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Abstract

Working memory plays a key role in cognition, and yet its mechanisms remain much debated.
Human performance on memory tasks is severely limited; however, the two major classes of theory
explaining the limits leave open questions about key issues such as how multiple simultaneously-
represented items can be distinguished. We propose a palimpsest model, with the occurrent activity
of a single population of neurons coding for several multi-featured items. Using a probabilistic
approach to storage and recall, we show how this model can account for many qualitative aspects of
existing experimental data. In our account, the underlying nature of a memory item depends entirely
on the characteristics of the population representation, and we provide analytical and numerical
insights into critical issues such as multiplicity and binding. We consider representations in which
information about individual feature values is partially separate from the information about binding
that creates single items out of multiple features. An appropriate balance between these two types of
information is required to capture fully the different types of error seen in human experimental data.
Our model provides the first principled account of misbinding errors. We also suggest a specific set
of stimuli designed to elucidate the representations that subjects actually employ.

Author summary

Humans can remember several visual items for a few seconds and recall them; however, performance
deteriorates surprisingly quickly with the number of items that must be stored. Along with increasingly
inaccurate recollection, subjects make association errors, sometimes apparently recalling the wrong item
altogether. No current model accounts for these data fully. We discuss a simple model that focuses
attention on the population representations that are putatively involved, and thereby on limits to the
amount of information that can be stored and recalled. We use theoretical and numerical methods to
examine the characteristics and performance of our model.

Introduction

The ability to store information about the world and use it at a later time is a critical aspect of human
cognition, and comes in many different forms. One such is visual short term memory, which holds
visual information for brief intervals, for example to make a decision or complete a task. Since it is
important in many contexts, it has been the subject of a wealth of psychophysical and neurophysiological
investigations, and offers constraints on coding and representation as well as on pure storage.

Here, we consider a paradigmatic visual short-term memory experiment from [1] which is illustrated
in Figure 1A. Subjects were presented with an array of oriented coloured bars. After a short presentation
time, the array was removed and one of the coloured bars was re-presented at a random orientation. The
subjects had to rotate the bar back to its previously presented orientation (the target orientation) from
memory. Thus multiple items must be stored, each having two features (colour and orientation). One
such feature is cued (here colour), and the associated other feature (orientation) had to be recalled.

As one might expect, the mean precision of recall (typically defined as the inverse of the standard
deviation of the errors) decreases with the number of items, and does so smoothly. However, along with
small deviations from the target orientation, subjects can sometimes make large errors. This effect has
historically been explained by considering that memory can only store a small number of items, in a
finite number of “slots” [2–5]. Items not allocated a slot cannot be recalled even approximately, and so
are assumed to be guessed (leading to large errors). The number of slots has been estimated to be fairly
low for most individuals (∼4 items), although it can be expanded significantly by explicit training [6].



Figure 1. Experimental paradigm and storage process.
(A) The experimental paradigm. First, an array of items was shown for 1000ms, followed by a 1000ms
blank screen. Next, a probe with the colour of one of the items in the array was presented, but at a
random orientation. Subjects had to adjust the orientation of the probe item to match that of the
relevant item in the original array. (B) Graphical model of the storage process. Several items i, each
composed of two features (here, orientation φi and colour ψi), eliciting individual responses xi in a
neuronal population code, are combined together additively to form a final memory state yN.

More recently, several groups have proposed alternative mechanisms for storage [1,7–11] based on the
metaphor of a divisible, but limited resource. This resource is allocated amongst all the items that are
stored, rather than only some being remembered at all. However, as more items are stored, each receives
less of the resource, hence decreasing the precision of storage and/or recall.

One key battleground for this debate has been the observation of characteristic, so-called misbinding
errors [7, 8, 12]. These arise when subjects recall the orientation of another item with which they are
presented (that of a “non-target”) instead of that of the target. Figure 2, reanalysed from [7] shows this
for a task in which colour had to be recalled based on a cued location (items did not have an orientation
in this task). On the upper row, the distribution of errors around the correct target colour is shown;
each plot is for a different number N of items in the array. The responses are distributed around the
correct target colour, with a dispersion increasing with N . A characteristic baseline error level, increasing
with set size, is also visible. This uniform baseline has been interpreted as the signature of guessing [5].
The lower row of graphs shows how this dispersion hides misbinding, by indicating the distributions of
deviations between the response and all other non-target items. The presence of a significantly higher
proportion of small such deviations is a sign of responses incorrectly reporting other non-target items.
We measured the significance using a resampling procedure (see Methods and the Misbinding errors
section for details) that ensure that the effect is not just due to the increased probability of being close



Figure 2. Distribution of errors in human subjects.
Top: Probability of errors between recalled and target colour (this particular experiment cued the
location and required colour to be recalled), for 1, 2, 4 and 6 items (shown simultaneously). One can
see that the tail of the distribution grows when an increasing number of items is stored. Bottom:
Errors relative to non-target values presented in each array. Any bias towards 0 indicates misbinding.
Error bars show one standard error of the mean, for 8 subjects. A resampling-based estimation of the
probability of misbinding error was performed, and the p-value for a non-zero non-target response
component is shown for N=2, 4 and 6. Misbinding errors are significantly present in all conditions. See
Methods for a description of the resampling analysis. The magenta lines (and outline showing standard
error of the mean) show histograms obtained from randomly sampling from mixture models derived
from the resampling analysis, removing inter-item correlations. Recalculated based on [7].

to an item when their overall number increases; rather, it arises from biases in the recall process.
Finite resource models provide a more natural account of misbinding than classical slot models. This

is because all items are stored to some fidelity, making it possible that subjects recall the wrong item in
some circumstances [1, 7, 13]. However, a formal theory of these circumstances is presently lacking.

Further, although resource models have been successful in explaining psychophysical data, there is
as yet no canonical implementation, or agreement about what exactly is the limited resource. One
suggestion is that it is the total number of spikes available in a population of neurons [14, 15], using
normalization [15, 16] or by otherwise limiting the number of bits available to store the items [17].
However, accounts based on versions of this solve in a rather unusual way the problem of “multiplicity”,
i.e., when multiple items need to be represented simultaneously. That is, they typically employ distinct
and separable storage for each possible item (i.e., effectively an unbounded number of slots), with the
competition coming from restricting the total amount of activation across all storage units. This leaves
unclear the mechanics of allocation of these distinct pools, which is key to misbinding.

Here, we consider a different model in which a single set of storage units is employed, with different
items being overlaid, as in a palimpsest [18–21]. A conventional palimpsest is a manuscript which has
been partly scraped-off or cleaned before being written upon again, allowing past inscriptions to be
recovered along with the most recent content. Similarly, we consider the case where multiple items
are written on top of each other in the same neuronal population. For a paradigm in which items are



presented sequentially, partial erasure would occur between each presentations. However, for the sake
of simplicity, here we only consider paradigms in which all items are presented simultaneously, and so
without erasure of the palimpsest in between. We will refer to this as a restricted palimpsest storage
process. Depending on the representations used and how patterns decay and combine, the final memory
state of the neuronal population will retain a trace of all items that have been written onto it. From
this final memory state, we then consider a Bayesian probabilistic recall process starting from the cued
feature, mimicking the experimental paradigm presented above.

Recall performance in our model depends sensitively on the representation used to store different
items in the memory. We consider two specific examples that we call “mixed” and “hierarchical”. These
are intended as paradigm cases of a wider range of possibilities, rather than be fully comprehensive; we
analyse their characteristics empirically and theoretically. One particularly important aspect for both
codes is the balance between allocating units to storing information about individual feature values, and
storing binding information to link each item’s features together. This translates, through the medium of
probabilistic recall, into a balance between two of the types of experimentally observed error mentioned
above: the small displacements from the target item, and the more theoretically elusive misbinding, here
rendered as a (slightly displaced) recall of one of the non-target stored items. The third type of random
guessing errors also arise in the model via probabilistic recall, even though all items are actually stored.
The relative frequencies of these errors varies with the nature of the population code and the number of
items stored.

