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Random variables

Let Ω be a set of events. The probability of a subset A ⊆ Ω is
denoted Pr(A).

Example

Let Ω = {H,T}. Let X (ω) =

{
1, ω = H.
−1, otherwise.
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A random variable on Ω is a function X : Ω→ R.

Example

Let Ωn = {(r1, . . . , rn)}, ri ∈ {1, 2, . . . , 6}. Let
Xn(r1, . . . , rn) =

∑n
i=1 ri . Here, X can model the sum of the

outcomes of n die rolls. Let Yi (r1, . . . , rn) = r1. Here, Yi is the
outcome of the i-th roll. Let Z = #{i s.t. ti = 1, 1 ≤ i ≤ n}.
Here, Z is the number of 1s rolled.
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The cumulative distribution function (or cdf) of X is the function
F : x → [0, 1] by F (t) = Pr(X ≤ t).

The cdf of X has the following properties:

I limt→−∞ F (t) = 0

I limt→∞ F (t) = 1

I limt→t+
0

F (t) = F (t0)

I F is non decreasing.
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If F is continuous and differentiable everywhere then the function
f (t) = F ′(t) is called the probability density function (or the pdf)
of X .

If Ω is finite then for each ω ∈ Ω the probability distribution
function (which is also referred to as the pdf) of X is the function
p : X (Ω)→ [0, 1] such that p(x) = Pr(X−1(x)). Sometimes p(x)
is written P(X = x) or pX (x) to emphasise which random variable
the pdf is from. If Ω is identified with X (Ω) then Pr(x) = p(x).
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Example

Let Ω = {(r1, r2) s.t. 1 ≤ r1 ≤ 6, 1 ≤ r2 ≤ 6} be the outcomes of
two successive 6-sided die rolls. Let X = r1 + r2.

p(7) = Pr(X−1(7)),

= Pr({r1, r2 s.t. r1 + r2 = 7}),
= Pr({(1, 6), (2, 5), (3, 4), (4, 3), (2, 5), (1, 6)}),
= 2(a1a6 + a2a5 + a3a4)



Moments and expectations

If Ω is finite then the expected value of a random variable X on Ω
is defined as follows:

E[X ] =
∑
ω∈Ω

X (Ω) Pr(Ω)

=
∑

x∈X (Ω)

xp(x).

If Ω is not finite and if x has a pdf then the expected value of X is
defined as follows:

E[X ] =

∫ ∞
−∞

tp(t)dt.
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Example

Roll n 6-sided die and let Xn be their sum. Assume the dice are
independent. Assume they have biases Pr(ri = j) = aj

(a1 + . . .+ a6 = 1)



E[Xn] =
6∑

r1=1

. . .

6∑
rn=1

(r1 + . . .+ rn) Pr(r1) . . .Pr(rn),

=
6∑

r1=1

. . .

6∑
rn−1=1

(
6∑

n=1

Pr(rn)

)
(r1 + . . .+ rn−1) Pr(r1) . . .Pr(rn−1)

+
6∑

r1=1

. . .

6∑
rn=1

rn Pr(r1) . . .Pr(rn),

=
6∑

r1=1

. . .

6∑
rn−1=1

(r1 + . . .+ rn−1) Pr(r1) . . .Pr(rn−1)

+
6∑

r1=1

Pr(r1)
6∑

r2=1

Pr(r2) . . .
∑
rn

rn Pr(rn),

=E[Xn−1] +
∑
rn

rn Pr(n)

=E[Xn−1] + a1 + 2a2 + . . .+ 6a6 = n(a1 + 2a2 + . . .+ 6a6)



Suppose aj = 1
6 for 1 ≤ j ≤ 6. Then E[Xn] = 7

2 n. Note: later we’ll
see an easier way of solving this. Also, you don’t need to show this
much work on your assignments.



Often Ω is implicit and
∑

x∈X (ω)

xp(x) is written as
∑
X=x

xp(x) or

even as
∑
x

xp(x).

