Linear algebra & the exponential family

Lloyd Elliott

October 25, 2010

Bilinear forms

Exponential family

Bilinear forms

Definition A *bilinear form* is a map

$$f:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$$

with the following properties:

•
$$f(x+y,z) = f(x,z) + f(y,z)$$

$$f(z,x+y) = f(z,x) + f(z,y)$$

$$f(cx, y) = f(x, cy) = cf(x, y)$$

If f is a bilinear form then there is a matrix A such that

$$f(x,y) = x^T A y$$

Conversely, $f_A(x, y) = x^T A y$ is a bilinear form.

A bilinear form is symmetric if f(x, y) = f(y, x). This happens if and only if f_A is symmetric. A bilinear form is *positive definite* if $f(x, x) \ge 0$ for all x with equality only if x = 0. A bilinear form is *positive semi-definite* if $f(x, x) \ge 0$ but equality may hold more generally. A matrix is positive (semi-)definite if f_A is positive (semi-)definite.

Example

$$f_l(x,y) = \langle x,y \rangle$$

Definition Let *A* be a matrix. Suppose

 $Av = \lambda v$

Then v is called an *eigenvector* for A and λ its corresponding *eigenvalue*.

Theorem (Spectral theorem)

Suppose Q is a symmetric matrix. There exists an orthanormal basis v_1, \ldots, v_n of \mathbb{R}^n such that v_1, \ldots, v_n are eigenvectors for A. Suppose Q is a positive semi-definite matrix. Then the corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$ are ≥ 0 . Suppose Q is a positive definite matrix. Then $\lambda_1, \ldots, \lambda_n$ are strictly positive.

Theorem (Singular value decomposition)

If A is an $m \times n$ matrix then there is an orthanormal basis v_1, \ldots, v_n of \mathbb{R}^n and an orthanormal basis w_1, \ldots, w_m of \mathbb{R}^m and $\sigma_1 \ge \ldots \ge \sigma_r > 0$ such that

$$Av_i = \left\{egin{array}{cc} \sigma_i w_i & ext{ if } 1 \leq i \leq r \ 0 & ext{ otherwise.} \end{array}
ight.$$

Furthermore, the σ_i are unique up to permutation.

The vectors $\sigma_1, \ldots, \sigma_r$ are referred to as the singular values for A.

Proof.

Let $S = A^T A$. By the spectral theorem, S has eigenvalues $\lambda_1, \ldots, \lambda_r > 0$ and eigenvectors v_1, \ldots, v_n with $\lambda_i = 0$ for $r < i \le n$. Let $\sigma_i = \sqrt{\lambda_i}$ and let $w_i = \frac{1}{\sigma_i} A v_i$ for $1 \le i \le r$. Extend w_1, \ldots, w_r to an orthanormal basis of \mathbb{R}^m . Note that since $Av_i = 0$ for i > r, the vectors w_{r+1}, \ldots, w_m do not contribute to the representation.

Corollary

If A is an $m \times n$ matrix then there is an orthogonal $m \times m$ matrix U and an orthogonal $n \times n$ matrix V such that:

 $A = U \Sigma V^T$

where Σ is the $m \times n$ matrix such that

$$\Sigma_{ij} = \begin{cases} \sigma_i & \text{if } i = j \le r \\ 0 & \text{otherwise.} \end{cases}$$

This means that every matrix is a rotation and then some scaling followed by another rotation. Since the rows of Σ are zero beyond the *r*-th row, we may drop all but the first *r* rows of Σ and *V* and still have equality. This reduces the dimensionality of the representation *V* of *A*. And $U\Sigma$ describes how to move from the reduced representation back to *A*.

Theorem Define $\hat{\Sigma}^{(k)}$ for $k \leq r$ to be:

$$\hat{\Sigma}^{(k)} = \left\{ egin{array}{ll} \sigma_i & \textit{if } i = j \leq k \ 0 & \textit{otherwise.} \end{array}
ight.$$

Then,
$$\hat{\Sigma}^{(k)} = \operatorname{argmin}_{B| \operatorname{rank} B = k} \sum_{ij} |A_{ij} - B_{ij}|^2$$
.

This theorem means that if we drop all but the first k rows then we recover the best mean squared error representation of Apossible with a rank-k representation.

Exponential family

Let X be a random vector. The pdf of X is an *exponential family* distribution if it is of the form:

$$p(x|\nu) = g(\nu)f(x)\exp(\nu^{T}S(x)).$$

This is called a cannonical representation because there is no function of ν in the exponent. The canonical form of an exponential family is unique up to the choice of the function S(x).

- $g(\theta)$ is called the inverse partition function.
- ► *S*(*x*) is called the vector of sufficient statistics.
- ν is called the vector of natural parameters.
- f(x) is called the base measure.

Theorem

$$\mathbb{E}[S_j(x)] = -\frac{\partial}{\partial \nu_j} \log(\nu).$$

Proof.

$$\begin{split} \mathbb{E}[S_j(x)] &= \int_{-\infty}^{\infty} S_j(x) g(\nu) f(x) \exp(\nu^T S(x)) \mathrm{d}x, \\ &= g(\nu) \int_{-\infty}^{\infty} S_j(x) f(x) \exp\left(\sum_i \nu_i S_i(x)\right) \mathrm{d}x, \\ &= g(\nu) \int_{-\infty}^{\infty} \frac{\partial}{\partial \nu_j} f(x) \exp\left(\sum_i \nu_i S_i(x)\right) \mathrm{d}x, \\ &= g(\nu) \frac{\partial}{\partial \nu_j} \int_{-\infty}^{\infty} f(x) \exp(\nu^T S(x)) \mathrm{d}x. \end{split}$$

continued

Proof.

$$= g(\nu) \frac{\partial}{\partial \nu_j} 1/g(\nu)$$
(1)
$$= \frac{\partial}{\partial \nu_j} \log(g(\nu))$$
(2)

As $\int_{-\infty}^{\infty} p(x) dx = 1$, $\int_{-\infty}^{\infty} f(x) \exp(\nu^T S(x)) = 1/g(\nu)$ and this is where $1/g(\nu)$ comes from in step (1). And (2) is from $\frac{d}{dx} \log(f(x)) = f(x)/f'(x)$.