A classical way to quantify the quality of population codes is the Fisher information (FI). The
FI cannot be used to capture the frequency of misbinding – we therefore provide a thorough empirical
characterization of the model’s production of this sort of error. However, the FI does correctly determine
the width of the distribution of responses around either target or non-target items – the displacements
mentioned above.

We show how it may be possible to distinguish between particular population codes based on available
experimental data, and so propose new experiments that focus on the interplay between simultaneously-
stored stimuli, which could shed light on how items interact in human working memory. Note that
the goals of this paper are to introduce and explore population palimpsest memories rather than to fit
psychophysical data in quantitative detail.

We start by presenting the three key facets of our model: representation, storage and recall. We
consider its empirical and theoretical properties, relative respectively to data from existing visual short-
term memory experiments and to the Fisher information, which characterizes memory fidelity. This
raises the complex issue of misbinding, which we treat in some detail, for both a classical feature-based
representation, and a hierarchical representation that we then describe. Finally, we consider specific
arrangements of targets in the space of possible memories that are expected to lead to patterns of errors
that can help distinguish between different representations.

Results

We propose a model of representation, storage and recall in visual working memory. By considering all
aspects together, we show how to accommodate a range of experimental findings with a small set of
assumptions. To be concrete, we consider the experimental paradigm shown in Figure 1A (based on [1]),
and described above. Here, each item is determined by two features: angle and colour, both of which
are taken as being angular (as the latter can be encoded as an angle on a colour wheel).

Representation

Consider the case of a population of M units representing the memory of all items seen in a trial. The
simultaneous population activity of these units is read during recall to infer the feature of the item of
interest. The finiteness of the population, the nature of the representation employed and the influence
of noise jointly constitute the limited resource associated with our memory.

In terms of the representation, we assume that units have continuous firing rates, and are tuned to
specific combinations of features. Unit i has a preferred angle and colour, with separate tuning widths to
each feature, and its mean activity follows a Von Mises curve as shown in Equation (1). We use Bivariate



Figure 3. Example population codes.
Top: Receptive fields of units (one standard deviation), shown for the three different types of
population codes: conjunctive, feature and mixed. Bottom: Activity profile over the entire stimulus
space for the two shaded units on the left.

Von Mises [22,23] tuning curves as they provide a convenient parametrisation of the sensitivity to a pair
of angular features.

µm(φ, ψ) =
1

4π2I0(τ1,m)I0(τ2,m)
exp (τ1,m cos(φ− θm) + τ2,m cos(ψ − γm)) , (1)

Here, φ and ψ are respectively the orientation and colour of the item to be represented. θm and γm
are the preferred angle and colour of unit m. τ1,m and τ2,m are called concentration parameters, which
control the size of the receptive field, as well as the sensitivity of each unit to the different features.
Units have continuous valued firing-rate responses, and suffer from independent Gaussian noise about
these mean activities. To examine the scaling behaviour of the model, we use a normalization scheme
that constrains the mean summed overall network activity induced by any item to be constant as the
receptive field concentrations change (although the total activity in the memory grows with the number
of items stored). We use independent Gaussian noise for simplicity, although it would be straightforward
to examine a more neurally plausible, Poisson, noise model.

Writing xm as the firing rate of unit m, the population activity x = [x1, . . . , xM ]T is

x | φ, ψ ∼ N (µ(φ, ψ), σ2
xI) (2)

Depending on the distribution of τ1,m and τ2,m, several types of population code can be generated
(see Figure 3 and 10). τ1,m = τ2,m = τ ∀i corresponds to a “conjunctive” population code, in which
each unit is sensitive to a combination of the two features. Conversely, a “feature” population code
employs two subpopulations; one has τ1,m = τ, τ2,m = 0, and is sensitive only to the first feature; the
other has τ1,m = 0, τ2,m = τ , and is only sensitive to the second. We also consider a “mixed” population
code including both conjunctive and feature units, and entertain various possibilities for the relative



proportions of the two types. This “mixed” population code provides an easy way to parametrise
the relative information required to store feature values accurately (these are mostly encoded in the
feature sub-population) versus the binding information required to link features together into item-
like representations (only encoded by the conjunctive sub-population). Moreover, the different types of
population code will require different number of neurons to cover the entire stimulus space appropriately.
This will become increasingly important as the number of features increases.

We study the effects of different types of representation on the nature and quality of recall, and show
that aspects of human experimental data are better accounted for by population codes that might at
first seem sub-optimal.

Storage and recall process

According to our restricted palimpsest memory process (“restricted”, because, as mentioned in the
introduction, we do not assume erasure of the palimpsest between storage steps) , the noisy population
activities associated with all the items are simply summed to produce the final memory. As can be
expected, the characteristics of the representation used will determine how readily possible it is to
extract items when they are overlaid.

The storage process is depicted in Figure 1B, in which N items are stored simultaneously. Again, for
simplicity, assuming that the final memory suffers from spherical Gaussian noise, we derive:

xi | φi, ψi ∼ N (µ(φi, ψi), σ
2
xI) (3)

yN | x1, . . . ,xN ∼ N

(
N∑
i=1

βixi, σ
2
yI

)
(4)

Here, φi and ψi represent the feature values of item i. xi is the population representation of item i.
Multiple items are then summed to produce the final memory state yN. Extraction of stored information
is based on the memory state yN, along with any prior information. Examples of memory states for a
chosen set of stimuli and population codes are shown in Figure 4. For completeness, these expressions
include two generalizations that we do not consider further here: the terms βi allow different items to
be stored with different strengths in the memory (to accommodate tasks involving explicit attentional
instructions); however, here we set βi = 1 ∀i. The parameter σ2

y allows for extra memory noise, but is
set to a very small value in our experiments (σy = 10−5).

Having produced this final memory state, the next step is to recall the correct feature based on
the recall cue. Bayes optimal recall would require marginalising over the non-target items that were
simultaneously presented. Given the final memory state yN, and a cued feature value (e.g. a colour ψ),
this would lead to the posterior distribution over the value of the other feature of this item. However, this
marginalisation would be computationally penal, since it would likely require explicitly representing and
processing all the non-cued items. Instead, we make the simplifying assumption that only the item to be
recalled is explicitly modelled, with the non-targets being collapsed together and treated as background
noise. Conceptually, this corresponds to extracting a specific item of interest out of irrelevant noise. This
approach was adopted by [21, 24, 25], in the context of retrieval from long-term memory in multistate
synapses.

The algorithm is illustrated in Figure 4. Given a memory state yN and the cued colour ψ, we compute
the posterior distribution over φ explicitly (Figure 4B). No closed-form solution exists for this posterior
in general, because of the non-linear transform associated with the population code µ(·). Therefore we
sample from it using slice sampling [26]. We treat a single sample as the output of recalling a feature
from our model for this trial. The use of sampling instead of a maximum likelihood (or MAP) solution
has two main consequences: the variance of the posterior has a direct effect on the variance of the
recalled orientation, and multi-modal posteriors will reflect situations in which another orientation may
be reported in place of the appropriate one.

We formalize this process by writing mN−1 as the contribution of the noise process to the mean
of the final memory state and ΣN as the contribution of the noise to the full memory covariance, see
Figure 4C. r is the index of the item to be recalled, which we integrate over, as it is unknown during
recall.



Figure 4. Recall model and posterior for different population codes.
(A) Example memory states for the different population codes, when three items are stored. Coloured
circles indicate the veridical feature values. Left: Conjunctive population code, involving little
interaction even between nearby items. Middle: Feature population code. Right: Mixed population
code – a few conjunctive units provide just enough binding information to recall the features associated
with the appropriate items. (B): Cued posterior probabilities, given the veridical colour to be recalled
(the three curves correspond to cueing the three possible colours; vertical bars indicate the true stored
orientations). (C) Graphical model representation of the process of recall. The final memory state and
colour are observed; the orientation must be inferred.

yN | φ, ψ, r ∼ N (mN−1 + βrµ(φ, ψ) , ΣN) (5)

φ | yN, ψ ∝ p(φ)

∫
dr p(r) p(yN | φ, ψ, r) (6)

This posterior is usually peaked around the appropriate orientation; however, depending on the
population code used and the number of stored memories, additional modes can appear (see Figure 4B,
middle and right). These correspond to the effects of noise and other items on the recall of the item of
interest; the latter allows us to study the question of binding.

