15]. New approaches become
necessary.

The current technology for microscale assembly is still in its infancy [15]. The current state
of research aims at attaching pieces together at specific positions. This either creates bigger
scale components, or combines functional devices created via traditional methods. Several
methods are currently under study [17, 18, 19, 6], ranging from attaching mechanisms to
prototyping methods.

However, such mechanisms are still far from the kind of control we have on the higher
scale assembly, and all those processes have a very low production yield. But microscale
assembly opens the door to a whole new world of possibilities for integration, system repairs
and even active drugs.

An interesting distinction for self-assembly, made by Whitesides [15], is the difference
between static and dynamic self-assembly. In static self-assembly, the components once
formed stay stable and stop dissipating energy. In dynamic self-assembly, energy is dissipated
and should be produced or given in some way. A living cell is a typical example of dynamic
self-assembly.

Our works aims at studying such dynamical self-assembly, yet at a scale closer to biology
(millimeter scale) than microscale scale.

19
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3.1.2 Modular robotics

As we aim at using robots as a platform for our work, our works is similar to studies done
in modular robotics.

Modular robotics encompass any robotic system that can deliberately change its own
shape, in order to adapt to new circumstances, perform new tasks or recover from dam-
age [13][20].

A work close to our approach is the one done by E. Klavins on programable self-assembly [14,
21, 22, 23]. His work revolves around the assembly of triangular robots, moving around ran-
domly on an air table and capable of assembling themselves according to a given plan.

The plan itself is constructed with a grammar approach, working with graph grammars.
A graph grammar is a set of rules transforming a graph when applied on it. The assembly is
represented as a sequence of application of rules, transforming the initial set of products into
a final graph representing the final assembly. Klavins showed methods to construct graph
grammars automatically for a given final assembly [23].

These grammars are then used with the robots to converge to a final shape constructed
only by self-assembly.

In the first versions of this approach, the particularities of the assembling process, such as
geometric difficulties and disassemblies due to shocks, were not taken into account. Klavins
accounted for them by measuring the kinetic rate constants of assemblies, and then trying
to modify the plan accordingly [14].

Our approach on the other hand, directly takes into account those reaction rates, making
them central and essential to our approach. We think that finding an “optimal” theoretical
plan is useless when this plan could become “sub-optimal” under the constraints of the reac-
tions rates. These rates directly show the physical characteristics of the system to assemble,
they are not easily modified.

This is also why we will use an approach using Chemical Reaction Networks for our plans
and models: they are build to take into account the intrinsic reaction rates of the systems.

Furthermore, we study a system of heterogenous parts, adding a specificity and complexity
requiring different analysis and techniques.

3.2 Chemical reaction networks

3.2.1 Theory

Through this project, we use a Chemical Reaction Networks notation and framework as
mathematical model. This has been introduced in the context of chemical processes in
1979 [24] and has been very researched since then.

This level of representation is at the same time very general, offering representation of very
different processes, and also quite precise and detailed, allowing to construct full dynamic
simulations of the system behavior on a computer. This introduction to chemical reactions
is adapted from the textbook of J.Wilkinson [25].

A general chemical reaction takes the form:

m1R1 +m2R2 + . . .+mrRr −→ n1P1 + n2P2 + . . .+ npPp (3.1)
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Where r is the number of reactants and p the number of products. Ri is the ith reactant
molecule and Pj the jth product molecule. mi is the number of molecules of Ri consumed in
a single reaction step, and nj the number of molecules of Pj produced. The coefficients mi

and nj are known as stoichiometries.
A chemical reaction networks consists of several of these reactions, possibly sharing reac-

tants and/or products. If a reaction can occur in both directions, meaning that the products
in the right part can be transformed in the reactants of the left part with the same stoi-
chiometries, we call this reaction reversible. A reversible reaction is written as follows (for a
simple dimerisation example), see Eq. (3.2).

2P 
 P2 (3.2)

Such networks represent the possible actions of the systems and the relations between
the elements. But it does not represent the dynamics directly. To add this information, we
have to make an assumption on the type of dynamics governing the system.

In chemical system, a classical governing dynamic is a mass-action stochastic kinetics [26].
In this formulation, we associate to each reaction Ri a stochastic rate constant, ci, and an
associated rate law (or propensity function) hi(x, ci), where x = (x1, x2, . . . , xu) is the current
state of the system. The form of hi(x, ci) (and the interpretation of the rate constant ci), is
determined by the order of reaction Ri. In every cases, the propensity function has the same
interpretation: conditional on the state being x at time t, we then have that the probability
that an Ri reaction will occur in the time interval (t, t+ dt] is given by hi(x, ci)dt [25].

The classical orders of reactions and their propensity functions are as follows:

Zeroth-order Ri : ∅ ci−→ X

This represents a constant rate of production of a chemical specie.
hi(x, ci) = ci.

First-order Ri : Xj
ci−→?

This is the spontaneous transformation of a reactant into new products.
hi(x, ci) = cixj , as there are xj molecules of Xj .

Second-order Ri : Xj +Xk
ci−→?

This represents a reaction between a pair of reactants.
hi(x, ci) = cixjxk, for all combined pairs of molecules Xj , Xk. Special case if Xj = Xk:
hi(x, ci) = ci

xj(xj−1)
2 .

Higher orders Those can be transformed back into second-order reactions, as we make the
assumption that a third-order reaction is impossible and actually corresponds to the
combined effect of two second-order reactions.

This allows then to simulate exactly the modeled process assuming we know all the rate
constants and rate laws.

Nowadays, simulation of multiscale systems have become the new interest. A multiscale
system is characterized either on the timescale aspect or the copy number of reactants [27].
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1. For the timescale aspect, the different scales arise when some reactions are much faster
than others. They then quickly reach a stable state, and the global dynamics of the
system is driven by the slow reactions.

2. For the copy number of reactants, the difference comes from the relative size of the
populations. Species with a small population are best viewed as discrete stochastic
processes, while the large populations should follow a deterministic model.

Such systems, called stiff systems, present new problem to commonly used simulations al-
gorithm. They also are of increasing interest in system biology, as a lot of real biological
process operates on multiple scales.

3.2.2 Simulation algorithms

Several ways of simulating chemical reaction networks are available.

Ordinary differential equation

The simplest one, and the most used by chemists because of thermodynamical limits and
number of molecules involved, is to use the associated ordinary differential equation (ODE).
One can represent the populations (or concentration, given a finite volume V ) of all products,
and treat the reactions as outflow and inflow acting on those populations. If we take the
simple dimerisation system (3.2), assuming a forward rate k+ and a backward rate k−, we
obtain:

Ṗ = −k+P (P − 1)
2

+ k−P2 (3.3)

Ṗ2 = k+P (P − 1)
2

− k−P2 (3.4)

Such a transformation is automatic for any chemical reaction network with reactions up
to second-order. We can then simulate it using classical numerical integration methods. Note
that ODE use continuous number for the populations. Therefore, this approximation can
be wrong when the copy number of elements (the number of elements) is small. In classical
chemical contexts, the copy numbers are very high (near Avogadro’s number), so this is not
an issue.

Gillespie Stochastic simulation algorithm

It has been shown by Gillespie [28, 29, 30, 31, 32], that it is possible to perform an exact
simulation of a chemical reaction networks. The algorithm is referred to as the Direct Method
or Gillespie Stochastic Simulation Algorithm (SSA). It takes advantage of the fact that the
time-evolution of a reaction network can be regarded as a stochastic process, and, because
the propensity functions depends only on the current state, the system is a continuous time
Markov process with a discrete state space. The time to the next reaction follows a expo-
nential distribution Exp(h0(x, c)), with h0(x, c) =

∑v
i=1 hi(x, ci) and v reactions. The type
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of reaction is independent of that time, and is given by the probability hi(x, ci)/h0(x, c). We
can then simulate the system for each reaction events, up to a desired finishing time.

This algorithm, however, is highly inefficient when the number of products and reactants
increases. Several optimization have thus been proposed to cope for that limitation.

Tau-leaping

Gillespie first proposed optimization, the tau-leaping optimization [33], aims at make the
system evolve for a time τ where a certain amount of reactions fire instead of simulating
every reaction. It is based on the assumption that the propensity functions aj(x), governing
the rates of firing of the reactions, stays nearly constant for a certain time τ . It is then possible
to approximate the number of reaction firings during that time τ by a Poisson process of rate
aj(x)τ .

Automatic ways of finding τ also have been proposed [34], as well as different variations of
the tau-leaping: Implicit tau-leaping (performs better for stiff systems) [35], Trapezoidal tau-
leaping (more efficient than explicit tau-leaping), and the latest explicit-implicit tau-leaping
(combination of the two regimes) [36].

The principle of simulating several reactions events at the same time is also used in
another very known algorithm, called the Gibson & Bruck Next Reaction algorithm [37].

Multiscale systems

To simulate multiscale systems with different timescales, Gillespie proposed the Slow Scale
Stochastic Simulation Algorithm (ssSSA) [38, 36, 39, 40]. This algorithm uses a quasy steady-
state approximation for the fast reactions of the system. The algorithm explicitly simulates
only the slow reactions, the fast ones take values governed by steady-states assumptions of
convergence. Gillespie defines for that virtual fast processes, that are not touched by the
slow reactions. These virtual fast processes can then gives the new populations for the fast
species, without simulating them explicitly.

Other ways of simulating multiscale systems have been proposed [41]. One of them
suggests to simulate the fast reactions using a deterministic approximation [42, 43, 44]. The
goal is to replace the stochastic processes of the fast reactions with big population by an ODE.
In this manner, fast simulation of the fast reactions can be attained, while keeping stochastic
simulations for the slow reactions. This Stochastic-deterministic approximation may still pose
some convergence problems, as no real proofs of convergence toward the stochastic averages
of the initial fully stochastic system have been provided.

To complete this overview, there are also algorithm simulating the reactions in a spatially-
dependent context, by using diffusion methods [45, 46, 47, 48].

Several toolkits implementing those simulations algorithm are available [49, 50, 51].

3.3 Considerations on the assembly plan

Continuing on the discussion with Klavins’ approach to self-assembly, we discuss the problem
of the assembly plan and its relation to the reaction rates.
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The complete problem of constructing a final assembly from initial parts can be divided
into two parts: a discrete and a continuous one.

1. The discrete part consists of the assembly plan itself. It represents a finite and discrete
set of rules to construct the final target.

2. The continuous part is the rate of evolution of the assembly, driven by the assembly
plan but subject to continuous reaction rates. Those rates can take continuous values
which will affect the final outcome of the assembly.

We argue that, taken to the limit, the problem is actually completely continuous. The
reaction rates, when pushed toward 0, will deactivate a part of the assembly plan automati-
cally.

We wish then to study the optimization of these continuous reaction rates, as we think
they might give more insight on the relations between parts of the plan and as they encompass
the same power as the discrete part.

In order to go in that direction completely, one would need to consider the “full assembly
plan”. Such a plan would consists of every possible assembly steps towards the creation of
a final assembly. Indeed, it would become quite big quickly, but pruning is possible, mainly
because we assume that we have heterogenous pieces that have highly specific assembling
sites. Such a plan is easily obtained using any enumeration method, for example Pólya
enumeration [52].

