A review of probability theory

Lloyd Elliott

October 6, 2010

Random variables

Moments and expectations

Conditional distributions, marginal distributions & independence

Random variables

Let Ω be a set of events. The probability of a subset $A \subseteq \Omega$ is denoted Pr(A).

Let Ω be a set of events. The probability of a subset $A \subseteq \Omega$ is denoted Pr(A).

Example

Let
$$\Omega = \{H, T\}$$
. Let $X(\omega) = \begin{cases} 1, & \omega = H. \\ -1, & \text{otherwise.} \end{cases}$

A random variable on Ω is a function $X : \Omega \to \mathbb{R}$.

A random variable on Ω is a function $X : \Omega \to \mathbb{R}$.

Example

Let $\Omega_n = \{(r_1, \ldots, r_n)\}, r_i \in \{1, 2, \ldots, 6\}$. Let $X_n(r_1, \ldots, r_n) = \sum_{i=1}^n r_i$. Here, X can model the sum of the outcomes of n die rolls. Let $Y_i(r_1, \ldots, r_n) = r_1$. Here, Y_i is the outcome of the *i*-th roll. Let $Z = \#\{i \text{ s.t. } t_i = 1, 1 \le i \le n\}$. Here, Z is the number of 1s rolled.

The *cumulative distribution function* (or *cdf*) of X is the function $F : x \rightarrow [0, 1]$ by $F(t) = \Pr(X \le t)$.

$$\blacktriangleright \lim_{t\to -\infty} F(t) = 0$$

$$\blacktriangleright \lim_{t\to -\infty} F(t) = 0$$

$$\blacktriangleright \lim_{t\to\infty} F(t) = 1$$

$$\blacktriangleright \lim_{t\to -\infty} F(t) = 0$$

$$\blacktriangleright \lim_{t\to\infty} F(t) = 1$$

$$\blacktriangleright \lim_{t \to t_0^+} F(t) = F(t_0)$$

$$\blacktriangleright \lim_{t\to -\infty} F(t) = 0$$

$$\blacktriangleright \lim_{t\to\infty} F(t) = 1$$

$$\blacktriangleright \lim_{t \to t_0^+} F(t) = F(t_0)$$

► F is non decreasing.

If F is continuous and differentiable everywhere then the function f(t) = F'(t) is called the *probability density function* (or the *pdf*) of X.

If F is continuous and differentiable everywhere then the function f(t) = F'(t) is called the *probability density function* (or the *pdf*) of X.

If Ω is finite then for each $\omega \in \Omega$ the probability distribution function (which is also referred to as the pdf) of X is the function $p: X(\Omega) \to [0,1]$ such that $p(x) = \Pr(X^{-1}(x))$. Sometimes p(x)is written P(X = x) or $p_X(x)$ to emphasise which random variable the pdf is from. If F is continuous and differentiable everywhere then the function f(t) = F'(t) is called the *probability density function* (or the *pdf*) of X.

If Ω is finite then for each $\omega \in \Omega$ the probability distribution function (which is also referred to as the *pdf*) of X is the function $p: X(\Omega) \to [0,1]$ such that $p(x) = \Pr(X^{-1}(x))$. Sometimes p(x)is written P(X = x) or $p_X(x)$ to emphasise which random variable the pdf is from. If Ω is identified with $X(\Omega)$ then $\Pr(x) = p(x)$.

Example

Let $\Omega = \{(r_1, r_2) \text{ s.t. } 1 \le r_1 \le 6, 1 \le r_2 \le 6\}$ be the outcomes of two successive 6-sided die rolls. Let $X = r_1 + r_2$.

$$p(7) = \Pr(X^{-1}(7)),$$

= $\Pr(\{r_1, r_2 \ s.t. \ r_1 + r_2 = 7\}),$
= $\Pr(\{(1, 6), (2, 5), (3, 4), (4, 3), (2, 5), (1, 6)\}),$
= $2(a_1a_6 + a_2a_5 + a_3a_4)$