We now consider various characteristics of our models in the context of visual short-term memory
experiments.

Modelling visual working memory experiments

First, the model reproduces the baseline, apparently uniform, component of the distribution of errors
(see Figure 5 upper row, compared to Figure 2). However, this does not arise from pure random guessing.
Rather, a sample is always taken from the posterior distribution given a memory state composed after
storing all items. Nevertheless, interactions between items and the overall background noise in the
memory imply that the model sometimes samples values away from the target, so producing output
resembling guessing. On the lower row of Figure 5, we see that our model can also reproduce misbinding
errors, shown by the over-abundance of small errors towards non-target items values during recall. This
central tendency is reduced compared to the experimental data from Figure 2B, but is still significantly
present. In addition, the magenta curve and penumbra represent the distribution of samples from the
model when inter-items correlations have been removed.



Figure 5. Distribution of errors of the model.
The model is capable of recreating error distributions seen in the literature, such as those shown in
Figure 2. (Top row) Distribution of errors around the target angle. The central bump is at 0o,
showing that recall is normally accurate. The distribution has a non-zero baseline which combines all
sources of error. (Bottom row) Distribution of errors relative to all non-target angles. A central
tendency in those plots has been interpreted as supporting evidence for the presence of misbinding
errors in the responses. Histogram computed on 5000 samples of the model (no standard deviation is
shown as all samples are equally probable) The p-values for a resampling analysis of the non-target
mixture proportion are shown in each panel. The null hypothesis of no misbinding error can be
significantly rejected for all item numbers. The magenta curves represent the resampling-based
histograms assuming no misbinding error. Mixed population, M = 200, σx = 0.25.

The second experimental observation captured by the model is the decrease in recall precision as
a function of the set size, which is the number of stored items. Here we study the precision of recall
using the procedure defined by [7]. This involves fitting a mixture of Von Mises components on the
recall samples, using a procedure based on the EM algorithm [27]. This mixture model consists of one
Von Mises component per item (target or non-target) and a uniform random component. All Von Mises
components share a single concentration parameter κ. This mixture model approach turns out to be
substantially more robust to outliers than computing the circular standard deviation of the raw errors
directly. We refer to κ as the memory fidelity, and show how it depends on set size. In addition to this
memory fidelity, two other types of errors are specifically captured by this analysis: misbinding errors,
the probability of recalling from a non-target, and random errors, the probability of recalling from the
uniform random component. These will be analysed more thoroughly in the Misbinding errors section.

Figure 6 shows the fit of our model (in green) to human data (dark blue) from [13], where we report
the memory fidelity. The shaded region indicates one standard deviation, computed over multiple reruns
of the model (or across different subjects for the human data). The smooth decay in performance as set
size increases is appropriately captured by our model. This decay arises in our model from the increase
in recall noise as the number of stored items increases, but also from interference between items in the



memory. We report in both cases the memory fidelity, the concentration κ of the Von Mises component
obtained from fitting the mixture model on the responses from human subjects and our model. Here,
we used a mixed population code, optimizing the fit to the experimental curve by adjusting the ratio of
conjunctive to feature units and the encoding noise σx, for a population of M = 200 units (see Methods
for the optimisation procedure). The model does not capture the reduced decay rate for 4 and 6 items
to its full extent. However, this is a rather specific characteristic of this dataset. For comparison, the
inset in Figure 6 shows the fit of our model to the data from [1]. In this case, the model captures the
memory fidelity dependence more accurately.

Figure 6. Memory curve fit.
Mixed population code. This shows a qualitative fit of the model (green; the shaded area represents
one standard deviation) to the human experimental data (blue; data from [7]). M = 144, conjunctivity
ratio = 0.85, σx = 0.1). Inset: similar data fits, for [1] (M = 200, ratio = 0.85, σx = 0.4). Observe the
different decrease in memory fidelity for an increasing number of items.

Fisher information analysis

A common theoretical technique used to study the representational capacity of a population code is the
Fisher information (FI), which, via the Cramer-Rao lower bound, limits the precision of any estimator
based on the output of the code [28–30]. If the posterior distribution in our model can be well approx-
imated as being Gaussian, the FI will accurately characterize memory fidelity, allowing us to examine
the effects of different parameters and representations.

In our case, the FI should readily be able to characterise the spread of the errors around the correct
target value when a single item is stored (when there is sufficient signal [31, 32]). In this section (and
the Supplementary information), we study this case.

When there are multiple items, complexity arises from the fact that errors are distributed around
both the target feature value and misbound, non-target, features, with the posterior distribution being
multi-modal (and therefore not Gaussian). Nevertheless, as we will see in the next section, the Fisher
information, calculated assuming storage of just a single item, can still characterise the memory fidelity
around each mode.

Assuming a population code with Gaussian noise and signal-independent noise, the Fisher information
is defined as follows:

[IF(θ)]ij =
∂µ

∂θi

T

C−1
∂µ

∂θj
(7)

where µ is the mean response of the population, and C the covariance of the population response.
In our case, θ = [φ ψ]T , so the Fisher information is a 2-by-2 matrix.



We can easily compute it for the single item case (see Methods), obtaining:

⇒ [IF]φφ =
τ2
1

σ216π4I0(τ1)2I0(τ2)2

M∑
i=1

sin2(φ− θi) exp
[
2τ1 cos(φ− θi)

+ 2τ2 cos(ψ − γi)
]

(8)

In the large population limit in which preferred values have density ρ, it is possible to obtain an
analytical closed-form solution for this equation which is easier to interpret, (see Supplementary infor-
mation S1.1 for the complete derivation)

lim
M→∞

[IF1]φφ ≈
f(τ1, τ2)ρ

σ2
(9)

where f(τ1, τ2) is an increasing, approximately power-law, function of τ1 and τ2 that is given explicitly
in the Supplementary information. These values depend on the parameters of the code just as one would
expect from classical results for non-circular, uni-dimensional, receptive fields [31, 33]: Increasing the
concentration τ increases the Fisher information. This is easy to interpret, as narrower receptive fields
will be more precise in their encoding of the features. Similarly, increasing the coverage density has the
same effect, as more units are available to store information. Finally, the item encoding noise σ decreases
the Fisher information, as less signal can be extracted from the final memory.

The Cramer-Rao lower bound transforms the Fisher information into an estimate of performance in
the task. Figure 7 compares the Fisher information for the finite and large population limit with the
curvature of the log-posterior at its maximum value (as in the definition of the Fisher information);
and to the variance of samples given a memory state. We use again the memory fidelity, by fitting the
mixture model onto model samples. We convert this memory fidelity from its units of κ into an inverse
variance, by converting κ to the σ2 of the approximated Wrapped Gaussian (see Methods for details).
Note that the latter procedure, reporting the variance of samples given a memory state, generates a
doubly-stochastic process, hence increasing the variance observed. It can be shown that if the posterior
is close to being Gaussian, the variance from those samples will be twice that of the curvature of the
log-posterior considered above (see Supplementary information S1.2). This is shown by the dashed light
blue bar.

We see that they are all similar on average; the most important being the match between samples
from our model and the Fisher information analysis.

When more than one item is stored, errors arise from two sources: variance around a mode, and
mistakenly reporting the wrong mode (misbinding error). One can adapt the Fisher information analysis
to characterize the former, capturing the variability about each mode, conditioned on the fact that the
posterior is close to Gaussian. However, it does not capture the component of variance coming from
misbinding errors. Further analysis that quantifies both sources of variability will be required to account
in a theoretical manner for the full distribution of errors observed in the data.