But in this work, we only consider a subset of this “full assembly plan”. We assume that
we are given a part of this plan, which already creates the final assembly. We then study
only the effect of the reactions rates on this plan, and see what parts of it an optimization
technique will push forward or cut down. This is an assumed simplification for the current
work.



Chapter 4 Puzzle test-case implementa-
tion

We apply our framework and methodology on a specific problem: A puzzle assembly task.
The goal is to assemble several heterogenous pieces together to create a specific final shape.
This is done using a robotic platform, simulated using a realistic physics simulator: We-
bots [1].

This allows us to get a measurable system which could be transformed into a real platform
pretty easily.

4.1 Definition of the puzzle test-case

We define the puzzle test-case as follows:

• Let a puzzle of square shape, with area 25, be constructed out of 5 pieces of area 5 each
with different given shapes.

• Let the final assembly shapes Sk of this puzzle be know.

• Let the set of assembly plans Pk leading to the final shapes Sk be known.

• Let the puzzle pieces assemble by bi-directional connections. One connection is enough
for two pieces to be attached. These connection and their positions on the different
pieces are known.

• Pieces can be assembled and disassembled.

• Piece can lie around or move randomly. We study those two possibilities, but we
concentrate on the first one.

• Consider an arena of sufficiently large size so that small scale interactions dynamics
can be ignored.

• Fill this arena with ni initial pieces of each shape i. Let these ni number be the exact
numbers needed to construct N final assemblies.

• Consider M robots, able to pick up pieces and to make them assemble and disassemble.

• Allow a recognition by the robots and by the pieces of the shapes and connection points
when an encounter occur.

• Then:
How can you manipulate those initial pieces so that after a time Tf , the number of

25
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assembled puzzles XSk
corresponds to desired values?

We introduced here the goal of this whole test case: to control the output of the system
in term of assembled puzzles.

This can also be applied on the fly, to control what the system should produce. We want
here to take advantage of the modularity of the platform, as our robots can produce any
desired assembly.

An application of that flexibility can be what we call a green manufacturing process. We
mean by that the automatic recycling of finished puzzles S1 to create new puzzles S2, only
by telling the robots what we want as final assembly. This will be studied in Chapter 6.

4.2 Scale and complexity considerations

We have a lot of different possibilities for the robot behaviors. We chose to consider different
directions depending on the available information and capabilities of the robots. If we want
to produce something really scalable, then using robots as simple as possible is interesting.
But on the other hand, this would most likely affect the performances. So we will try to
measure this with respect to several considerations.

Assembly plan known Local plans only
Local information Current study Future work

Global information Market-based, Assembly line Market-based

Table 4.1: Robot behavior depending on available informations.

The first distinctions we make are shown in Table 4.1. The most important criteria is
the availability of information about the robots and pieces positions and states. If we have
a Global information state, then the problem reduces to a classical assembly at the macro-
level. With multiple robots, this could be solved using Market-based strategies, which do not
interest us here. So we only consider having Local information about the pieces and robots
positions.

The next distinction is the availability of the full assembly plan. Knowing the full assembly
allows to optimize a-priori a plan and to stick to it when building the puzzle. But this needs
some computing capabilities and communications between pieces and robots. A more crude
possibility is forbidding this full knowledge, and having to recreate the global plan only from
local connections possibilities.

We are currently studying the Local info / Assembly plan case. The Local info / Local
plan case is very interesting but will be done in further works.

Furthermore, we have the following choice to make: should the pieces be disassembled or
not? As we will develop during the project, this depends on the possibility of bad assemblies
and on the flexibility of creation needed. Indeed, if we want to apply our system to the green
assembly process, we have to be able to destroy final products into simpler ones.

This is in accordance with biology, which tends to reuse products and compounds for
different purposes. This allows a flexibility and adaptation necessary when we do not know
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the goal a priori.
A quick precision should be done on the moving capabilities of pieces. We concentrate here

on the task of assembling immobile pieces. In this case, the robots behaves like transporters.
But, seen more abstractly, this is the same as having moving pieces on their own. We
also study the case of pieces moving around randomly. This simulates more closely a self-
assembly task, driven only by geometric constraints for the assembly. An interesting scenario
is to add robots to the system with moving pieces. In this setup, the added robots behaves
like enzymes: they modify the system by acting on it. This creates three different scenario:
the robot-transporter, the self-assembling pieces and the mixed assembly.

In all this section, we only consider forward assemblies of pieces, that is, we never disas-
semble things. This will be explored further on, in the Augmentation step, Chapter 7.

4.3 Webots implementation

We chose to develop our puzzle test case using the realistic physic simulator Webots [1]. This
allows us to simulate robots and assembly process, while still being affected by noise and
geometric properties. We could have developed a simpler simulator, for example a point-based
simulator for an assembly process, but we think that the added physical reality of Webots
makes it easier to understand how real-world problems could behave in our framework.

Webots offers directly a capability to assemble our puzzle pieces: connectors. These
connectors behaves like active electromagnets, that can be turned on and off. The goal is to
mimic the assembly process of molecular compounds, tied by low-energy bounds.

The first implementation of the controllers for the robot transporters scenario on Webots
has been created by Spring Berman for her project in the course MEAM620 by V. Kumar
at the University of Pennsylvania. Löıc Matthey created the Webots worlds and subsequently
modified the controllers code to improve scalability, add the support for arbitrary assembly
plans, change the movement patterns and create the self-assembly and mixed-assembly sce-
narios.

4.3.1 Pieces

A piece consists of a solid body, several small feet and several connectors. There is only one
top connector for the robots to carry the piece around. There are several side connectors,
to connect to other pieces, their number depend on the piece type. See Figure 4.1 for an
example of such a piece.

We created a set of four different pieces, each with different shapes and different connect-
ing capabilities. See Figure 4.2 for the different pieces.

These pieces are endowed with several other capabilities:

1. They have a radio emitter/receiver to communicate with robots or other pieces. The
communication range is set to 40cm for the pieces.

2. They can activate or deactivate their connectors at will.
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Figure 4.1: Piece overview. Top connector is for the robots, side connectors are for the other
pieces.

Figure 4.2: Four different pieces created, with their different connecting capabilities.

3. They know what type they are and where are their connectors.

4. They know the assembly plans to create the different final puzzles. They also know
how they should be oriented for optimal assembly with a give other piece. We will see
later that this can be relaxed.

5. They are fairly intelligent, meaning that they have computational capabilities. The
pieces can communicate with other robots, maintain a internal state of their situation.

Assembly plans

We consider two final puzzles in our project. There are several way of assembling them. We
first study two specific plans, but will generalize that when trying to control the chemical
reactions network. The two plans and the different mid-assemblies resulting are presented in
Figure 4.3.

4.3.2 Robots

For the robots, we used the KheperaIII model available in Webots. It offered a small scale
yet not too crude mobile robot for our first implementation.

In order to manipulate the pieces, we equipped the robots with a protruding carrying
arm (see Figure 4.4). This arm consists of a simple bar with a mobile Connector at its end.
The Connector is allowed to turn around 360◦ using a rotational Servo, in order to orient



Löıc Matthey: HyRToD Master project 29

1

2

3

4

5

6

7

2

F1

1

2

3
4

(a) First final puzzle plan

1

2

3

4

5

6

8

F2

2

2

1
5

6

(b) Second final puzzle plan

Figure 4.3: Assembly plans for the two final puzzles considered. All groups of connected
pieces (mid-assemblies or products) are given an unique name in a form of a number. Arrows
show the assembly steps, with their name as number.

the carried piece in any possible direction. The length of the arm is sufficient to rotate any
mid-assembly without hitting the robot’s body.

When being carried, the piece does not touch the ground, as they are very light-weight.
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(a)   (b)  (c)  (a) KheperaIII robot.

(a)   (b)  (c)  
(b) Protruding arm, with rotat-
ing connector.

Figure 4.4: KheperaIII robot model in Webots, with protruding arm.

The robots have similar components to the pieces:

• They have a radio emitter/receiver, to communicate with pieces and other robots. The
communication range is set to 60cm for the robots. This local radio is also used as a
bearing detection mechanism, giving the relative angle between two emitter/receivers.
This is used when a robot needs to grab a piece, or when the piece has to be rotated
by the rotating arm of a given angle.

• They can control the rotation of the servo at the tip of their protruding arm.

• They communicate with their carried piece to know what type it is and what is its
relative angle.

• They know the assembly plans to create the final puzzles.

• They move around randomly in the arena, while avoiding other robots and walls using
their infra-red distance sensors.

Movement pattern

We want our robots to be evenly distributed around the arena in average. This property, the
well-mixed property, allows us to use non-spatial mathematical models.

In order to satisfy this property, the robots have to move around in a specific manner. We
chose to make them move in a bacterial-like movement. This movement, “chemotaxis”, allows
bacteria to move around, search for nutriments and avoid dangers. It is based on a forward
movement, and random “tumbling”. A “tumble” is a random turn. The bacteria sample the
concentration of nutriments or dangerous chemicals, and performs a temporal integration on
them while moving. An increase in a nutriments concentration tends to reduce the number of
tumbling, promoting movement towards the spacial gradient. When the gradient is constant,
the bacteria performs tumbling at a constant rate [53, 54, 55, 56].

In our case, we do not follow any gradient. We only make the robots move forward for a
random distance, and then turn randomly around, before moving forward again. This creates
a random movement that is supposed to cover more uniformly the space.

We verified this assumption using Webots and our robots. See Figure 4.5 for the average
space covered by five robots over 5 runs of 10 minutes each. We see that the space is nearly
evenly covered, which shows that our property is ensured.
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Figure 4.5: Average coverage of the arena by 5 robots moving in a brownian-like motion,
over 5 runs of 10 minutes.

Behavior

The robots and the pieces are placed randomly in an hexagonal arena of fixed size. They can
only communicate in a local range: 40cm for robot to piece, 60cm for robot to robot. The
behavior is then as follows:

• Robots move around, searching for lying pieces. They avoid the walls and other
robots using a Braitenberg vehicle controller. The move around randomly following
the bacterial-like movement pattern presented before.

• Robots and pieces broadcast messages locally, telling their current configuration and
state. A configuration is a unique name for a set of assembled pieces, for all possible
assemblies present in the plans we are using to build the final puzzles.

• When a robot receives a message from a free piece (i.e. they are in a small communica-
tion range), it aligns with it, go towards it and carries it. This alignment uses relative
range and bearing offered by the emitter/receiver nodes of Webots. See Figure 4.6(a).

• While carrying the piece, the robot start moving around again, searching for another
robot with a compatible piece. Robots communicate with small range messages broad-
casted at all time.

• When two robots carrying pieces come into communication ranges, they exchange mes-
sage and look into the assembly plan. If their pieces correspond to no stored assembly
step, they moves away from each other.

• If their pieces can be assembled, the robot start an assembly procedure. According to
the piece type and the assembly plan, the robot first orient their pieces so as to show the
good connector in front. Again we use the relative range and bearing of emitter/receiver
nodes to perform that alignment. This step will be relaxed in a experimental scenario
to account for a random orientation of pieces for the assembly. See Figure 4.6(b).

• Then the robot align each other. The robot starts to approach, allowing the pieces to
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(a) Encountering between a robot and a piece. The robot aligns itself
with the piece.

(b) Alignment of piece by the rotating connector

(c) Approach between two robots and assembling of pieces.