Moments and expectations

Moments and expectations

If Ω is finite then the expected value of a random variable X on Ω is defined as follows:

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\Omega) \operatorname{Pr}(\Omega)
onumber \ = \sum_{x \in X(\Omega)} x p(x).$$

Moments and expectations

If Ω is finite then the expected value of a random variable X on Ω is defined as follows:

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\Omega) \operatorname{Pr}(\Omega)
onumber \ = \sum_{x \in X(\Omega)} x p(x).$$

If Ω is not finite and if x has a pdf then the expected value of X is defined as follows:

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} t p(t) \mathrm{d}t.$$

Example

Roll *n* 6-sided die and let X_n be their sum. Assume the dice are independent. Assume they have biases $Pr(r_i = j) = a_j$ $(a_1 + \ldots + a_6 = 1)$

$$\mathbb{E}[X_n] = \sum_{r_1=1}^{6} \dots \sum_{r_n=1}^{6} (r_1 + \dots + r_n) \Pr(r_1) \dots \Pr(r_n),$$

$$= \sum_{r_1=1}^{6} \dots \sum_{r_{n-1}=1}^{6} \left(\sum_{n=1}^{6} \Pr(r_n) \right) (r_1 + \dots + r_{n-1}) \Pr(r_1) \dots \Pr(r_{n-1}) + \sum_{r_1=1}^{6} \dots \sum_{r_n=1}^{6} r_n \Pr(r_1) \dots \Pr(r_n),$$

$$= \sum_{r_1=1}^{6} \dots \sum_{r_{n-1}=1}^{6} (r_1 + \dots + r_{n-1}) \Pr(r_1) \dots \Pr(r_{n-1}) + \sum_{r_1=1}^{6} \Pr(r_1) \sum_{r_2=1}^{6} \Pr(r_2) \dots \sum_{r_n} r_n \Pr(r_n),$$

$$= \mathbb{E}[X_{n-1}] + \sum_{r_n} r_n \Pr(n) + \mathbb{E}[X_{n-1}] + a_1 + 2a_2 + \dots + 6a_6 = n(a_1 + 2a_2 + \dots + 6a_6)$$

Suppose $a_j = \frac{1}{6}$ for $1 \le j \le 6$. Then $\mathbb{E}[X_n] = \frac{7}{2}n$. Note: later we'll see an easier way of solving this. Also, you don't need to show this much work on your assignments.

Often
$$\Omega$$
 is implicit and $\sum_{x \in X(\omega)} xp(x)$ is written as $\sum_{X=x} xp(x)$ or
even as $\sum_{x} xp(x)$.

Often Ω is implicit and $\sum_{x \in X(\omega)} xp(x)$ is written as $\sum_{X=x} xp(x)$ or even as $\sum_{x} xp(x)$. The expected value $\mathbb{E}[X]$ is sometimes written $\langle X \rangle_{p(X)}$ or μ_X . It is also called the mean. Theorem (Law of the unconscious statistician) Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a function. If Ω is finite and X is a random variable on Ω with pdf p:

$$\mathbb{E}[\varphi(X)] = \sum_{x} \varphi(x) p(x).$$

Theorem (Law of the unconscious statistician) Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a function. If Ω is finite and X is a random variable on Ω with pdf p:

$$\mathbb{E}[\varphi(X)] = \sum_{x} \varphi(x) p(x).$$

If Ω is infinite and X has a pdf f then:

$$\mathbb{E}[\varphi(X)] = \int_{-\infty}^{\infty} \varphi(t) f(t) \mathrm{d}t$$

If X is a random variable and φ is a function, then $\varphi(X)$ is also a random variable.

If X is a random variable and φ is a function, then $\varphi(X)$ is also a random variable.