Misbinding errors

As noted above, several groups have shown that a significant proportion of the errors made by humans
can be explained as arising from “misbinding”, i.e., recalling (at least approximately) the appropriate
feature of an inappropriate item, i.e., of a non-target item that also formed part of the array. Such
mistakes are shown in Figure 2B, and could contribute to the appearance of a baseline of errors seen in
experiments (Figure 2A), since these stimuli are drawn randomly from a uniform distribution across all
possible angles [7].

The proportion of errors classified as misbinding varies between experiments [1,7,13,34–36]. Although
some studies seem to show none at all [37]; in others, they are reported as making up to 30% of all errors
when the memory load is high. Misbinding has not been well addressed in the theoretical literature
on visual working memory, since current models typically assume distinct subpopulations storing the
different items, hence removing any possibility for direct misbinding errors.

Our model uses a single population of units for storage, and so can account for misbinding when
the posterior distribution (see Equation (6)) becomes multimodal. This usually happens when there is



Figure 7. Fisher information fit for one object.
Comparison between similar metrics: the memory fidelity (fitted κ) of single samples collected for
different memory states associated with a single memory state (double the value is shown in dashed
blue to take account of the doubly stochastic nature of single sampling); the theoretical Fisher
information derived in (8); the large M limit for the Fisher information (35); the average inverse
variance of samples from the posterior distribution; and the average curvature of the log-posterior at its
maximum. This refers to a Conjunctive population code with M = 200, τ = 4, σx = 0.1, σy = 10−5 and
500 samples.

insufficient information in the representation of items to bind the features together (i.e., when the codes
are insufficiently conjunctive); the different modes arise from the different items that are stored. The
relative heights of the modes of the posterior determine the frequency of misbinding errors. The classical
conjunctive population code represents one extreme, offering near perfect binding information, being
limited only by the size of each unit’s receptive field. Feature-based population codes, on the other hand,
constitute the other extreme: they do not perform binding at all.

For a mixed population code, Figure 8 shows that the proportion of conjunctive units has a strong
effect on misbinding errors and posterior multimodality. We construct a situation with two possible
angles, ± 3π

5 , where 3π
5 is to be recalled. In this case, using a mixed population code with around 40%

of conjunctive units dramatically reduces the number of misbinding errors produced by the model. This
proportion will depend on the number of items to be stored, as more items will require more precise
binding information.

The widths of the posterior modes depend directly on the amount of information provided by feature
and conjunctive units. Feature units are more efficient than conjunctive units at representing single
features, and so the cost of reducing misbinding by increasing the proportion of conjunctive units is to
increase the width of the posterior over the recalled feature. This can be seen in Figure 9, where we
fitted the mixture model presented in the Modelling visual working memory experiments section to the
recall samples, we report the concentration (an inverse width) of the Von Mises component in panel A,
and the mixture proportions in panel B.

Figure 9A confirms the relationships of the width of the posterior mode with the proportion of
conjunctive units. The concentration of the Von Mises component (in blue), closely follows the theoretical
Fisher information (in green), although overestimating it. The Fisher information provides a good local
estimate of the variability around a mode, as can be seen in Figure 8 on the right, where we overlap in
red a Von Mises PDF with a concentration predicted from the Fisher information (with a height set to
be aligned with the histogram of the right mode).

The mixture proportions corresponding to the target, non-target and random responses are shown
in Figure 9B as a function of the fraction of conjunctive units. They show that for around 50% or more
conjunctive units, more than 75% of responses are on target. The mixture proportion associated with the
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Figure 8. Misbinding errors when varying the proportion of conjunctive units.
These plots are based on a mixed population code recalling the orientation of one of two stored items
(the correct value is indicated by the red vertical bar). There is a fixed total number of 200 units; the
ratio of feature to conjunctive units increases for the graphs going from top to bottom. Left: Average
(and standard deviation, shown by the penumbra) of the log-posterior distributions over orientation,
given the stored memory states averaged over 1000 instantiations of the noise. If the population code
only consists of feature units, the posterior comprises two equal modes; the incorrect mode disappears
as the fraction of conjunctive units increases. However, feature units improve the localization; as their
number decreases, the widths of the posterior modes increases. Right: Distribution of 1000 sampled
responses, showing how misbinding errors tend to disappear when sufficient conjunctive information is
available. The red (respectively green) vertical lines indicate the target (respectively non-target) item
orientation. The red Gaussian curve shows the probability distribution of a Gaussian distribution
centred at the correct target value and with a standard deviation derived from the Fisher information
of the associated population code.

random component appears to be overestimated, compared visually to the distribution of the samples of
Figure 8. However, the mixture model well characterizes the proportion of misbinding errors.



Finally, as a last check, we verified that the mixture model estimates of non-target proportions were
reliable. To do this, we performed a resampling-based analysis of the mixture of non-target responses,
by randomizing the assumed locations of non-target angles and re-fitting the mixture model. Using
the empirical cumulative distribution over those samples, we could then compute a p-value for the null
hypothesis that the mixture probability for non-target would be zero. The results are shown in Figure 9C,
where the p-values as a function of the proportion of conjunctive units in the mixed population code are
reported. For proportions of conjunctive units below 70%, the null hypothesis can be rejected significantly
(at a 5% level), consistent with the presence of misbinding errors.

We applied this resampling analysis to the human experimental data shown in Figure 2, as well as to
our model’s fit to these data (Figure 5). The p-values for the data collapsed across subjects are shown
above the histograms of biases towards non-target angles; they all are significant. Redoing the analysis
per subject indicates that for 2 items, 8 out of 12 subjects show significant misbinding errors; for 4 items,
7 out of 12 are significant; and finally for, 6 items 10 out of 12 subjects show misbinding errors.

Figure 9. Memory fidelity and mixture proportions as a function of the ratio of
conjunctive units.
(A) Standard deviation of the Von Mises component (in blue) from the mixture model fitted to
samples of the model shown in Figure 8 as a function of the fraction of conjunctive units. The
(theoretically-calculated) Fisher information is shown in green for the associated population codes. (B)
Mixture proportions of the mixture model fitted on the model samples. This metric is less sensitive to
random fluctuations of the samples, and shows that if 50% of the units are conjunctive, then 75% of
responses will be correctly associated with the appropriate target angle. (C) P-value for a
resampling-based estimation of the probability of the non-target mixture proportion to be different
than zero. We see that the null hypothesis of the non-target mixture proportion being zero can be
rejected from 70% of conjunctive units and less.

Hierarchical population code

In addition to the “mixed” population code that we have so far described, one might imagine an “hi-
erarchical” population code, shown in Figure 10. This uses two layers, the lower of which can either
be a conjunctive or feature population, parametrised as described above. Units in the higher layer are
randomly connected to a subset of the lower layer units, with activities that are a nonlinear (sigmoidal)
function of the weighted sum of the sampled units’ activities. More formally, where µ(1) is the mean
response of the lower layer, σΘ the rectified linear function with threshold Θ:



x(2) | φ, ψ ∼ N
(
σΘ

(
W · µ(1)(φ, ψ)

)
, σ2I

)
(10)

σΘ(x) = max(0, x−Θ) (11)

W̃jk ∼ Bernoulli(p) · Exp(λ) (12)

Wjk =
W̃jk∑
j W̃jk

(13)

Such an hierarchical code can be considered an abstract representation of a layered neural architec-
ture [38].

Figure 10. Hierarchical population code.
The hierarchical code comprises two layers: the lower layer receives the input, and is randomly
connected to the upper one, which provides (possibly additional) binding information. Bottom: layer
one consisting of either a feature population code or a conjunctive population code. Receptive fields of
units of a feature population code are shown (one standard deviation). Top: effective receptive fields of
three layer two units are shown. Layer two units randomly sample a subset of the activity of layer one
units, and pass a weighted sum of their inputs through a nonlinearity.