Figure 4.6: Assembly behavior of robots and pieces.

lock to each other. When the two pieces are locked, one of the robot leaves, letting
the other one with the assembled pieces. This robot resume searching for a new piece
to assemble with, while the newly freed robot starts looking for a lying piece. See
Figure 4.6(c)

4.3.3 Experiment platform

Our goal is to reproduce experiments extensively and study the data in Matlab. We thus need
a pretty robust system, as well as a centralized way to prepare and store these experiments.

The robustness is ensured by adding several checks and reset capabilities in the behaviors
of the robots and pieces. There are still problems that could arise, for example due to
physical simulation problems, or a discrepancy between the actual state of the simulation
and the way the robots see it. We can only measure what the robots know, so this can create
some problems.

As a centralized medium for the experiments, we use a supervisor node in Webots. This
supervisor takes care of the experiments and writes the results to different files. It resets the
experiments after a maximum elapsed time and takes care of the initial random positions of
all pieces and robots. When an assembly step occurs, robots send specific messages to that
supervisor, which will save them accordingly.
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4.3.4 Python world generator

Webots does not provide an easy way of varying the components of a given world. However,
as we want to control easily the number of robots, pieces, the size of the arena and several
other parameters. Therefore, we created our own Webots world generator, in Python.

This world generator is available online on the mailing group of Webots, as it was build
to be easily extended. It takes the following inputs:

• A set of template files. They store parts of a classical Webots VRML world file, but
with added free parameters in them.

• A input XML file describing the world to create. This file defines which templates to
use and how many instances of them to create and finally assigns values to the free
parameters.

It is easy to add new templates and extend this to different applications.
This generator allows us to generate experimental worlds containing different numbers of

pieces and robots easily. We study for now a world with 5 pieces and 4 or 5 robots, and a
world with 15 pieces and 15 robots.

4.4 The robot transporters scenario

Characteristics: Lying pieces, robots carry and assemble them.
This system represents either a self-assembly task if we abstract the robots, or a trans-

porting and assembly task. The pieces can not move and rely on the robots to create a
puzzle.

4.4.1 Simulation results

Experiment 1: 5 pieces and 4 robots, final puzzle F1 only

Setup:

• Hexagonal arena, radius 2m.

• 100 experiments.

• 20 minutes maximum per experiment.

• Pieces and robots initialized at random positions.

• Pieces are aligned by the robots before an assembly.

• Robots follow the plan to create the final puzzle F1 only, given in Figure 4.3(a).

We see on Figure 4.7(a) that the final puzzle F1 follows an exponential saturating curve,
tending toward 1. This is what we expected, as only one puzzle can be created. The curve
does not attain exactly 1, meaning that some assemblies are not successful. Indeed, we have
a success rate of assembly after 20 minutes of 96%.

But looking at Figure 4.7(b), which shows the histogram of the times of creation of the
final puzzles over all experiments, we see that 75% of the puzzles are actually completed after
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Figure 4.7: Physical simulation results for the robot transporter scenario, Experiment 1: 5
pieces, 4 robots and final puzzle F1 only.

6 minutes and 40 seconds on average. This is a good results, as it means that most of the
experiments were completed quickly.

Experiment 2: 15 pieces and 15 robots, final puzzle F1 only

Setup:
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• Hexagonal arena, radius 3m.

• 100 experiments.

• 20 minutes maximum per experiment.

• Pieces and robots initialized at random positions.

• Pieces are aligned by the robots before an assembly.

• Robots follow the plan to create the final puzzle F1 only, given in Figure 4.3(a).

Figure 4.8(a) shows a similar behavior than before. The curve is smoother, due to the
bigger amount of pieces and possible final puzzles. The curve again tends exponentially
towards the maximal puzzle number, 3. But it converges to an even smaller number, as more
assemblies goes wrong. After 20 minutes, we have a success rate of assembly of 3 puzzles of
80% only. This shows that some things can still go wrong in our physical simulations, which
affects the final assembly yield.

Looking at Figure 4.8(b), we see that the 75% quantile for the successfully assembled 3
final puzzles is at 11 minutes. This is still a pretty good result, which shows that our approach
is scalable to a higher number of pieces and robots, assuming that the space available for the
movements does not become too small.

Experiment 3: 5 pieces and 5 robots, final puzzles F1 and F2

Setup:

• Hexagonal arena, radius 2m.

• 100 experiments.

• 20 minutes maximum per experiment.

• Pieces and robots initialized at random positions.

• Pieces are aligned by the robots before an assembly.

• Robots follow the plans to create the final puzzles F1 and F2. See Figure 4.3.

Figure 4.9(a) shows an interesting result. We see that the two final puzzle converge to a
value that sum (more or less) to 1. But the distribution between the two assemblies is not
even, we have 60% of final puzzle F2 and 40% of final puzzle F1. By looking at the assembly
plans and the available initial pieces, we think it is due to reaction 5. This reaction uses piece
5, which is created early, and uses another piece 2, which is easily available (purple curve
and green curve). Compared to reaction 3, which uses a piece 5 and a piece 6, which takes
more time to be produced, there is less time dependence on the path to F2. This tends to
promote it.

This discrepancy triggered the idea of being able to control the ratio between the two
final puzzles, by modifying the system. This will be the subject of our Augmentation step
and optimization of the model, Chapter 6 and 7.

From Figure 4.9(b), we see that the 75% quantile for the successfully assembled final
puzzle is at 4 minutes 30 seconds, with a success ratio of 97%. This is again very good, few
assemblies go bad, even with the two possible final puzzles.
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Figure 4.8: Physical simulation results for the robot transporter scenario, Experiment 2: 15
pieces, 15 robots and final puzzle F1 only.

4.5 The self-assembling pieces scenario

When the pieces can move around and assemble on their own, robots are not necessary
anymore. This scenario is closer to a real nano self-assembly task, but at a macro-scale level.

We developed such a scenario in Webots, using the same pieces with several modifications:
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Figure 4.9: Physical simulation results for the robot transporter scenario, Experiment 3: 5
pieces, 5 robots and final puzzles F1 and F2.

• The pieces are pushed by individual forces, of randomly chosen direction. The pieces
have a low friction coefficient with the floor to allow easy movement.

• There are forces applied onto the pieces when they approach the walls too closely.
This introduce a wall-avoidance in a smooth fashion. The repulsive force Fr applied is
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directed toward the center of the arena and an amplitude inversely proportional to the
current distance to the walls:

Fr ∼
1(√

x2 + y2 −Rasin(π3 )
)2 ·

(
−x
−y

)

Rasin(π3 ) is the radius of the incircle to the hexagonal arena of radius Ra.

• The pieces attracts each others in a small radius. This was introduced to improve
the encountering rate, which was not comparable to the one we had before. Indeed, a
collision of two pieces is less likely than the encountering of two communication circles
as we had before. This force attracts the pieces for some time, and then repulse then,
to mimic a missed assembly.

All these modifications create a scenario where the assembly rates are much smaller than
before, but which can still create some final puzzles. Unfortunately, due to robustness issues,
we did not manage to get systematic experiments in time for that scenario. Its study will be
done in further works.

4.6 The mixed assembly scenario

We can combine the two last scenarios into this fully complex one. The pieces can move
around and assemble on their own, but can also be carried around and assembled by robots.

In order to make the carrying possible, the pieces stop moving when a robot is trying to
grab them. Moreover, a free piece cannot interact with a carried piece. The robot has to
drop it first.

This scenario closely resembles a biological process with enzymatic components. The
pieces assemble following their own dynamics, which are improved by the robots via their
specific actions and orientation capabilities.

Again we did not manage to completely study this scenario. We leave it as further work,
not without regrets.



Chapter 5 Mathematical model of the
puzzle test-case

5.1 Model definition

We introduce now the mathematical model used to represent our puzzle test-case system. As
told earlier, we use a chemical reaction network framework (see Section 3.2 for background
on this subject).

We only consider the robot transporters scenario, the other scenario can be modeled in
the same fashion.

We assign a reaction to each assembly step in the creation of the final puzzles. Looking
back at Figure 4.3, each numbered assembly step corresponds to a reaction in our chemical
reaction network. Furthermore, we add 4 new reactions, representing the grabbing of lying
pieces by the robots. The products and reactants are the different mid-assemblies, plus the
3 lying free pieces and the robots. All reactions are second-order reactions, as they depend
on the encountering of two different reactants upon reaction.

We obtain the following chemical reaction network (Equation (5.1)):

XR +Xf
1

e1−→ X1 XR +Xf
3

e3−→ X3

XR +Xf
2

e2−→ X2 XR +Xf
4

e4−→ X4

X1 +X2
k1−→ X5 +XR X2 +X7

k4−→ XF1 +XR

X3 +X4
k2−→ X6 +XR X2 +X5

k5−→ X8 +XR

X5 +X6
k3−→ X7 +XR X6 +X8

k6−→ XF2 +XR (5.1)

XR is a robot, Xf
i are the free lying pieces, Xk are the carried pieces and XFj the final

puzzles.
The variables can be defined as the number of each piece type, where the number is a

continuous function of time [29]. This network can then be transformed in the following
associated ODE system (Equation (5.2)):

39
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ẋR = −
∑4

l=1 elxRx
f
l + k1x1x2 + k2x3x4+

k3x5x6 + k4x2x7 + k5x2x5 + k6x6x8

ẋf1 = −e1xRxf1
ẋf2 = −e2xRxf2
ẋf3 = −e3xRxf3
ẋf4 = −e4xRxf4
ẋ1 = e1xRx

f
1 − k1x1x2

ẋ2 = e2xRx
f
2 − k1x1x2 − k4x2x7 − k5x2x5

ẋ3 = e3xRx
f
3 − k2x3x4

ẋ4 = e4xRx
f
4 − k2x3x4

ẋ5 = k1x1x2 − k3x5x6 − k5x2x5

ẋ6 = k2x3x4 − k3x5x6 − k6x6x8

ẋ7 = k3x5x6 − k4x2x7

ẋ8 = k5x2x5 − k6x6x8

ẋF1 = k4x2x7

ẋF2 = k6x6x8

(5.2)

Obviously, this notation is less compact, yet has the same meaning.
We can also represent the network in matrix form:

ẋ = SKy

S is the stoichiometric matrix, containing the stoichiometric coefficients mr and np as defined
in Equation (3.1) in Section 3.2.1. K is the matrix of stochastic constant rates. y is a vector
of compounds, in our case the set of all bilinear terms in Equation (5.2) for example.

We can also relax the xR and xfi terms, if we decide to look only at the real assembly
process therein. Doing so is consistent if we assume that we have a big number of robots to
carry the pieces around, and that they grab the pieces very quickly compared to the actual
assembly process. This approach is similar as doing a quasi-steady state simplification, for
a multiscale system where the robots are acting quicker than the rest of the system. Such a
relaxation simplifies the whole system and its analysis, we will use it in the next chapter.

5.1.1 Simulation of the model

We simulate our models using two different approaches:

1. ODE solving. We use Matlab to solve numerically the system (5.2), using a classical
ode45. We use libSBML [57] for Matlab to write and read from SBML files onto ODE
files.

