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Bilinear forms

Definition
A bilinear form is a map

f : Rn × Rn → R

with the following properties:

I f (x + y , z) = f (x , z) + f (y , z)

I f (z , x + y) = f (z , x) + f (z , y)

I f (cx , y) = f (x , cy) = cf (x , y)



If f is a bilinear form then there is a matrix A such that

f (x , y) = xT Ay

Conversely, fA(x , y) = xT Ay is a bilinear form.



A bilinear form is symmetric if f (x , y) = f (y , x).
This happens if and only if fA is symmetric.
A bilinear form is positive definite if f (x , x) ≥ 0 for all x with
equality only if x = 0. A bilinear form is positive semi-definite if
f (x , x) ≥ 0 but equality may hold more generally. A matrix is
positive (semi-)definite if fA is positive (semi-)definite.

Example

fI (x , y) = 〈x , y〉



Definition
Let A be a matrix. Suppose

Av = λv

Then v is called an eigenvector for A and λ its corresponding
eigenvalue.



Theorem (Spectral theorem)

Suppose Q is a symmetric matrix. There exists an orthanormal
basis v1, . . . , vn of Rn such that v1, . . . , vn are eigenvectors for A.
Suppose Q is a positive semi-definite matrix. Then the
corresponding eigenvalues λ1, . . . , λn are ≥ 0.
Suppose Q is a positive definite matrix. Then λ1, . . . , λn are
strictly positive.



Theorem (Singular value decomposition)

If A is an m × n matrix then there is an orthanormal basis
v1, . . . , vn of Rn and an orthanormal basis w1, . . . ,wm of Rm and
σ1 ≥ . . . ≥ σr > 0 such that

Avi =

{
σiwi if 1 ≤ i ≤ r

0 otherwise.

Furthermore, the σi are unique up to permutation.

The vectors σ1, . . . , σr are referred to as the singular values for A.

Proof.
Let S = AT A. By the spectral theorem, S has eigenvalues
λ1, . . . , λr > 0 and eigenvectors v1, . . . , vn with λi = 0 for
r < i ≤ n. Let σi =

√
λi and let wi = 1

σi
Avi for 1 ≤ i ≤ r . Extend

w1, . . . ,wr to an orthanormal basis of Rm. Note that since Avi = 0
for i > r , the vectors wr+1, . . . ,wm do not contribute to the
representation.



Corollary

If A is an m × n matrix then there is an orthogonal m ×m matrix
U and an orthogonal n × n matrix V such that:

A = UΣV T

where Σ is the m × n matrix such that

Σij =

{
σi if i = j ≤ r
0 otherwise.

This means that every matrix is a rotation and then some scaling
followed by another rotation. Since the rows of Σ are zero beyond
the r -th row, we may drop all but the first r rows of Σ and V and
still have equality. This reduces the dimensionality of the
representation V of A. And UΣ describes how to move from the
reduced representation back to A.



Theorem
Define Σ̂(k) for k ≤ r to be:

Σ̂(k) =

{
σi if i = j ≤ k
0 otherwise.

Then, Σ̂(k) = argminB| rankB=k

∑
ij |Aij − Bij |2.

This theorem means that if we drop all but the first k rows then
we recover the best mean squared error representation of A
possible with a rank-k representation.



Exponential family

Let X be a random vector. The pdf of X is an exponential family
distribution if it is of the form:

p(x |ν) = g(ν)f (x) exp(νT S(x)).

This is called a cannonical representation because there is no
function of ν in the exponent. The canonical form of an
exponential family is unique up to the choice of the function S(x).

I g(θ) is called the inverse partition function.

I S(x) is called the vector of sufficient statistics.

I ν is called the vector of natural parameters.

I f (x) is called the base measure.



Theorem

E[Sj(x)] = − ∂

∂νj
log(ν).

Proof.

E[Sj(x)] =

∫ ∞
−∞

Sj(x)g(ν)f (x) exp(νT S(x))dx ,

= g(ν)

∫ ∞
−∞

Sj(x)f (x) exp

(∑
i

νiSi (x)

)
dx ,

= g(ν)

∫ ∞
−∞

∂

∂νj
f (x) exp

(∑
i

νiSi (x)

)
dx ,

= g(ν)
∂

∂νj

∫ ∞
−∞

f (x) exp(νT S(x))dx .

continued . . .



Proof.

= g(ν)
∂

∂νj
1/g(ν) (1)

=
∂

∂νj
log(g(ν)) (2)

As
∫∞
−∞ p(x)dx = 1,

∫∞
−∞ f (x) exp(νT S(x)) = 1/g(ν) and this is

where 1/g(ν) comes from in step (1). And (2) is from
d
dx log(f (x)) = f (x)/f ′(x).
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