The “mixed” and “hierarchical” population codes were specifically introduced to parametrise subtly
different forms of binding, controlled by the ratio of binding to non-binding units. In the “mixed”
population code, conjunctive units introduce binding information independently from the rest of the
feature units. In the “hierarchical” population code, the random layer two units bind together the
activity of layer one units, generating seemingly arbitrary combinations of feature values, yet providing
sufficient conjunctive information. It allows us to check how structured the binding information should
be for the results to hold.

Figure 11 shows the behaviour of recall for a hierarchical population code based on a feature pop-
ulation code at the lower layer. The total number of units was fixed (at M = 200); the ratio of upper
to lower units was varied. The optimal arrangement changes markedly when multiple items must be
stored. Having few random binding units is very efficient in the single item case, but this breaks down
completely when multiple items are stored and interfere with each other. The dependence of the memory
fidelity on the ratio of upper to lower units is similar for increasing number of items, with the exception
of the overall scale. Unsurprisingly, memory fidelity is lower when increasing the number of items and
conjunctivity, see Figure 11A. As shown in Figure 11B, the probability of the response being related to
the correct target changes completely going from one to many items, with non-target responses becoming



Figure 11. Memory fidelity and misbinding errors as function of conjunctivity in
hierarchical population code.
Left: Memory fidelity based on model samples, while varying the ratio of lower to upper layer units in
a hierarchical population code with a constant number of 200 units. The number of (randomly placed)
items increases from top to bottom. The memory fidelity decays with increasing item number and
conjunctivity. Right: Mixture proportions based on model samples. For a single item, the correct
target angle is always retrieved (blue curve). The drop for high ratio of upper to lower layer is
expected, as few units are left in the lower layer to represent the item appropriately. For increasing
numbers of items, non-target responses are prevalent (green curve), but including a suitable proportion
of upper layer units does allow the appropriate angle to be retrieved. Random responses are marginal
with the parameters used here. M = 200, σx = 0.2.

prevalent for small ratios of upper to lower units. Moreover, there is an optimal ratio of upper to lower
units when storing multiple items, if one tries to optimise the proportion of correct target angle recall.

Figure 12 shows the fit of the memory fidelity to the experiments in [1, 7], as was done in Figure 6
for the mixed population code. Despite being drastically different in its implementation of conjunctivity,
it provides a good fit to the experimental data. The hierarchical code is able to capture the trend of
decay in both experiments to a greater extend than the mixed population code (main plot shows a fit
to [7], inset shows a fit to [1]). However, the fit for 4 and 5 items for [1] does show discrepancies with
the experimental data. The optimal parameters obtained for those fits resemble those for the mixed
population code, namely a high ratio of higher-level binding units and large input noise. These render
promising this class of hierarchical codes.

Comparisons of population codes

Effects on experimental data fits

The patterns of errors arising from specific choices of population codes can be used to help discriminate
between different representations. Misbinding, which we quantify via the mixture model approach of [7],
is of particular value, since, as observed, it is rare for conjunctive codes; but ubiquitous for feature codes.
We therefore compare the misbinding exhibited by human subjects with the output of our model based
on different population codes (see Methods for details about the optimisation).

As can be seen in Figure 13, there are clear differences in the mixture weights associated with
misbinding errors, errors arising from local deviations from the correct feature to be recalled, and the
uniform component.

As expected, the feature code makes a large number of misbinding errors when more than one item
is stored. On the other hand, the conjunctive code makes only a few errors that appear to arise from
random guesses. Misbinding errors are highly unlikely in this configuration. In total, a mixed code



Figure 12. Memory curve fit for hierarchical population code.
Model fit (green; the penumbra represents one standard deviation) to the human experimental data
(blue; data from [7]). These qualitative fits are similar to those obtained for a mixed population code
(see Figure 6), despite the significantly different implementation. (M = 200, ratio = 0.9, σx = 0.3).
Inset: fit for [1]. Notice the difference in performance for large number of items.
(M = 200, ratio = 0.9, σx = 0.55)

provides a better fit to the human data, matching the increase in non-target responses as well as a
baseline random response rate.

The canary

This analysis suggests that stimuli specifically designed to induce patterns of misbinding could be useful
for understanding representations in population codes. Consider three stimuli, arranged on a diagonal,
separated by a variable distance in feature-space (illustrated in Figure 14). These create clear interference
patterns for feature codes, with multi-modal posteriors and misbinding errors. These errors will be
expected to change as a function of the characteristics of the population code. We therefore call this
stimuli pattern the “canary” in honour of its capacity to reveal such characteristics.

In particular, by making the stimuli close to each other in feature space, this pattern allows intra-
receptive field misbinding to be examined. This happens when the pattern lies entirely in a single
receptive field of a conjunctive unit, and can thus provide a somewhat crude and indirect measure of
the receptive field size of a mixed conjunctive code. Note, though, that hierarchical conjunctive codes
cannot be expected to have such a simple signature; and indeed even mixed codes are ultimately likely
to be multi-scale in character.

In Figure 15 (left panels), we show what happens for a mixed population codes. We report how
the parameters of the mixture model we considered before vary with conjunctivity in several conditions,
using a population code of 200 units, and allowing the ratio of conjunctive to feature units to vary from
0 to 1 (corresponding to full-feature and full-conjunctive, respectively). We set the item noise σx = 0.25,
a level compatible with experimental data fits, and show two characteristic distances between stimuli,
∆x = {0.22, 1} rad. The goal is to recall one of the three items, randomly chosen on different trials.
We characterize the errors using the mixture model presented before and report the mixture proportions
and the fitted κ from the Von Mises component.

For the large separation, ∆x = 1.0, the mixed population code behaves in a regular manner as the
degree of conjunctivity increases. For a feature-based population, recall suffers from much misbinding;
it is only when more than 50% of the units are conjunctive that correct binding typically occurs. The
mixed population code increases rapidly at around 70% of conjunctive units and saturates.

The outcome is quite different for the small separation ∆x = 0.2. In this case, no amount of
conjunctivity can help the discrimination between the three stimuli. This corresponds to a situation in



Figure 13. Error types for different population codes.
The graphs quantify different sorts of error in terms of the weights in a mixture model capturing local
variability around an item, misbinding errors and random choices [7]. Human experimental curves are
shown on the bottom right. This shows how misbinding errors are crucial components to fit human
performance. Conjunctive population code: M = 225 units, σx = 0.3; Feature population code:
M = 100 units, σx = 0.08; Mixed population code: M = 144 units, conjunctivity ratio = 0.85, σx = 0.1

which intra-receptive field misbinding occurs. Even for a fully conjunctive population code, the size of
the receptive field is larger than the distance between two items (M = 200, τ = 5.5 ⇒ width of 0.44 rad
for one standard deviation of a receptive field).

For the single-scale receptive fields that we employed to create the mixed population code, it is
possible to recover the scale from the error patterns as a function of the separation between the stimuli.
This is shown in Figure 16 for two mixed population, with 50% and 98% of conjunctive units. This plots
the target (blue) and non-target (green) mixture probabilities (normalized by their joint sum). These
start at the same value, but diverge after the point when conjunctive information becomes available
and hence when intra-receptive field misbinding become less prevalent. The black vertical dotted line
indicates half the size of the receptive field for the conjunctive subpopulation – misbindings stop being
prevalent once the stimuli covers multiple receptive fields. The red line for the case of 98% conjunctive
units corresponds to two times the size of the receptive field for the conjunctive subpopulation. Once



Figure 14. Stimulus pattern to induce misbinding. Feature-space representation of three stimuli
used to study misbinding errors and characteristics of the population codes. Three items are separated
by a distance ∆x. This set of items will generate interference patterns as shown by the dotted lines .
The circles represent one standard deviation of the receptive field response levels. The green circles
represent a population code in which the three stimuli are well separated. The blue circle represents a
code for which all the stimuli lie inside a single receptive field and would generate misbinding errors.
The target is randomly chosen on each trial as one of the three items.

this point is reached, each stimulus lies in its own receptive field, so misbinding should not happen. This
is again in agreement with the results, with very few non-target responses in this regime.