2. Stochastic Simulation Algorithm. We use the StochKit toolbox [50], developed by
Petzold et al. StochKit is a simulation framework for stochastic simulations written in
C++. It allows a very fast exact simulations of chemical reaction networks.
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5.2 Parameter fitting

5.2.1 Theoretical value of reaction rates

The chemical reaction network is easy constructed from the assembly plans considered, but
we still need to find values for the stochastic constant rates ki and el.

We decompose the stochastic constant rates as follows:

ki = pei · pai (5.3)

where pei is the probability of an encounter between two elements and pai the probability
of successful assembly.

pai can be easily measured, or assumed to be 1 if the robots manage to align the pieces
correctly before each assembly step.

If we assume that our model is non-spatial, i.e. that the probability that two product are
at a given position is independent of the time and uniformly distributed over the available
arena space, we can make an initial informed guess on the encountering probability. We take
an approach used in [58, 59, 60], giving the following relation for the encountering probability:

pei ∼
1

Atotal
vrTw

i
d (5.4)

Where Atotal is the arena size, vr is the average speed of an element, T is the timestep
(fixed to 1 in our case) and wid the width of detection of an element. This expression can
actually be linked back to the literature on chemical process simulations [30, 41, 48]. For
chemical process, the probability of collision depends on the volume swept by one molecule,
which gives the probability that another molecule will collide it in the next dt. Equation (5.4)
is exactly the same, as shown on Figure 5.1. In our case, as we work in a 2D plan, we only have
surface swept, which is exactly given by the right part of (5.4). Dividing by the total arena
size and assuming the elements are distributed uniformly in the arena, this gives directly the
probability of encountering between two elements.

vrT

wd

Volume swept

Figure 5.1: Graphical interpretation of the encountering probability and link to the volume
swept used in chemical simulations.

In our test case, we measured vr over 50 simulation runs using the robot movement
pattern described earlier, the average speed was 0.128m/s. Atotal is also easily computed
(= 6(R2

√
3

4 ), i.e. the sum of the six equilateral triangles of radius R). wid becomes the double
of the communication radius between robots or pieces, as it defines the range for the start of
an assembly.
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Rates verification

We checked this initial guess by measuring the encountering rates in Webots. We create a
world with one lying piece and one searching robot, we measure the time to encounter, over
200 experiments. As discussed in the theory of chemical reaction networks, these times are
distributed following an exponential of the encountering probability. We load the times in
Matlab, and fit an exponential distribution to get this probability (Figure 5.2).
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Figure 5.2: Encountering times for the Webots experiment, with the fitted Matlab exponen-
tial.

We also add “dummy” robots in the arena, that only avoid each other without looking
for the piece. It measures the effect of overcrowding on the well-mixed property we’re trying
to ensure within our Webots simulation.

The results of the comparison between the theoretical and measured rates of encountering
are shown in Figure 5.3. We see that the theoretical guess is pretty accurate, even tough it is
overestimated when more robots are present. The added robots seems to disturb the capacity
of a robot to encounter a piece. This can be due to the fact that the robots perturbs the
trajectories while avoiding each others, overcrowding some areas and forbidding the access
to others.

The same measurement was performed for robot to robot encountering and gave similar
results. We do not show it here.

5.3 Comparison with physical simulation

We simulate the chemical reaction network (5.1) using the two approaches presented in
Section 5.1.1. Depending on the initial conditions for the number of robots and pieces, we
have different experiments, following Section 4.4.
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Figure 5.3: Comparison between the theoretical guess for the encountering probability pie and
the measured encountering probability in Webots. The red intervals represents the confidence
intervals for the fitted encountering probability.

Stochastic constant rates values

Through all these experiments, the stochastic constant rates el and ki take similar values,
conditioned by specific parameters presented in each experiment setup.

Encountering rates el = 1
Atotal

· vr · wpd ∀l ∈ {1..4}.

Reaction rates ki = pai · 1
Atotal

· vr · wrd ∀i.

Arena size Atotal = 3 ·R2
a ·
√

3
2 .

Average speed vr = 0.128 measured in Webots.

Piece communication width wpd = 2 · 0.4m, pieces are set to communicate in a 40cm
radius.

Robot communication width wrd = 2 · 0.6m, robots are set to communicate in a 60cm
radius.

Probability of successful assembly pai depends on the experiment being studied, more
precisely on the assembly plan used. We measured it in Webots, over 100 runs, for the
assembly plan creating only the final puzzle F1 and for the assembly plan creating the
final puzzles F1 and F2. Results will be specified in the experiments’ setup.

5.3.1 Experiment 1: 5 pieces and 5 robots, final puzzle F1 only

Setup:

Initial conditions: XR = 5, Xf
1 = 1, Xf

2 = 2, Xf
3 = 1, Xf

4 = 1, Xi = 0, XFk = 0.
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Experiment duration: 20 minutes.

Number of experiments (Stochastic simulation only): 100.

Arena size: Ra = 2m.

Probability of successful assembly: all pai where more or less equal to 0.98. Thus we set
pai = 0.98.

See Figure 5.4 for the comparison between the simulated chemical reaction networks and
the Webots physical simulation. The results from the Webots simulation are taken from
Section 4.4.1. We show the averaged populations over 20 minutes.
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Figure 5.4: Comparison between the models simulations and the physical Webots simulation
for the puzzle test-case, scenario 1, experiment 1.

We see that they fit closely to the physical simulation. Two differences arise:

• The ODE simulation population values are too small, because of the slow copy number
of components (Figure 5.4(a)). When doing an ODE approximation, one assumes that
the number of components is big enough so that using continuous numbers does not
have much effects. This is not the case here, where we work with numbers smaller than
10. On the other hand, the Stochastic simulation accurately captures this property, as
it works with discrete numbers.

• The stochastic simulation attains 1, whereas the physical simulation stays below (Fig-
ure 5.4(b)). These results show that, while there are problems in the Webots simulation
(pieces stuck together, blocked against the walls), this is not taken into account in the
model. We could modify the model by introducing ways of deactivating some pieces
to try to fit this difference. But we do not take much interest in that for this current
work.
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5.3.2 Experiment 2: 15 pieces and 15 robots, final puzzle F1 only

Setup:

Initial conditions: XR = 15, Xf
1 = 3, Xf

2 = 6, Xf
3 = 3, Xf

4 = 3, Xi = 0, XFk = 0.

Experiment duration: 20 minutes.

Number of experiments (Stochastic simulation only): 100.

Arena size: Ra = 3m.

Probability of successful assembly: pai = 0.98.

Under the same assumptions than for experiment 1, see Figure 5.5 for the comparison in
this scenario.
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Figure 5.5: Comparison between the models simulations and the physical Webots simulation
for the puzzle test-case, scenario 1, experiment 2.

The results are similar to experiment 1. With a higher number of elements, the ODE
simulation is closer to the correct physical simulation. The stochastic simulation is still very
accurate but attains the maximal number of puzzles whereas the physical simulation converge
to a lower value.

5.3.3 Experiment 3: 5 pieces and 5 robots, final puzzles F1 and F2

Setup:

Initial conditions: XR = 5, Xf
1 = 1, Xf

2 = 2, Xf
3 = 1, Xf

4 = 1, Xi = 0, XFk = 0.

Experiment duration: 20 minutes.

Number of experiments (Stochastic simulation only): 100.
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Reaction i 1 2 3 4 5 6
pa

i 0.9777 0.9074 0.9636 0.9737 0.833 1.0

Table 5.1: Probability of successful assembly for experiment 3. Measured over 100 experi-
ments.

Arena size: Ra = 2m.

Probability of successful assembly: Results of the measures are shown in Table 5.1. We
see that now, the probabilities are not equal and depend on the assembly step. Es-
pecially, the success of reaction 5, to create piece 8, is significantly smaller. pai is set
accordingly for each reaction i.

See Figure 5.6 for the results.
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Figure 5.6: Comparison between the models simulations and the physical Webots simulation
for the puzzle test-case, scenario 1, experiment 3.

We see that the ODE model fails to capture the time to convergence, and underestimates
the speed of variations. It also seems that they do not converge to the same values, which
could be a problem. However, using the Stochastic simulation with the exact same rates, we
see that the fitting is much better. The low copy numbers again has a big impact on the
capacity to use the ODE model as an approximation.

But the rates we use for the ODE model produce a good fit when using the Stochastic
simulation, which shows that our model accurately describes the physical system’s dynamics.
We thus think that, if the copy number is big enough, the analysis with the ODE model
should be sufficient.

We confirm this hypothesis by performing the same two final puzzles experiment, with
15 pieces and 15 robots and a bigger arena (like Experiment 2). The parameters are adapted
accordingly. We obtain the results shown in Figure 5.7.
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Figure 5.7: Modified experiment 3 with 15 pieces and 15 robots, to show the effect of a larger
copy number.

This confirms our assumption that the only problem with the ODE model discrepancy of
convergence is the low copy number. In this new scenario, the fitting of the ODE simulation
is good and converge to the physical values (Figure 5.7(a)). This tells us that we can indeed
use the ODE as a model, but only for a copy number large enough. We will take advantage
of that fact in the next chapter.

5.4 Final considerations

The comparison between the models and the Webots physical simulations shows a close fit
of our model to the experimental data. It proves that this model is accurate for our test-case
and considered problem. The stochastic simulation captures the correct behavior when the
number of elements is small, which is in accordance with the assumptions on algorithms
differences.

Therefore, we will use directly the model into an optimization process, before mapping
back the new model onto the physical simulation. This approach makes sense, as thanks
to the accuracy of our model, we can then hope that the physical simulation will behave in
the same way. The only constraint is that we need to work with big copy numbers with the
ODE, to avoid convergence problems.

Some problems are still present. For example, the initial guess for the encountering
probability becomes wrong when the number of robots and pieces grows. The guess relies on
a strong non-spatiality constraint, which our physical simulation can not ensure in several
cases. Our models do not capture the failures of the physical simulations, which hinder the
overall performance and reliability of the assembly process.
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Chapter 6 Chemical reaction networks
control and design

Having successfully modeled our puzzle test-case using a Chemical Reaction Network, we
turn to the next step: modifying this model so that it behaves in a desired way.

This modification could be making it more efficient (i.e. optimizing it for a given metric)
or just attaining a specific goal (i.e. create a specific final distribution). We define the control
problem as follows:

Let a system of chemical reactions R, defined by a matrix of rate constants K, a
stoichiometry matrix S and a vector of products and reactants y. Let the initial
condition x0 be known also. What should be the matrix Kc so that the system
converges as close as possible to a desired equilibrium X̂. Moreover, can we find
the matrix Kf that converge as close as possible to X̂ at the fastest rate?

This is a design problem as well as an optimization problem. In the second proposition,
we are optimizing for fast convergence subject to a constraint on the equilibrium.

This part has been done in close collaboration with Spring Berman.

6.1 Overview of possibilities

Our first goal was to use a previous optimization scheme used by S. Berman [3, 61], namely
optimizing the Mixing-time of a Markov chain [62, 63, 64]. Unfortunately, our problem is
not a Markov chain. Our model is a continuous-time Markov process, with nonlinear rates.
Actually, it is possible to represent it as a Markov chain, an approach taken by Klavins for
his optimization technique [14]: we have to consider every possible macro-states or marking
of the system starting from an initial condition, by discretizing all possible values taken by
the products, and then creating or measuring the probabilities to jump from one macro-state
to another. Obviously, this approach runs into a combinatorial explosion when the number
of species and their populations increase, which forbids us from using it. Other approaches
using Markov chains [65, 66] are also abandoned because of this problem.