The expected value E[X ] is sometimes written 〈X 〉p(X ) or µX . It is
also called the mean.
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Theorem (Law of the unconscious statistician)

Let ϕ : R→ R be a function. If Ω is finite and X is a random
variable on Ω with pdf p:

E[ϕ(X )] =
∑
x

ϕ(x)p(x).

If Ω is infinite and X has a pdf f then:

E[ϕ(X )] =

∫ ∞
−∞

ϕ(t)f (t)dt.
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If X is a random variable and ϕ is a function, then ϕ(X ) is also a
random variable.

Theorem
E[aX + b] = aE[X ] + b.



If X is a random variable and ϕ is a function, then ϕ(X ) is also a
random variable.

Theorem
E[aX + b] = aE[X ] + b.



The variance of X (denoted Var[X ] or σ2
X ) is:

Var[X ] = E[(X − E[X ])2].

Theorem

Var[aX + b] = a2E[X ] + b.

Corollary

Var[X ] = E[X 2]− E[X ]2.



The variance of X (denoted Var[X ] or σ2
X ) is:

Var[X ] = E[(X − E[X ])2].

Theorem

Var[aX + b] = a2E[X ] + b.

Corollary

Var[X ] = E[X 2]− E[X ]2.



The variance of X (denoted Var[X ] or σ2
X ) is:

Var[X ] = E[(X − E[X ])2].

Theorem

Var[aX + b] = a2E[X ] + b.

Corollary

Var[X ] = E[X 2]− E[X ]2.



Definition
The n-th moment of a random variable X is E[X n]. The n-th
central moment is E[(X − µX )n]. So the mean is the first moment
and the variance is the second central moment.



Theorem (Jensen’s inequality)

If ϕ is a convex function then ϕ(E[X ]) ≤ E[ϕ(X )].

You can easily remember in which direction Jensen’s inequality
goes with this short memory trick: E[X ]2 ≤ E[X 2] is certainly
sometimes true because E[X ]2 = 0 if E[X ] = 0 and E[X ]2 ≥ 0.
And ϕ(t) = t2 is convex. So Jensen’s inequality must be in the
direction ϕ(E[X ]) ≤ E[ϕ(X )].
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Conditional distributions, marginal distributions &
independence

Definition
Suppose (Xi )

n
i=1 are random vectors. Their joint comulative

distribution function is F : Rn →∞ by:

F (t1, . . . , tn) = Pr(X1 ≤ t1, . . . ,Xn ≤ tn).

Sometimes F (t1, . . . , tn) is denoted FX1,...,Xn(t1, . . . , tn) If for all
subsets Xk1 , . . . ,Xk`

of X1, . . . ,Xn:

FXk1
,...,Xk`

(tk1 , . . . , tk`
) = FXk1

(xk1 . . .FXk`
(xk`

)

then Xk1 , . . . ,Xk`
are said to be independent (written X1, . . . ,Xn ⊥

or X1 ⊥ X2 if n = 2).
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Definition
If F is continuous and has continuous partial derivatives then the
joint probability density function is:

f (t1, . . . , tn) =
∂n

∂1t1 . . . ∂ntn
F (t1, . . . , tn).



Definition
If Ω is finite the joint probability distribution function is
p : (x1, . . . , xn)→ R by:

p(x1, . . . , xn) = Pr(X−1
1 (x1) ∩ . . . ∩ X−1

n (xn)).
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Suppose (Xi )
n
i=1 and (Yi )

m
i=1 are random variables. The conditional

cumulative distribution function F (X1, . . . ,Xn|Y1, . . . ,Ym) is:

F (x1, . . . , xn|y1, . . ., yn) =

Pr(X1 = x1, . . . ,Xn = xn|Y1 = y1, . . . ,Ym = ym).