We originally expected a hierarchical population code to perform differently, since it encodes binding
information in a quite different manner. However, surprisingly, we find consistent results, as can be
seen in Figure 15 (right panels). Again, we show two characteristic distances between stimuli in the
canary pattern, ∆x = {0.15, 0.8} rad (we chose different values than in the mixed code situation, as the
population codes behave slightly differently).

When the separation is large, the hierarchical code also behaves in a regular fashion similar to that of
the mixed code as the degree of conjunctivity increases. When conjunctivity is low, the memory performs
poorly, as no binding information is present. However, as conjunctivity increases, performance does as
well. Interestingly, performance with a hierarchical code increases monotonically with conjunctivity
(before dropping sharply when the input lower layer population decreases past the required precision
needed to discriminate the stimuli). This architecture uses conjunctive information quite effectively, but
does not attain the same maximum performance.

The situation is less clear for a small distance between stimuli. Having a large proportion of con-
junctive units is actually detrimental in this case, as the input lower layer decreases in size, and thus
the encoding precision decreases with it. Hence there is an optimal proportion of conjunctive units for
a given required minimum discrimination. The smallest distance for which the target and non-target
responses can be discriminated when analysing the results is ∆x ≈ 0.30, using a hierarchical code with
a conjunctivity of 80% (see Supplementary information S1.3). Hence the hierarchical code seems to dis-
criminate smaller patterns for a given population size, which is surprising for such a crude representation
of a hierarchical representation.

Thus we find that even this simple stimulus pattern can provide something of a formal window into
misbinding and the structure of receptive fields.



Figure 15. Recall of stimuli shown in Figure 14.
100 individual samples from the model are generated for specific parameters (M = 200, σx = 0.25),
mixed (left) or hierarchical (right) population codes and inter-stimulus distances ∆x = {0.22, 1} rad.
Shaded regions correspond to one standard deviation around the mean over 10 repetitions. Top row:
Fitted mixture proportions from a mixture model (with one Von Mises component per
target/non-target and a random uniform component, similar to [7]). For small ∆x, no amount of
conjunctivity can improve the results, indicating intra-receptive field misbinding. For large ∆x, there is
a change from non-target to target responses as the proportion of conjunctive units increases. The
target is randomly chosen for each trial.. Second row: Width of the Von Mises component of the
mixture model (represented as the standard deviation corresponding to the fitted concentration κ).
The dotted black line corresponds to the distance ∆x between items in the stimuli pattern.

Discussion

We built a model of short-term visual working memory, assuming a single population of units, an additive,
palimpsest, storage scheme and sample-based probabilistic recall. We showed how this model could
qualitatively reproduce key aspects of human experimental data, including the decrease in performance
with memory load, and also error distributions, including misbinding errors, which have not previously
been the focus of theoretical study. It is the next phase of this work to fit human data quantitatively,
looking in detail at individual differences in performance and patterns of errors.

We studied several different sorts of population code. The most critical question concerns binding,
which in our case is performed by conjunctive units that are sensitive to specific combinations of two
or more features. Non-conjunctive, feature-based codes, can be more efficient at storing single items,
but fail catastrophically whenever multiple items are stored simultaneously. We considered including
both single-feature and conjunctive units, and showed that a combination is likely to offer a better
characterization of experimental data than either alone. Finally, we considered experiments that would
offer useful guidance to discriminating theories.

The original such model of this class of experiments was formalised by Wilken & Ma [39], based
on experiments and arguments from Pashler and Luck & Vogel [4, 40]. This includes a finite set of
“slots”; items that are not allocated a slot are therefore not remembered at all (requiring pure guessing
for recall). The assumed error distribution was thus a mixture model with two components: a Von
Mises centred around the target item, and a random uniform component. The alternative models are
based on the notion of a finite resource [1,7–11], arguing against a fixed number of slots, but rather that
there is a constraint on the whole collection, such that storage of multiple items leads to interference.
More recently, intermediate accounts have been suggested, such as a “slots and averaging” model [5],



Figure 16. Patterns of errors as a function of stimulus separation for different proportions
of conjunctive units.
This shows data as in Figure 15, but as a function of the varying distances in radians between stimuli
in the diagonal pattern, for two mixed populations with 50% and 98% conjunctivity. We compute the
ratio between the target mixture proportion and the sum of the target and non-target mixture
proportions (in blue). We do the same for a non-target mixture proportion (in green). The black
vertical bars show half the size of a conjunctive receptive for each population. We see that for
separations smaller than the size of a receptive field, misbinding errors are prevalent. This changes as
soon as the pattern of stimuli covers more than one receptive field. The vertical red dashed bar shows
twice the size of a receptive field. In this situation, each stimulus occupies one receptive field, and
misbinding should rarely occur.

letting individual items be stored in more than one slot, with the outputs of all the slots concerned being
averaged.

By comparison, our model, as a palimpsest, can best be seen as abandoning the notion of slots
altogether – be they finite or infinite – and so does not need a mechanism for allocating the slots. There
is a finite resource – the population of units that can be active – but this leads to two resource-like
limitations on storage, rather than one. The first limitation is noise – this acts just like some of the
resource limits in previous models. The second limitation is representational - the fact that the items
overlap in the palimpsest in a way that depends on how they are encoded in the population implies a
form of interference and interaction that leads to misbinding. This explicit element has been missing in
previous treatments. Along with the variability in the process of sampling, it is key to the model’s account
of the pattern of errors of human subjects, with heavier tails than a Gaussian/Von Mises distribution.
Other factors have also been implicated in this pattern, such as different memory encoding precision on
different trials [10,41], or the limited width of neuronal tuning functions [15]. It would be straightforward
to extend our scheme to allow for partial information about which item will have to be recalled.

We have shown how our model can encode information about each feature separately, with the
binding information being provided by another subpopulation. A model along related lines was recently
proposed by Swan and Wyble [42]. In this, an associative network, which they call the “binding pool”,
provides binding information. However, one could think of other ways to encode and store this binding
information, for example by using object-files. If one were to limit how many object-files could be used
at a given time, and if object-files made errors in binding the features together, this would provide an
hybrid slot-based treatment of the problem.

Another related model has been suggested in the context of dynamic field theory [43, 44]. These
authors consider a population of rate-based units with temporal dynamics governed by first order differ-



ential equations. Given specific layers and connectivity patterns, they simulate the evolution of bumps
of activity through time, which can be used to store information for later recall. In their model, feature
binding is completely linked to space in that each feature is stored in different feature-space population
bound only to location. A separate working memory population stores the locations of all items seen.
Recall relies on using location to couple and constrain the possible features to their original values. This
idea resembles “feature integration theory”, proposed by [45] as a model for attention.

That the dynamical (e.g., drifting) behaviour of the bumps is the critical focus of the model sits a little
uneasily with the observation that performance in visual short-term memory experiments does not drop
significantly when recall is delayed [1, 46]. Further, location cannot be the only variable determining
binding given experiments in which items are presented at the same location but at different times.
Our model is agnostic about the source of binding in its input, lending itself to the study of different
representations. Nevertheless, it would be interesting to model richer aspects of the temporal evolution
of the memory state.

Here, we assumed that only two features were stored per item, namely colour and angle. However,
we report in Supplementary information S1.5 the effect of using more than two features. One feature
that is particularly important is spatial location. In the actual experiments in [7], space (which, for
simplicity and consistency with [1], we treated as another angular variable) was used as the cueing
feature, with colour being recalled. It is possible, given the importance of space for object recognition,
that spatial tuning has quite different characteristics from that of other cues. Hints of this are apparent
in the properties of early visual neurons. This could make it a stronger cue for recall and recognition,
something that it would be interesting to examine systematically through experiment and the model.