Therefore, we looked into the chemical reaction networks literature for an optimization
scheme taking advantage of the control we have on the stochastic constant rates.

We found papers focusing on the reachability of networks, namely knowing what parts of
the state space could be attained knowing the system dynamics [67, 68, 69, 70, 71]. These
works apply more to bioreactors and show little interest designing the reaction rates and more

49
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on controlling already present reactions. Other works, on the other hand, rely too much on a
control theory methodology, for example by adding a feedback to the system [72, 73, 74, 75].
As we want to modify only the rates, these were not helpful.

Eventually, we found an interesting study in [76]. The authors propose an analysis and
optimization of the rates of a chain of reactions, with respect to several objectives. Those
objectives closely resembles the two propositions we are trying to solve, we will therefore use
ideas from their work, although our approach is original. However, they are working with
reaction chains, which offers simplifications and results that are not available for our more
complex reaction network.

6.2 Methodology

6.2.1 Changes on our models

Starting from the chemical reaction network (5.1), we make several modifications in order to
satisfy our methodology:

1. We remove the robots from the system. We assume that the number of robots is bigger
or equal to the number of pieces and that the robots find and carry the piece very
quickly with respect to the time between assemblies. Under those assumptions, we can
remove the robots in a quasi steady-state assumption, looking only at the dynamics of
the products.

2. We add backward reactions to every existing assembling reaction. They correspond to
the degradation of a product into its reactants. Such reactions are needed when we will
prove that our new system has only one globally asymptotically stable equilibrium.

The new chemical reaction network is:

X1 +X2

k+
1



k−1

X5 X2 +X7

k+
4



k−4

XF1

X3 +X4

k+
2



k−2

X6 X2 +X5

k+
5



k−5

X8

X5 +X6

k+
3



k−3

X7 X6 +X8

k+
6



k−6

XF2 (6.1)

In the thermodynamic limit [28], the physical system represented by (6.1) can be ab-
stracted to a linear ordinary differential equation (ODE) model:
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ẋ1 = −k+
1 x1x2 + k−1 x5

ẋ2 = −k+
1 x1x2 − k+

5 x2x5 − k+
4 x2x7 + k−1 x5 + k−5 x8 + k−4 xF1

ẋ3 = −k+
2 x3x4 + k−2 x6

ẋ4 = −k+
2 x3x4 + k−2 x6

ẋ5 = k+
1 x1x2 − k−1 x5 − k+

3 x5x6 + k−3 x7 − k+
5 x2x5 + k−5 x8

ẋ6 = k+
2 x3x4 − k−2 x6 − k+

3 x5x6 + k−3 x7 − k+
6 x6x8 + k−6 xF2

ẋ7 = k+
3 x5x6 − k−3 x7 − k+

4 x2x7 + k−4 xF1

ẋ8 = k+
5 x2x5 − k−5 x8 − k+

6 x6x8 + k−6 xF2

ẋF1 = k+
4 x2x7 − k−4 xF1

ẋF2 = k+
6 x6x8 − k−6 xF2

(6.2)

Define a matrix M ∈ R10×12 in which each entry mji, j = 1, ..., 10, of column mi is
defined as the coefficient of piece type j in complex i (0 if the piece type is absent). For
instance, the column corresponding to the complex X1 + X2 is [1 1 0 0 0 0 0 0 0 0]T . Now
represent the rate associated with reaction (i, j) ∈ E as kij and define a matrix K ∈ R12×12

with entries:

Kij =


kji if i 6= j , (j, i) ∈ E ,
0 if i 6= j , (j, i) /∈ E ,
−
∑

(i,l)∈E kil if i = j .
(6.3)

Finally, define a vector y(x) ∈ R12 in which entry yi is the piece variable or products of
variables associated with complex i:

y(x) = [x1x2 x5 x3x4 x6 x2x7 xF1 x5x6 x7 x2x5 x8 x6x8 xF2]T . (6.4)

Then the ODE model (6.2) can be written in the following form [77]:

ẋ = MKy(x) , (6.5)

One set of conservation constraints on the piece quantities is:
x3 − x4 = N1

x1 + x5 + x7 + x8 + xF1 + xF2 = N2

x2 + x5 + x7 + 2(x8 + xF1 + xF2) = N3

x3 + x6 + x7 + xF1 + xF2 = N4

(6.6)

where Ni, i = 1, ..., 4, are computed from the initial piece quantities.
It should be possible to find the equilibrium points as closed form formulas, but our

attempts in that direction were unsuccessful. We thus propose another approach.

6.2.2 Approach

Our optimization relies on the following hypotheses:

1. The system (6.5) is deterministic and its dynamics depend only on the rates K and the
initial conditions.
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2. The system, while nonlinear in xi, converge to an unique positive equilibrium given an
initial condition and a matrix K.

3. The system (6.5) is nonlinear in xi but linear in ki.

4. K governs the rate of convergence of the system.

5. MKy(x) = 0 only at the equilibrium point.

Hypothesis 1 derives from the definition of an ODE and on the fact that we keep the
network fixed during the system evolution. Hypothesis 2 will be proved in Section 6.2.3, it
is a main result in the success of our approach. Hypothesis 3 comes from the observation of
the system (6.2). Hypothesis 4 will be discussed in Section 6.2.4. Hypothesis 5 is discussed
in Section 6.2.4.

Then, under those hypothesis, it is possible to find an objective function linear in ki,
using MKy(xd) = 0 as a set of constraints on the desired converged values of xd and solve
it using a convex optimization algorithm.

The complete derivation and discussion is presented in Section 6.2.4.

6.2.3 Convergence of chemical reaction networks

Theorem 1. System (6.2) subject to (6.6) has a unique equilibrium x̄ > 0.

Proof. Each steady state of the system can be classified as either a positive steady state,
{x̄ | MKy(x̄) = 0, x̄i > 0 ∀i}, or a boundary steady state, {x̄ | MKy(x̄) = 0, x̄i =
0 for some i}, which can be found by solving y(x̄) = 0 [77].

From definition (6.4) of y(x), the boundary steady states for the system satisfy

x̄5 = x̄6 = x̄7 = x̄8 = x̄F1 = x̄F2 = 0 ,
x̄1x̄2 = x̄3x̄4 = x̄2x̄7 = x̄5x̄6 = x̄2x̄5 = x̄6x̄8 = 0 . (6.7)

It can be concluded that in each boundary steady state, all xi = 0 except for one of the four
combinations of variables (x1, x3), (x1, x4), (x2, x3), (x2, x4). Since we only consider systems
that can produce xF1 and xF2, it is not possible for the system to reach any of these steady
states; each one lacks two piece types needed for the final assemblies.

The deficiency δ of a reaction network has been introduced as a measure giving insights
and proofs on the stability and the existence of equilibrium of a class of reaction networks [78,
79, 80, 81, 82, 83, 84]. It is one of the two attempts at proving convergence and stability
of chemical reaction network, the other one is based on so-called species-reaction graphs
analysis [85, 86, 87, 88, 89].

δ is calculated has the number of complexes minus the number of linkage classes, each
of which is a set of complexes connected by reactions, minus the network rank, which is the
rank of the matrix whose rows are each obtained by subtracting a column of M associated
with a reactant in a particular reaction from a column associated with a product [78]. It
can be shown that each of the six linkage classes in our system has rank 1 and the rank of
the entire network is 6; from this the deficiency of each linkage class is calculated to be 0
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and the deficiency of the entire network is 0 as well. Also, we observe that no complex in
any linkage class transforms into a complex in another linkage class. These properties, along
with the fact that the system kinetics are mass-action, satisfy the criteria for applying the
Deficiency One Theorem in [78], which gives the result that the system can have no more
than one positive steady state.

Now we must show that there exists a positive steady state, which would be unique by
the Deficiency One result. Since the network rank of the system is the sum of the ranks of
the linkage classes, the linkage classes constitute a direct partition of the network [81]. Also,
since each linkage class has deficiency 0 and is weakly reversible, meaning that there is a
reaction pathway connecting each pair of complexes, each linkage class contains exactly one
positive steady state by the Deficiency Zero Theorem [78]. By Lemma 8.2.3 of [81], these
properties imply that the system admits a positive steady state.

We still lack a proof on the stability of this unique equilibrium. If the deficiency zero
theorem [78] can be extended to support not only weakly reversible but also block weakly
reversible networks, then we would get such a result. A remark in [88] support that fact, but
we did not manage to get a formal proof as of today. However, the empirical experiments we
are doing show that the equilibrium is stable, so we will assume this fact from now on.

6.2.4 Design of optimal rates

We consider the problem of designing the assembly system described by model (6.2) subject
to (6.6) to produce desired quantities of pieces. The derivation is similar for other systems.

System and equilibrium definition

The assembly system will be most productive if it yields the target quantities as quickly
as possible. This objective will be posed as the design of a set of optimal rates k+

i , k
−
i ,

i = 1, ..., 6, for model (6.2) that minimizes the convergence time of the resulting system to a
target vector of piece quantities, xd.

Note that although the quantities of only the final assemblies, XF1 and XF2, may need
to be specified in practice, the optimization problem requires that target quantities of inter-
mediate components be defined as well, as will be discussed later in this section.

The rates k+
i , k

−
i can be chosen so that the assembly system yields a target piece distri-

bution xd > 0 starting from any initial distribution of pieces:

1. First, specify target numbers of the intermediate and final assemblies, xdi , i = 5, ..., 8.

2. Then define piece quantities xdj , j = 1, ..., 4, in terms of these numbers according to the
conservation equations (6.6).

3. Finally define yd = y(xd) according to definition (6.21).

This vector yd represents the steady-state quantities of the pieces and piece products
associated with each complex. If the system described in the form (6.5) converges to yd,
then it converges to the target quantities xdi , i = 5, ..., 8, since eight components of yd are
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equal to these variables. Convergence to xdj , j = 1, ..., 4 is also ensured since each of these
quantities is a function of xdi , i = 5, ..., 8 by conservation laws.

By Theorem 1, model (6.2) always converges to a single positive equilibrium ȳ. Therefore,
system convergence to yd can be guaranteed by specifying that ȳ ≡ yd through the following
constraint on the rate matrix K in model (6.5):

MKyd = 0 . (6.8)

To control more easily the goal in term of final puzzles, we introduce the fraction α:

α =
xF1

xF1 + xF2
(6.9)

The target final assemblies can be defined in such a way that their sum, xF1+xF2, is constant
and the fraction α is directly a tunable parameter. The sum xF1 + xF2 is expressed in terms
of a conservation law, which means that one of the target quantities xdi , i ∈ {1, ..., 4}, must be
implicitly defined. For instance, using the third conservation equation in (6.6) and a target
value for xd2:

xdF1 = 1
2 α

(
N2 − (xd2 + xd5 + xd7 + 2xd8)

)
(6.10)

xdF2 = 1
2 (1− α)

(
N2 − (xd2 + xd5 + xd7 + 2xd8)

)
, (6.11)

Whatever the selection of independent piece quantities, it must be ensured that the
remaining piece quantities are positive to have a feasible xd (positive equilibrium).