If for all subsets Xk1 , . . . ,Xk`
of Xk1 , . . . ,Xk`
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).
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are conditionally independent given Y1, . . . ,Ym

(written X1, . . . ,Xn ⊥ |Y1, . . . ,Ym).
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If F has partial derivatives everywhere then the conditional
probability density function is:

f (x1, . . . , xn|y1, . . ., yn)

=
∂n

∂x1 . . . ∂xn
F (x1, . . . , xn|Y1 = y1, . . . ,Ym = ym).

The conditional probability distribution function for finite Ω is by
analogy with the joint case.
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Let ϕ : Rn → Rm. If Ω is finite, and X1, . . . ,Xn are random
variables on Ω then the expected value of ϕ(X1, . . . ,Xn) is:

EX1,...,Xn [ϕ(X1, . . . ,Xn)]

=
∑

x1∈X1(Ω)

. . .
∑

xn∈Xn(Ω)

ϕ(x1, . . . , xn)p(x1, . . . , xn)

=
∑

x1,...,xn

ϕ(x1, . . . , xn)p(x1, . . . , xn),

=
∑
X
ϕ(X )p(X ).

Sometimes this is denoted 〈ϕ(X )〉X or EX (ϕ(X )).



Suppose X = (Xi )
n
i=1,Y = (Yi )

n
i=1 are random variables. For Ω

finite the expected value of ϕ(X ) conditioned on Y = (y1, . . . , yn)
is:

E[ϕ(X )|Y] =
∑
X
ϕ(X )p(X|Y).

Sometimes this is written as 〈ϕ(X )〉p(X|Y) or EX|Y [ϕ(X )].

EY [EX [ϕ(X )|Y]] = EX [ϕ(X )].
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If X ,Y are random variables with probability distribution function
p(X ,Y) then the marginal distribution function of X is:

p(X ) =
∑
Yp(X|Y)p(Y),

= EY [p(X|Y)].



Example

Let Y1,Y2 be the outcome of two successive die rolls. Suppose
they are independent (Y1 ⊥ Y2). Let X = Y1 + Y2. Then,

Y1 6⊥ Y2|X .
(1)



Theorem (linearity of expected value)

Let X1, . . . ,Xn be any random variables.

E[X1 + . . .+ Xn] = E[X1] + . . .+ E[Xn].



Throw n dice and let Xn again be the sum of their spots. Don’t
assume independence. But assume each die has the same
distribution: Pr(ri = j) = aj . The linearity of expected value
provides a much simpler way to compute E [Xn]. Suppose ri is the
number of spots on the i-th die. Then, Xn = r1 + . . .+ rn has
expected value:

E[Xn] = E[r1] + . . .+ E[rn]

= n(a1 + 2a2 + . . .+ nan).
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If X1, . . . ,Xn are random variables then the covariance between Xi

and Xj is:

Cov[Xi ,Xj ] = E[(Xi − E[Xi ])(Xj − E[Xj ])]

Some properties of covariance:

1. Cov[Xi ,Xi ] = Var[Xi ]

2. Cov[Xi ,Xj ] = Cov[Xj ,Xi ]

3. Cov[aXi , bXj ] = abCov[Xi ,Xj ]

4. Cov[X1 + X2,X3] = Cov[X1,X3] + Cov[X2,X3]

These properties mean Cov is a bilinear form (like an inner
product).
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Let Xn be the sum of the outcomes of n successive die rolls.

Define Sn =
Xn − nE[X ]√

nVar[X ]
.

fSn(x) −→ 1√
2π

exp

(
−x2

2

)
as n→∞.
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These questions don’t matter for this course (nor do they matter
for much of probability theory) and so they’re conscious omissions
from this tutorial:

1. What about discrete distributions (where Ω is infinite but the
cdf of a random variable on Ω is not differentiable)?

2. How is the expected value defined for random variables that
don’t have pdfs?

3. What properties do Ω,Pr(A) have to satisfy?
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