With more features, we could address directly one of the key findings that led support to the slot
models, namely the observation of an object benefit in recalling features. That is, despite the sometime
fragility of episodic memory [47], which this functionally resembles, remembering a fixed number of
features is easier when those features are parts of fewer conjunctive items. The magnitude of that
effect has been the subject of intense debate, but there is broad agreement about a significant object
benefit [48–52]. In our model, such effects arise through two mechanisms: first, having fewer items will
add less encoding noise to the final memory state, which will directly reduce the overall noise level in
recall. Second, the conjunctive units also directly contribute to the storage precision for bound items.
Our model would thus also show an object benefit without additional machinery.

Our model treats storage as a bottom-up, feedforward process. However certain top-down effects
are known, such as directed forgetting [53, 54]. Such an effect could be accommodated in the model by
considering a multiple step process in which following regular storage, recall would be executed based on
the cue for the to-be-forgotten item, with the representation of whatever is retrieved being subtracted
from the previous memory state. As this would still be a noisy process, the resulting precision for the
other items would be less than if the forgotten item had never been stored at all, albeit still greater than
if its main influence over the memory state remained.

We made a number of simplifying assumptions, notably to do with the noise model and the sampling
process. For the former, we only considered additive isotropic Gaussian noise corrupting the encoding.
This could be readily extended to more complex noise models, for example to a more neurally plausible
Poisson noise model. The key difference from using Poisson noise would be its signal-dependence –
storing larger numbers of items would lead to greater activities and thus a higher variance. Signal-
dependent Gaussian noise is a related modelling choice [30,31,55]. Amongst other differences, this would
reintroduce the second term in the equation for the Fisher information (Equation (30)). This term can
be large compared to the first [55] and it adds extra inferential complexity [56], hence fully accounting
for it can be complicated.

We considered a process of recall that involves the full posterior distribution over the responses.
Determining how the brain would use and represent distributional information has been an active recent
research topic. One set of ideas considers what amounts to a deterministic treatment (albeit corrupted
by noise) [57–62]. However, there is a growing body of research showing how the brain might instead
use samples [63–66], and we adopted this approach. Inference might involve combining together larger
numbers of samples, and thus reporting some (noisy) function of the posterior other than just the
samples. However, such operations are currently underdetermined by the experimental data, as they
would interact with other sources of noise. Sampling from the posterior instead of simply reporting the
maximum a-posteriori mode value has the additional benefits of capturing variability around the mode
itself, which varies depending on the representation used. Nevertheless, it is important to stress that this



sampling scheme is not the main bottleneck in our model. Rather, it is the representation that constrains
the nature and magnitude of the errors in recall. The sampling scheme simply provides a mechanism for
reporting on the ultimate posterior distribution. A more limited report, such as the MAP value, would
likely lack the appropriate characteristics by reflecting too little of this distribution.

One of the major tools that we used to analyse the population codes was the Fisher information (and
the associated Cramer-Rao lower bound). However, this is only useful if the posterior distribution is close
to being Gaussian, and, in particular, unimodal. This will almost always be true for a single item; and
often be true when there are multiple items and a conjunctive population code that solves the binding
problem. However, as we saw, feature codes lead to multimodality, rendering a direct application of the
Cramer-Rao lower bound useless. What is still possible is to use the Fisher information as an indication
for the variability around one of the mode. We have shown how it still produces a good approximation
to the width of a mode, even in the presence of misbinding errors.

We characterized misbinding errors through a mixture model and a resampling-based estimator. It is
also possible to assess the multimodality of the posterior itself directly, for example by fitting a parametric
mixture model on the posterior. This analysis leads to similar results. But it would then be possible to
analyse this multi-modality analytically, and perhaps obtain a closed form expression for the proportion
of misbinding errors expected from a given posterior.

We considered a case of recalling only a single item given a memory. It would be possible to treat
recall differently, with a mixture model, estimating the features associated with all items, and thereby
answering the memory query directly. Total recall could be performed using a fixed finite mixture model,
e.g. a Gaussian Mixture model, but lends itself well to a nonparametric extension, characterizing the
whole collection of elements in an array. Approaches of this sort have been pursued by various recent
authors [67–71]. For instance, [71] considered both the encoding and recall to be implemented with a
Dirichlet process mixture model. They show how this provides a natural account of ensemble statistics
effects that can be seen in some experiments, such as regression to the mean of the presented samples. By
contrast, our approach is closer to the experimental paradigm, as there is no evidence that subjects recall
all features of all items when asked to recall an unique item. Regression to the mean still arises, but from
local interactions between items in the representation. Indeed, even for a conjunctive code, when items
are close-by the recalled angle will be biased towards the mean of all items, as bumps of activity merge
together. There is substantial precedence for the approximation of focusing on a single item, ignoring
some or all of the statistical structure associated with other actual or potential items [72–75].

Our results depend crucially on the nature of the underlying population code. As a proof of principle,
we tested two schemes – one mixing feature-based and conjunctive codes; the other building a hierarchy
on top of feature codes. However, many more sophisticated representations would also be possible -
studies of population coding suggest that using multiple scales is particularly beneficial [76, 77], and it
would be interesting to test these.

For our single-scale case, we suggested a particular pattern of three stimuli that we expect to be
of particular value in discriminating between different population coding schemes. The pattern was
designed to promote misbinding in a way that would also be revealing about the size of the receptive
fields. We also expect there to be a strong effect of distance in stimulus space on misbinding probability, if
a mixed-like representation is used. On the other hand, by the very nature of our hierarchical population
code, it is harder to make specific predictions about the dependence of proximity and other features on
misbinding probability. If subjects were too proficient at recall from this pattern, as might be the case
for just three items [1], it would be straightforward to complicate the scheme to include a larger number
of items.

An interesting extension to this analysis would be to introduce an asymmetry in the pattern of stimuli,
in order to displace the mean of the stimuli from the centre stimulus. This would in turn introduce
asymmetric biases and deviations for the different items depending on the sources of the errors. Indeed,
as briefly mentioned above, it has been shown that the mean statistics of the stimuli have an effect in
determining responses characteristics. Such an asymmetric pattern would indicate if the variability is
biased towards the mean of the stimuli or to close-by items only.

Although our proposal has primarily been grounded on the psychophysical literature, the use of
population representations, and the abandonment of anatomical “slots”, makes it appealing to consider
the neural basis of the memory. There is substantial work on population-based working memory with a
foundation in persistent activity [78], and even in the gating of storage necessary to make such memories
work efficiently [79, 80]. It would be interesting to study the extra constraints that come from a more



realistic neural implementation.
In conclusion, we proposed a model which accounts for errors in working memory by considering

explicitly the link between storage and representation. We showed it can successfully account for key
aspects of the psychophysical data on visual short term memory, and allows for a better understanding
of the relationship between being precise in the representation of single features and the representation
of binding information across all the features of a single pattern to be able to handle cued recall. Based
on observations on the form of the errors arising when recalling information from a palimpsest memory,
we proposed a specific stimulus template that would produce different error patterns depending on char-
acteristics of the underlying representation, and so we suggest as an attractive target for psychophysical
investigation.

Methods

Here, we provide a complete description of the processes of storage and recall, repeating material from
the main text as appropriate for convenience.

Representation

We assume continuous firing-rate style units. They have Bivariate Von Mises tuning curves, corrupted
by isotropic additive Gaussian noise:

µm(φ, ψ) =
1

4π2I0(τ1,m)I0(τ2,m)
exp (τ1,m cos(φ− θm) + τ2,m cos(ψ − γm)) , (14)

φ and ψ are respectively the orientation and colour of the item to be represented. θm and γm identify
the preferred angle and colour of unit i. τ1,m and τ2,m control the size of the receptive field, as well as
the sensitivity of each unit to the different features.

Let the population firing rate state be x = [x1, . . . , xM ]T , xm. The firing rate of unit m is:

x | φ, ψ ∼ N (µ(φ, ψ), σ2
xI) (15)

Differences in the choices of τ1,m and τ2,m across the population will generate different types of
representation.