Convergence time

Now we consider the aspect of minimizing the convergence time of the system to the target
equilibrium xd. We can define measures of this time by reformulating the system in terms
of new variables. Define vj , j = 1, ..., 6, as the difference between the forward and reverse
fluxes associated with reaction j in system (6.1).

For instance, if we label reaction 1 as the one in which X1 + X2 is the reactant and X5

is the product, then v1 = k1x1x2 − k2x5. Let v(x) = [v1 ... v6]T . Denote the stoichiometric
matrix of the system by S ∈ R10×6, which is defined such that model (6.2) can be written
as [90]:

ẋ = Sv(x) . (6.12)

Our assembly system is similar to a model of a biochemical network with mass action
kinetics. The dynamical properties of such networks are often analyzed by linearizing the
ODE model of the system about a steady state and studying the properties of the associated
Jacobian matrix J = SG, where the entries of G are gij = dvi/dxj (see [91] for an overview
and further references).

Denoting the eigenvalues of J by λi, τi = 1/|Re(λi)| are measures of the characteristic
times, referred to as relaxation times, in which different modes (dynamically independent
variables) of the the system converge to a stable steady state after perturbation [92, 91].
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Since the λi are negative at a stable steady state, one way to yield fast convergence is
to choose rates ki that minimize the largest negative λi, as was done for a linear chain of
enzymatic reactions in [76].

However, in our system it is very difficult to find analytical expressions for the λi, so we
must explore other ways of quantifying the convergence time.

Various measures of average relaxation times in biochemical networks have been defined,
but they are applicable only under certain conditions, such as a linear reaction sequence [93].
For instance, one such measure was minimized in the optimization of rates for the linear chain
in [76]. For our system, we can use a general estimate of the relaxation time for each reaction
j that is given in [90]. It is derived by linearizing the system model around its equilibrium
point, which in our case is the target distribution xd enforced by equation (6.8):

τj =

(
12∑
i=1

(−sij)
dvj
dxi

)−1

(6.13)

This expression is evaluated at xd. Since each reaction j in system (6.1) is of the form

Xk+Xl 

k+

j

k−j
Xm, the net flux vj is k+

j xkxl−k
−
j xm, and the entries of column j in S are all

0 except for skj = slj = −1 and smj = 1. Thus, taking advantage of this fact and applying
equation (6.13) at xd, we get that the relaxation time for each reaction is

τj = (k+
j (xdk + xdl ) + k−j )−1 . (6.14)

Which gives us a measure of speed of convergence.

Objective functions

Define k ∈ R12 as the vector of all rates k+
i , k

−
i . Using characterization (6.14) of reaction

relaxation times, we define two possible objective functions f : R12 → R to maximize in order
to produce fast convergence to xd.

The first is the average inverse relaxation time,

fave(k) = 1
10

10∑
j=1

τ−1
j . (6.15)

The second is the minimum inverse relaxation time,

fmin(k) = min{τ−1
1 , . . . , τ−1

10 } . (6.16)

Convex program definition

Finally, we map the rates onto actual adjustable parameters of the physical assembly system.
Those adjustable parameters will be defined as the optimization variables.
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Backward rates Each reverse rate k−j will be defined simply as a probability per unit time
of breaking up an assembly, p−j ∈ {0, 1}, which can be adjusted:

k−j = p−j (6.17)

Forward rates We use the formula (5.3) defined in Section 5.2.1. We extend it by adding
a probability of starting the assembly p+

j ∈ {0, 1} which can be adjusted:

k+
j = pej · paj · p+

j (6.18)

pej is the encountering probability defined by (5.4), dependent on some parameters and
paj is the assembly success rate, which we measure as explained in Section 5.3.

Let p ∈ R12 be the vector of all adjustable probabilities, p+
j and p−j . Then we define an

optimization Problem P as follows:

P: maximize f(k(p))

subject to MK(p)yd = 0, 0 ≤ p ≤ 1 .

Depending on the objective function used, we define Problem P1 and Problem P2:

P1: maximize fave(k(p))

subject to MK(p)yd = 0, 0 ≤ p ≤ 1 .

P2: maximize fmin(k(p))

subject to MK(p)yd = 0, 0 ≤ p ≤ 1 .

Since this problem can be formulated as the minimization of a linear combination of the
entries of p subject to a set of linear equality and inequality constraints on p, it is a linear
program, which can be solved efficiently.

6.2.5 Optimization implementation

In order to optimize the convex programs P1 and P2, we use a framework for Matlab,
YALMIP[94]. It allows us to define our optimization variables, objective function and con-
straints and to apply a semidefinite programming solving algorithm, running in polynomial
time [94].

6.3 Results and limitations

We start with problem P1, which uses the first objective function fave, optimizing the av-
erage inverse relaxation time. We take the system (6.1) and optimize it according to our
methodology:
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• As discussed in Section 5.3.3, and because our optimization rely on an underlying
ODE approximation, we use an initial condition with a big copy number of pieces to
avoid convergence problems. We use 60 pieces {1, 3, 4, 5}, 120 pieces 2 and no other
mid-assemblies.

• For the forward rates, we assume that we can only optimize the probability of starting
an assembly, p+

j . This probability comes in addition to the probability of encounter
and the probability of successful assembly, as shown in Equation (6.18). It can take
values from 0 to 1.

• For the backward rates, we optimize the probability of breaking up an assembly p−j , as
Equation (6.17). It can take values from 0 to 1.

• Our goal is to control the ratio α between the final number of F1 and F2 puzzles,
Equation (6.9). The converged number of other pieces are set to the smaller values still
consistent with conservation laws and non-negativity constraints.

We optimize the system for α ∈ {0.01, 0.02, 0.03, . . . , 0.99} and store the obtained rates
for all 6 reactions.

It turns out that nearly all rates keep constant values. All the forward rates are put to
their maximal values. Backward rates all take constant positive values, except the backward
rates of reactions 4 and 6, which vary continuously with respect to α. Table 6.1 displays the
optimized probabilities.

Reaction j 1 2 3 4 5 6
Optimized p+

j 1.0
Optimized p−j 0.01885 0.00754 0.00377 continuous 0.00942 continuous

Table 6.1: Values of optimized rates for varying α, under objective function P1 for system
(6.1). Continuous rates evolve continuously with respect to α.

The case of the continuously varying rates is very interesting. Those rates corresponds
to the backward reaction coming from the two final puzzles F1 (reaction 4) and F2 (reaction
6). Their evolution with respect to α is shown in Figure 6.1.

Having constant rates for every reaction except those two give several informations:

• The network is highly flexible, allowing every ratio of final puzzles only by changing two
specific backward rates. The non final reactions are kept to an activity low enough so
as not to destroy to yield, but still high enough to be able to redistribute the materials
when the final reactions are breaking up the final puzzles to converge to a desired ratio.
Controlling only the disassembly rate of the two final puzzles is enough to attain any
ratio α, while optimizing the yield and time to convergence.

• All the forward rates are put to their maximum value. This could show that using non-
maximum forward rates decreases the convergence rate, but further tests about that
hypothesis are necessary. In an informal discussion, G. Mermoud confirmed similar
results in previous works of his with self-assembly processes.
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Figure 6.1: Backward rates changing continuously with respect to α under objective function
P1 for system (6.1).

Doing the optimization of problem P2, under objective function fmin leads to slightly
different results. This time the forward rates and backwards rates of reactions 4 and 6 are
varying continuously. The forwards rate are not all maximum. Table 6.2 presents the results
for P2.

Reaction j 1 2 3 4 5 6
Optimized p+

j 0.36 0.666 1.0 continuous 0.4705 continuous
Optimized p−j 0.006855 0.005027 0.00377 continuous 0.00443 continuous

Table 6.2: Values of optimized rates for varying α, under objective function P2 for system
(6.1). Continuous rates evolve continuously with respect to α.

Again with that objective function, the real control of the ratio α is carried on by the
last two reactions in the construction of the final assemblies. This time the forward rates
have a stronger role in that, but this has yet to be verified that this method is better. See
Figure 6.2 for the continuous variation of rates with respect to α.

6.3.1 Comparison between objective functions and strategies

To compare the two functions, we plot the time-evolution of the ratio of the final puzzles F1
and F2 for three different α: 0.1, 0.5 and 0.9, see Figure 6.3 a), c) and e). The horizontal
dotted lines show the target ratios and both objective function are shown (plain for P1,
dashed for P2).

We see that P1 is converging quicker than P2 to the equilibrium for α = 0.1 and α = 0.9,
but is slower for α = 0.5. It is still unclear if it is only due to the values of the forward rates,
as hypothesized. The overall speed of convergence is actually pretty slow, especially when
trying to produce 50% of both puzzles. This could be problematic, but is in fact linked to
the global behavior of the system, as we show now.
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Figure 6.2: Forward and backward rates changing continuously with respect to α under
objective function P2 for system (6.1).

Looking at semi-logarithmic plots of the same data, Figure 6.3 b), d) and f), we clearly
see two regime of convergence:

• A quick convergence to an unique equilibria, independent of the chosen α, till t = 102s.
We hypothesize that this equilibrium depends on the network topology and forward
rates.

• A “redistribution” regime starting from there, which makes the system converge to the
final α desired. This regime is much slower than the first one. The final reactions with
optimized rates only act during that regime.

If we think in the state space of final assemblies, it means that the system first converge
quickly to its intrinsic equilibrium, and then moves around slowly due to the redistribution
of final puzzles until it arrives to the desired equilibrium.

This is a very interesting and quite counterintuitive result, as one might think that it
would be best to go directly towards the desired equilibrium. The optimization process we
use seems to point out that going quickly to the intrinsic equilibrium and then moving from
there is a better strategy. Of course, this might be an artifact of the linear optimization we
do, so a verification with another optimization process should be performed. This will be
done in further works.

6.3.2 Online adaptation of the desired final puzzles ratio

We finish by showing the application of the rate optimization to the “green manufacturing”
process shortly presented in Section 4.1. A “green manufacturing” process is a direct appli-
cation of the flexibility offered by a non-specific assembly task. In that process, we reuse
finished products (in our case, final puzzles) in order to create new products, depending on
the current demand. We “recycle” the products into new ones. This is possible because
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Figure 6.3: Comparison of convergence of final assemblies over time after optimizing P1 and
P2. Time unit is seconds.
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our system possess the capabilities to create both products, and because we fix what it is
supposed to create by optimizing the rates of assembly as shown in this chapter.

We show such an example of online adaptation to a new goal, by simulating the following
experiment:

• Through all this experiment, we use the optimized goals under objective function P1,
see Table 6.1 and Figure 6.1.

• We initialize the system with a first goal of a 60% ratio of final puzzle F2 (α = 0.4).
We let the system run till t1 = 1000s.

• We change the rates to the one optimized to create a ratio of 99% final puzzle F1
(α = 0.99). We let the system run till t2 = 6000s.

• We change the rates to a goal of 99% of final puzzle F2 (α = 0.01). We let the system
run till t3 = 11000s.

• We change for the last time the rates for a goal of 50% of each final puzzle (α = 0.5).
We let the system run till t4 = 21000s.

The result is shown in Figure 6.4. We see that the system is capable of adapting smoothly
to abrupt new commands in the desired targets. It attains the desired ratio when converged.
The convergence time is pretty slow when approaching the desired ratio, yet the disruption
of the previous steady state occurs quickly. The target of 50% of both puzzles is slower to
attain.
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Figure 6.4: Change of reaction rates during an experiment. System adapts smoothly to the
new equilibrium. Rates are changed at the times indicated by the dotted vertical lines. First
goal is 60% of F2, second is 100% of F1, third is 100% of F2 and fourth is 50% of each.

A good result is the speed of adaptation to new commands, and the strong redistribution
effect of commands asking for near 100% ratios. We think it is also possible to design a
control policy stabilizing quicker to a slow target (50% for example) by switching between
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a 100% F1 and a 100% F2 command, slowly damping the oscillations till we attain the
desired distribution. This is a similar approach to the one shown in [95, 96] for the control
of switching in E. Coli. More tests are still necessary to assess the validity of this process,
but the behavior we obtain already offers us a large variety of adaptable behaviors.

6.4 Beyond control, direct optimization of the plan?

Can our optimization scheme optimize directly a set of assembly plans? We addressed that
problem in Section 3.3, while speaking about the optimal plans. In his work, Klavins [14]
constructs an optimal assembly plan using graph grammars. This is a discrete optimization,
i.e. choosing what reactions to use to build an optimal plan. On the other hand, given
optimized rates, it is possible to see if some reactions are promoted or deactivated. This
corresponds to a continuous optimization of the assembly plan, effective while the system is
behaving. We think our optimization is able to perform such a continuous optimization. We
will alter our model in order to test that hypothesis.

We add new assembly steps to create additional pathways to the final assemblies. In
addition to plans shown in Figures 4.3, we add two new plans, that reuse parts of the old
ones, see Figures 6.5. The new assembly steps are shown in boldface. We call those new plans
“sequential plans”, as they assemble one piece at a time without parallel processes. Our goal
is to see how the algorithm treats these new pathways, more precisely if it “shuts down” the
ones which are not optimal or useful. Remark that we do not consider the case of all possible
types of reactions in the system, but only a selected sub-set of them. Using the complete set
for the optimization of the plan is let for further work.

The 4 added assembly steps translate into the following reactions to be added to the set
(6.1):

X3 +X5

k+
7



k−7

X9 X3 +X8

k+
9



k−9

X10

X4 +X9

k+
8



k−8

X7 X4 +X10

k+
10



k−10

XF2 (6.19)

With these added reactions, the ODE equations for the system are:
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Figure 6.5: New plans created by adding 4 new assembly steps, written in boldface. We call
those plans the “sequential plans”, as they act by assembling one piece after another without
parallel processes.



ẋ1 = −k+
1 x1x2 + k−1 x5

ẋ2 = −k+
1 x1x2 − k+

5 x2x5 − k+
4 x2x7 + k−1 x5 + k−5 x8 + k−4 xF1

ẋ3 = −k+
2 x3x4 + k−2 x6 − k+

7 x3x5 + k−7 x9 − k+
9 x3x8 + k−9 x10

ẋ4 = −k+
2 x3x4 + k−2 x6 − k+

8 x4x9 + k−8 x7 − k+
10x4x10 + k−10xF2

ẋ5 = k+
1 x1x2 − k−1 x5 − k+

3 x5x6 + k−3 x7 − k+
5 x2x5

+k−5 x8 − k+
7 x3x5 + k−7 x9

ẋ6 = k+
2 x3x4 − k−2 x6 − k+

3 x5x6 + k−3 x7 − k+
6 x6x8 + k−6 xF2

ẋ7 = k+
3 x5x6 − k−3 x7 − k+

4 x2x7 + k−4 xF1 + k+
8 x4x9 − k−8 x7

ẋ8 = k+
5 x2x5 − k−5 x8 − k+

6 x6x8 + k−6 xF2 − k+
9 x3x8 + k−9 x10

ẋ9 = k+
7 x3x5 − k−7 x9 − k+

8 x4x9 + k−8 x7

ẋ10 = k+
9 x3x8 − k−9 x10 − k+

10x4x10 + k−10xF2

ẋF1 = k+
4 x2x7 − k−4 xF1

ẋF2 = k+
6 x6x8 − k−6 xF2 + k+

10x4x10 − k−10xF2

(6.20)
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Like system (6.2), this system can be written in the form (6.5). In this case, the vector
of complexes is defined as

y(x) = [x1x2, x5, x3x4, x6, x2x7, xF1, x5x6, x7, x2x5,

x8, x6x8, xF2, x3x5, x9, x4x9, x3x8, x10, x4x10]T . (6.21)

One set of conservation constraints on the piece quantities in this system is:
x1 + x5 + x7 + x8 + xF1 + xF2 + x9 + x10 = N5

x2 + x5 + x7 + 2x8 + 2xF1 + 2xF2 + x9 + 2x10 = N6

x3 + x6 + x7 + xF1 + xF2 + x9 + x10 = N7

x4 + x6 + x7 + xF1 + xF2 = N8

(6.22)

where Ni, i = 5, ..., 8, are computed from the initial piece quantities.

6.4.1 Optimized rates and induced effective plan

We apply our optimization procedure with Problem P1 and P2 as before. The results for the
convergence are shown in Figure 6.6. As Problem P2 is quicker in general and shows more
interest dynamics, we will only study it for the rest of this section.

The resulting probabilities p+
i , p

−
i for problem P2 are nearly all continuously varying. The

only exceptions are p+
3 , p+

6 and p+
9 which are all at 1.0. The variation of the rates for the

values of α are shown in Figure 6.7.
Looking at the values of the rates at specific positions, we can make observation on

the actual plan promoted by the optimization. The reactions, though still present, will be
promoted or deactivated when their corresponding forward and backward rates are modi-
fied. This corresponds to a continuous optimization of the plan, in contrast with a discrete
optimization performed by Klavins[14].

In general, the value of the rates show the following hierarchy between reactions and
pathways:

• k+
2 is small and k−2 is big compared to other rates. This deactivates Reaction 2.

• To compensate the absence of piece 6, the sequential pathways represented by reactions
7 and 8 for F1 and reactions 9 and 10 for F2 are really active.

• The small amount of pieces 6 that would result from breaking of assemblies are quickly
reuse via the reactions 3 and 6, which have of full forward rate, or destroyed by the
backward rate of reaction 2.

We see three different regimes for the rates, and the resulting continuous assembly plans:

1. Near α = 0.1, the only changing rates are k+
4 and k−4 . They are changing toward a

deactivation of Reaction 4, which is the only one creating F1 puzzles. The network
then automatically tends to create more F2 puzzles, which seems to be a constant
characteristic of the system we are studying.
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Figure 6.6: Expanded system. Comparison between the two objective functions P1 and P2
when showed with semi-logarithmic x axis.

2. Between α = 0.2 and α = 0.8, the rates k+
4 and k−6 seems to have to most effect. They

act by promoting the creation of F1 and slowing the creation of F2. During that period,
the networks tends to produce a 50% ratio by itself, as shown by the convergence profile
in Figure 6.6(b): the first convergence arrives close to a 50%, no redistribution is needed
(to compare with Figure 6.3(d) of the previous system)

3. Near α = 0.9, the behavior changes dramatically. Reactions 7, 8 and 4, leading to the
creation of F1 are promoted extensively (increase in forward rate, decrease in backward
rate). At the same moment, reactions 6 and 10, creating F2, are deactivated. This
promotes the creation of F1 puzzles.

We see then that this optimization works with these general tendencies:

• Remove assembly 6 from the possible pool of pieces, to liberate all initial pieces for
other reactions. This means removing the initial plans we were using an use the new
introduced one, see Figure 6.5

• Use the sequential steps to create the final puzzles. This is a counter-intuitive results,
but it may be linked to an added flexibility with having a large pool of initial pieces,
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Figure 6.7: Optimized rates of expanded system under problem P2, for α ∈ 0.01, 0.99.
Remark: k−6 curve is the same as k−3 .

that can be used at precise assembly steps without temporal dependences between
reactions.

• Modify the reactions leading to the final assemblies to change the ratio, and do not
touch the “general” part of the system. This is in agreement with the behavior we
observed in last section.
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• As the system is more prone to create F2 than F1, it is easier to control the system in
one direction than the other. To create a big ratio of F1, the overall behavior of the
system is changed, leading to a nearly new plan. This plan correspond to the sequential
one we added in Figure 6.5(a).

So in conclusion, it is possible to get insights into the kind of behaviors and continuous
plans promoted by the optimization. The algorithm promoted the use of sequential plans,
with the addition of “rewiring” the system when the goal to attain is in contradiction with
the intrinsic behavior of the system (e.g. to create the big ratio of F1).

These results are not that intuitive, i.e. one would think that using parallel assembly
steps is more efficient for the convergence time. But comparing the results, we see that
the “sequential plan” is much quicker for α = 0.5, and slightly worse for the two others
(4 · 104 seconds instead of 3 · 104 seconds). However, it has to be checked that such an opti-
mization would give similar results for a more complicated set of assembly plans, especially
the “full set assembly plan” consisting of all possibles reactions of the system.
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Chapter 7 Augmented assembly imple-
mentation

7.1 Top-bottom approach

This chapter will cover the last step in our methodology: going back from the modified model
to the physical system, while applying the introduced modifications.

This is a Top-bottom approach, which is of growing interests nowadays. This method
becomes interesting when the behavior of the low-level parts is hard to create, when the
global behavior does not simply follow from the behavior of the low-level parts or when we
want to low-level parts to follow directives given at a higher level.

In our case, our problem is that we do not know how to modify the behavior of the
low-level parts (i.e. the robots and pieces and their interactions) so as to create a high-level
goal. When working on the mathematical model level, we can define our high-level goals
more easily.

The main difficulty of this approach is to create a mapping from the high-level to the
low-level.

7.2 Rates mapping

In our case, this problem is actually simpler, because we have a direct dependance between
rates in the mathematical model and behavior of the robots.

Especially, we created a bidirectional relation between the stochastic constant rates of
our mathematical model and physical capacities or behavior of our robots and pieces. The
mapping from the model to the physical system is thus straightforward:

Backward probability p−i : A robot carrying an assembly draws a random number at each
timestep and compare it to the p−i corresponding to its carried assembly i. Precisely:

if U(0, 1) < p−i · T → disasssemble assembly i.

where T is the timestep of the physical simulation. This is needed because p−i is a
backward rate per second.

Forward probability p+
i : As shown in Equation (6.18), this probability is used when an

assembly is starting. Before actually doing the assembly, a random number is drawn
and compared to it:

if U(0, 1) < p+
i · T → perform assembly step i.
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Reaction j 1 2 3 4 5 6
α = 0.01

p+
j α = 0.5 1.0

α = 0.99
α = 0.01 0.033074 0.000134

p−j α = 0.5 0.018852 0.007541 0.003770 0.000661 0.009426 0.000265
α = 0.99 0.000334 0.013229

Table 7.1: Set of optimized probabilities used for the Top-down mapping. Reactions from
system (6.1).

When a disassembly is triggered, the carrying robot drops one of the assemblies on the
ground and resume searching with the remaining carried assembly. This dropped assembly
should then be grabbed by another robot in order to be attached again.

These behavior should directly create the change of rates needed for the modified math-
ematical model.

When such a bidirectional mapping is not that easily available, we have to discover that
mapping. A possibility would be to create an iterative process between a modification of
low-level parameters and a measure of the resulting rate modification in the model.