The hierarchical population code is defined as follows, with µ(1) being the mean response of the lower
layer.

x(2) | φ, ψ ∼ N
(
σΘ

(
W · µ(1)(φ, ψ)

)
, σ2I

)
(16)

σΘ(x) = max(0, x−Θ) (17)

W̃jk ∼ Bernoulli(p) · Exp(λ) (18)

Wjk =
W̃jk∑
j W̃jk

(19)

The receptive field sizes were set automatically to achieve maximum coverage given a population of
M units. Given a fixed number of units with preferred stimuli arranged uniformly over the feature space,
the receptive field sizes were modified such that one standard deviation of the receptive field would cover
the space uniformly without redundancy.

In the case of a conjunctive code, we have:

τ = gσ→τ

(
2π√
M

)
where gσ→τ converts the standard deviation of a Wrapped Gaussian into the τ of a Von Mises. No closed-

form solution of gσ→τ exists; it can be computed numerically by finding the argminτ (exp(−σ
2

2 )− I1(τ)
I0(τ) )2.

For a feature code, we set:



τ1 = gσ→τ

(
2π

M/2

)
(20)

τ2 = gσ→τ (2π) (21)

Where τ1 and τ2 correspond to the two receptive field sizes of one subpopulations (here assumed to be
sensitive along the τ1 direction).

Storage and recall process

The storage process for N items is probabilistic and follows the following model:

xi | φi, ψi ∼ N (µ(φi, ψi), σ
2
xI) (22)

yN | x1, . . . ,xN ∼ N

(
N∑
i=1

βixi, σ
2
yI

)
(23)

xi is the representation of item i by the population code. φi and ψi represent the feature values of
item i. Multiple items are summed to produce the final memory state yN, which is, in turn, corrupted
by additional, independent, Gaussian, noise. βi models different strengths of storage in the memory (to
accommodate tasks involving explicit attentional instructions).

Recall is based on the simplifying assumption that a single item is modelled, while others are collapsed
into a single source of noise. mN−1 is the contribution of the noise process to the mean of the final memory
state and ΣN is the contribution of the noise to the full memory covariance. r is the index of the item
to be recalled, which we integrate over as it is unknown during recall. The posterior over the feature φ
to be recalled is defined as follows:

yN | φ, ψ, r ∼ N (mN−1 + βrµ(φ, ψ) , ΣN) (24)

φ | yN, ψ ∼
∫
dr p(r)p(φ) p(yN | φ, ψ, r) (25)

We use uniform prior distributions over r and φ (circularly uniform for φ).
The collapsed noise mean mN−1 and covariance ΣN can be estimated from random samples of the

storage process. mN−1 is the mean memory built from N − 1, marginalising over feature values:

mN−1 = E[yN−1] (26)

yN−1 ∼
∫
· · ·
∫

φ1,ψ1...φN−1,ψN−1

P (yN−1|φ1, ψ1, . . . φN−1, ψN−1)dφ1dψ1 . . . dφN−1ψN−1 (27)

Similarly, ΣN is the covariance of N items, marginalising over feature values. We obtain estimates by
sampling 5000 memory items from the storage process before estimating those two empirical estimates.

We use a slice sampling scheme to obtain samples of φ given a memory state. In addition to the
classical slice sampling algorithm, we introduce Metropolis-Hastings jumps, which can randomly set the
sampler in another part of the state space. This allows to jump between modes in a multi-modal posterior
setting. The jump probability is set to 10% and a jump is accepted depending on a Metropolis-Hastings
acceptance ratio. We discard the first 500 samples as burn-in steps for the slice sampler. We perform
step-out and shrinkage to determine the slice width (initially set to w = π

40 ) [26]. We constrain the
sampler to the [−π, π] interval. This allows us to sample appropriately from the full posterior.

Mixture model fitting

We use the mixture model of [7], allowing for a mixture of target, non-target and random responses. We
fit the following mixture component, using the expectation-maximization algorithm:



P (θ) = ptVM(θ;µt, κ) +

N−1∑
k

pntVM(θ;µk, κ) + pr
1

2π
(28)

pt + pr + pnt = 1 (29)

where pt is the mixture proportion associated with the target, pr the random mixture proportion and
pnt the non-target mixture proportion. µt and µk are the true locations of the target and non-targets.
All Von Mises share the same κ; this is because the concentrations (though not the mixing proportions)
of the posterior modes around each target are determined by the Cramer-Rao lower bound associated
with the local Fisher information, which are all identical. The values of pt, pr, pnt and κ are fit during
the EM procedure; the µ’s are assumed to be known.

To check for the significance of non-zero mixture proportion pnt, associated with non-target responses,
we perform a resampling analysis. Given a set of responses, targets and non-target angles, we randomly
resample the non-target angles and refit the mixture model. We perform this procedure K times and
obtain K samples of pnt (K = 1000). We then construct the empirical cumulative distribution function
Φ(pnt) for pnt given those samples. Finally, we compare the mixture proportion p∗nt obtained given the
original non-target angles, and reject the null hypothesis “pnt = 0” when p = 1− Φ(p∗nt) < 0.01.

Fisher information derivation

The Fisher information for a population code with Gaussian noise is:

[IF(θ)]ij =
∂f

∂θi

T

C−1(θ)
∂f

∂θj
+

1

2
tr

[
C−1(θ)

∂C−1(θ)

∂θi
C−1(θ)

∂C−1(θ)

∂θi

]
(30)

where f is the mean response of the population, and C the covariance of the population response. In our
case, θ = [φ ψ]T , so the Fisher information is a 2-by-2 matrix.

Consider the case that the memory only contains a single item, with β = 1. Then

yN | φ, ψ ∼ N
(
µ(φ, ψ) , Σ̃N

)
(31)

where we assume Σ̃N = σ2
xI. Since the covariance Σ̃N does not depend on θ, the trace term in the

Fisher information is 0.
The FI about the angle is given by

[IF(θ)]φφ =
∂µ

∂φ

T 1

σ2
I
∂µ

∂φ
(32)[

∂µ

∂φ

]
i

= − τ1 sin(φ− θi)
4π2I0(τ1)I0(τ2)

exp
[
τ1 cos(φ− θi) + τ2 cos(ψ − γi)

]
(33)

⇒ [IF]φφ =
τ2
1

σ216π4I0(τ1)2I0(τ2)2

M∑
i=1

sin2(φ− θi) exp
[
2τ1 cos(φ− θi)

+ 2τ2 cos(ψ − γi)
]

(34)

The other components of the Fisher information matrix can be derived similarly.
By taking a large population limit in which preferred values have density ρ, we obtain a closed-

form approximation to the Fisher information (see Supplementary information S1.1 for the complete
derivation):

lim
M→∞

[IF1]φφ ≈
τ2
1 ρ

σ28π2I0(τ1)2I0(τ2)2
I0(2τ2) (I0(2τ1)− I2(2τ1)) (35)



Parameter optimization

We perform a grid search over several population code parameters to provide a qualitative fit to human
experiments. For the mixed population code, we varied σx and the ratio of conjunctivity, as β, σy were
kept fixed. For the hierarchical code, we set p = 1, λ = 1 and Θ = 1 and varied σx and the ratio of
conjunctivity (defined as M2

M1+M2
, where M1 (respectively M2) is the size of the layer one subpopulation

(respectively layer two)). A full fit, which is the subject of future work, would require at least the
consideration of heterogeneous and multi-scale population representations.
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Supporting Information Legends

1. Text S1. Supplementary Material.
Additional derivations and results omitted from main manuscript. Derivations include the compu-
tation of the large population limit for Fisher information and the relation between the memory
fidelity and the Fisher information. We report the stimuli separation analysis for the hierarchical
code, analogous to the analysis of Figure 16 in the manuscript. Following the comments of a re-
viewer, we studied the relationship between the conjunctivity ratio and the population size in a
mixed population code, as our parametrisation creates a dependence between them. Finally, we
show how increasing the number of features affects the ratio of conjunctivity for a fixed population
size.