7.3 Augmentation results and implications

We choose to implement the set of optimized probabilities shown in Table 7.1. It has been
found by solving problem P1 in Section 6.3.

7.3.1 Stochastic model

We start by verifying the behavior with the stochastic simulation of our model with backward
rates. We modify Equation (5.2) to add the backward reactions while still modeling the robots
and free pieces. Our model takes into account the dropped pieces when a disassembly occurs.
The results for 1 puzzle are shown in Figure 7.1. The results are similar for 3 puzzles, so we
do not show them here.

According to these simulations, the optimized rates for the simplified system (6.1) trans-
lates into the same global optimized behavior when used on the complete system with robots
and free pieces. It manages to create the target ratio α quite successfully. This is a good
thing, as it shows that we have a full loop between the physical system and the optimization
of the model. We see that, because of the low number of pieces available, there are still quite
a lot of non final puzzles in the system.

7.3.2 Physical simulation

As explained earlier, we augmented the system by adding the capacity to break assemblies
and grab mid-assemblies lying on the floor. We then use the optimized probabilities of
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(c) α = 0.99

Figure 7.1: Stochastic simulation of the Augmented system, for 1 puzzle and 5 robots.

Table 7.1 before running our simulations.

The carried pieces discrepancy

Our first result is an experiment with α = 0.01, using 5 robots and 5 pieces. We run 100
experiments, using the same methodology as explained in Section 4.4.1, for a maximum of
10 minutes. The results are shown in Figure 7.2.

This is quite disappointing, as it does not converge to our desired values, even if we do
not run the system for a long time. The biggest problem is the amount of free piece 2: they
are more abundant than final assemblies.

Studying visually the behavior in simulation, we discovered that this problem is due to
the re-carrying of pieces dropped during a disassembly. When few robots are available, the
time till a piece is carried again can be in the same order of magnitude than the time between
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Figure 7.2: Results of the augmented system with optimized rates for α = 0.01. Problem of
carrying of pieces.

two assemblies. Yet when constructing our model for the optimization, we assumed that the
pieces would be carried very quickly (Section 6.2.1). This hypothesis is thus pretty important
as its effect shows it here.

In order to correct that, we add 3 robots to the arena, which ensure that the time to
re-carrying of pieces is small. We then compare the results of this new physical simulation to
the stochastic simulation of the same experiment in Figure 7.3. Again we do 100 experiments,
of 10 minutes each for a target value α = 0.01.

The results between the physical and the stochastic simulations are comparable but differ
slightly:

• The rates of convergence up to 9 minutes are of the same order. The stochastic model
fits correctly the physical simulation.

• After 9 minutes, the stochastic model continues to converge towards its equilibrium,
as expected from Figure 7.1(a), but the physical simulation saturates to a sub-optimal
value. The amount of free pieces 2 is kept pretty high, without assembling to create
the desired final puzzle F2.

When observing visually the behavior of the system, it appears that two scenarios are
occurring:

1. The system builds a final puzzle F2. As the backward rate from this puzzle is very
slow, it is kept complete till the end of the simulation.

2. The system builds a final puzzle F1. According to our rates, it should disassemble
back till a convergence to F2. Unfortunately this disassembly does not work that well.
Several problem arise:
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Figure 7.3: Comparison between physical augmented system and stochastic model for α =
0.01.

• When F1 disassemble, it is very likely that the lying free piece 2 is taken and
assembled back into a new F1. The problem comes from spatial constraints: the
piece is dropped near the current robot.

• If F1 disassembles, we end up with an assembly 7 and an initial piece 2. The
backward rate to disassemble 7 is low, which posses a problem in our case. We
think that because 7 stays alive for some time, it has more chances to assemble
back with the piece 2 than disassemble further, because of the spatial problem we
presented.

There seems to be an even distribution between the two scenarios, the second of them
impeding the capacity of the system to converge to the target ratio. We would need to do an
iterative process to bring back this difference to the model level, in order to get optimized
rates taking it into account.

Other target ratios α

See Figure 7.4 for the two other target ratio and their comparison with the stochastic model.
The methodology is again the same, we perform 100 experiments of 20 minutes.

We see that we closely fit the predicted data, but that the physical simulations converge
to sub-optimal values in both cases. Again the “mobility” between assemblies in the real
system is much smaller than in the model. This prevents a good convergence to theoretical
values over time.

Even though the yield is bad, it has to be remarked that the ratios α are successfully
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Figure 7.4: Augmented system results for α = 0.5 and α = 0.99. Comparison with the
stochastic model.

enforced by the optimized rates. This might point out that the problem does not come from
the dynamics directly but from the small amount of pieces available. Further tests with
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bigger amount of pieces would be needed, but we are limited by simulation constraints for
the time being.

7.3.3 Implications

We saw that it was possible to use the rates we optimized in a simplified mathematical model
to map onto the physical system. It successfully created the desired ratios of final puzzles,
even though the dynamics of interactions between robots is quite complex and random. The
Top-down approach of our framework is thus valid and promising even at this early stage.

However, some differences can have big impacts. Small copy numbers can disturb the
convergence, and the non-spatiality assumption can have bad effects when our physical system
does not manage to satisfy it. We think that our approach is still worthy of interest and
leads to insightful results, especially theoretically. It would need some tuning in order to map
correctly the theoretical optimized probabilities onto the physical system. Unfortunately, this
would have to be done in a further work.
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Chapter 8 Conclusion and outlook

8.1 Conclusion

Through this project, we presented a framework to perform a Top-down control over an
existing system. It has been tested on a specific assembly task for robots.

We first stated the overall framework and its components. Particularly, we defined two
separate systems connected together by the Top-down control approach, the intrinsic and
the augmented system. Our other major choice is the use of a Chemical Reaction Network
mathematical model for all the framework. It allows a description of many systems while
being widely accepted and used in the scientific community, especially in the life science
community.

We presented the test case on which we have applied our framework. This test case is
a robotic assembly platform using a team of multiple robots. This has been completely
developed and simulated using the 3D realistic physical simulation Webots. The platform
has been created to verify a couple of properties, e.g. a well-mixed property of agents. The
robotic platform allows us to assemble pieces following an arbitrary assembly plan, easily
modifiable. We measured extensively the behavior of this platform under several conditions.

We introduced the mathematical representation in term of a chemical reaction network of
our robotic platform. All its parameters where fitted by using first an heuristic guess based on
geometric probabilities, behavior of the robots and measures of our platform. The theoretical
parameters were then compared and adapted to the real measured ones, in order to closely fit
to the physical simulation. This chemical reaction network has be simulated in two different
ways: using an ODE approximation and with an exact stochastic simulation. Both simu-
lations successfully captured the behavior of the physical system. The ODE approximation
is wrong when few number of robots and pieces are considered, as one would hypothesize.
On the other hand, the stochastic simulation captured especially well the quantitative global
behavior of the physical system. Some characteristics still need to be accounted for, for ex-
ample the irrecoverable errors in the physical simulation, or the divergence from a well-mixed
system when the robots overcrowded certain parts of the arena.

We also successfully modeled a scenario where the robotic platform can create two dif-
ferent final assemblies. The assembly plans used, as well as geometric constraints and pieces
availability then defined the probability to generate the first or the second final assembly.
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We introduced our Top-down control goal as the capacity to accurately control the ratio
between the two final assemblies, while converging quickly to that state.

In order to perform this control optimization, we introduced several results for the con-
vergence of chemical networks and their dependence upon the reactions rate constants. We
developed an algorithm representing the chemical reaction network and the goal of controlling
the final ratio of final assemblies as a linear program function of the rate constants.

It allowed us to define any target ratio and to make the system converge to it only by
using a specific set of reactions rate constants. Control of the ratio was achieved by modifying
only a small subset of all rates, namely the one controlling the final building reactions. The
obtained behavior gave insights into the flexibility shown by such chemical reaction networks.
We studied extensively the evolution of the controlled system and the behavior it showed. We
then presented a direct application of our findings, in the shape of a “green manufacturing”
system, which change its target final assembly smoothly during one experiment. It showed
that our robotic platform displayed a flexibility in its capacities that are harder to replicate
using classical assembly lines process for example.

We finished by studying the effect of our optimization scheme on a set of assembly plans.
The goal was to study if it would directly perform a discrete optimization of the plans,
giving the assembly plans most adapted to the assemblies being built. Interestingly, such a
result took place, in a continuous fashion. A close analysis of the optimized rates showed
several regimes of activity, corresponding to several dynamic plans, depending on the target
assemblies. This is a surprising result, and research in that direction could lead to interesting
discoveries.

Finally, we implemented our theoretical findings into our simulated robotic platform. This
mapping was straightforward because of the strong relation built through the application of
our whole framework. Stochastic simulations of the controlled system showed a behavior in
accordance with the theoretical findings, even though several approximations were made to
perform the optimization.

However, the physical simulations showed a bigger discrepancy. The number of final
puzzle was small and the system was crowded by initial and mid-assemblies. We think this is
due to physical characteristics of our system, and because of the non-spatiality assumption
made in the model. The real system does not validate this non-spatiality assumption in
general, especially when disassembling a piece. This leads to a sub-optimal behavior when
the number of pieces is too small.

It showed that the last step in our framework, namely mapping back the model onto
the physical system, is crucial, and very sensitive to hypotheses and real problems. It is
still interesting to see that a full loop was successfully constructed, which would allow use
to perform an iterative improving loop to more closely matching the model to the physical
system.

We think that our framework showed promising results, especially its model component.
Chemical reaction networks are powerful explanatory tools, and they allow for a very precise
yet very insightful representation of processes. While still being hard to manipulate and
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design because of their non linearity, we managed to propose an efficient optimization scheme,
allowing a direct Top-down control scheme over the assembly process.

8.2 Outlook

Further work might go in several directions:

1. A more precise and general way to map the mathematical model on the physical system,
the Top-down mapping, should be proposed. As of now, we take advantage of the
simplicity and strong links between our simulation and our model, but this might not
be true for other systems. Furthermore, we saw that, even in our simple case, small
problems could cause big issues.

2. We created different assembly platforms, namely a self-assembly and a mixed-assembly
platform. They showed interesting results, but were not studied mathematically and
optimized in this current work. We think they might show new dynamics which would
help improving our framework.

3. Our optimization process should be verified and compared more thoroughly against
other optimization and searches in the parameter space of possible rate constants.
This is the goal of an ongoing paper on our work.

Finally, we would really like to apply this framework to a completely different system, like
a biological system or a microscale assembly process. Such systems show complex dynamics
which requires a precise and flexible framework. As we first thought our framework to be
applied to such systems, it would be only fair to eventually answer our claim that it is well
adapted to such inherently complex systems.

If this comes to be true, we would be pleased to have developed with success a frame-
work capable of handling systems so utterly different as a biological process and a team of
multi robots. We think there will be a need for flexible frameworks allowing an easy trans-
fer of knowledge and informations between scientists working on completely different fields.
Scientific work done at the frontier of several fields will soon give rise to impressive new
possibilities (e.g. nanoscale robots to deliver drugs directly in the body), so if a framework
can help towards that goal, we hope our work will provide a step forward.



Chapter 9 Additional Material

9.1 Videos

Videos showing the behavior of the robotic platform, for different scenarios and initial con-
ditions, are available in the project’s electronic handout.
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