Theorem $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b.$

The variance of X (denoted Var[X] or σ_X^2) is:

 $\mathsf{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2].$

The variance of X (denoted Var[X] or σ_X^2) is:

$$\operatorname{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2].$$

Theorem

$$Var[aX+b] = a^2 \mathbb{E}[X] + b.$$

The variance of X (denoted Var[X] or σ_X^2) is:

$$\operatorname{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2].$$

Theorem

$$Var[aX+b] = a^2 \mathbb{E}[X] + b.$$

Corollary

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

Definition

The *n*-th moment of a random variable X is $\mathbb{E}[X^n]$. The *n*-th central moment is $\mathbb{E}[(X - \mu_X)^n]$. So the mean is the first moment and the variance is the second central moment.

Theorem (Jensen's inequality) If φ is a convex function then $\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]$.

Theorem (Jensen's inequality)

If φ is a convex function then $\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]$.

You can easily remember in which direction Jensen's inequality goes with this short memory trick: $\mathbb{E}[X]^2 \leq \mathbb{E}[X^2]$ is certainly sometimes true because $\mathbb{E}[X]^2 = 0$ if $\mathbb{E}[X] = 0$ and $\mathbb{E}[X]^2 \geq 0$. And $\varphi(t) = t^2$ is convex. So Jensen's inequality must be in the direction $\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]$.

Conditional distributions, marginal distributions & independence

Definition

Suppose $(X_i)_{i=1}^n$ are random vectors. Their *joint* comulative distribution function is $F : \mathbb{R}^n \to \infty$ by:

$$F(t_1,\ldots,t_n) = \Pr(X_1 \leq t_1,\ldots,X_n \leq t_n).$$

Conditional distributions, marginal distributions & independence

Definition

Suppose $(X_i)_{i=1}^n$ are random vectors. Their *joint* comulative distribution function is $F : \mathbb{R}^n \to \infty$ by:

$$F(t_1,\ldots,t_n)=\Pr(X_1\leq t_1,\ldots,X_n\leq t_n).$$

Sometimes $F(t_1, \ldots, t_n)$ is denoted $F_{X_1, \ldots, X_n}(t_1, \ldots, t_n)$

Conditional distributions, marginal distributions & independence

Definition

Suppose $(X_i)_{i=1}^n$ are random vectors. Their *joint* comulative distribution function is $F : \mathbb{R}^n \to \infty$ by:

$$F(t_1,\ldots,t_n)=\Pr(X_1\leq t_1,\ldots,X_n\leq t_n).$$

Sometimes $F(t_1, \ldots, t_n)$ is denoted $F_{X_1, \ldots, X_n}(t_1, \ldots, t_n)$ If for all subsets $X_{k_1}, \ldots, X_{k_\ell}$ of X_1, \ldots, X_n :

$$F_{X_{k_1},\ldots,X_{k_\ell}}(t_{k_1},\ldots,t_{k_\ell}) = F_{X_{k_1}}(x_{k_1}\ldots F_{X_{k_\ell}}(x_{k_\ell}))$$

then $X_{k_1}, \ldots, X_{k_\ell}$ are said to be independent (written $X_1, \ldots, X_n \perp$ or $X_1 \perp X_2$ if n = 2).

Definition

If F is continuous and has continuous partial derivatives then the *joint* probability density function is:

$$f(t_1,\ldots,t_n)=\frac{\partial^n}{\partial_1t_1\ldots\partial_nt_n}F(t_1,\ldots,t_n).$$

Definition

If Ω is finite the *joint* probability distribution function is $p: (x_1, \ldots, x_n) \to \mathbb{R}$ by:

$$p(x_1,\ldots,x_n)=\Pr(X_1^{-1}(x_1)\cap\ldots\cap X_n^{-1}(x_n)).$$

Definition

If Ω is finite the *joint* probability distribution function is $p: (x_1, \ldots, x_n) \to \mathbb{R}$ by:

$$p(x_1,\ldots,x_n)=\Pr(X_1^{-1}(x_1)\cap\ldots\cap X_n^{-1}(x_n)).$$

Sometimes $p(x_1,...,x_n)$ is written $p(\mathcal{X})$ if \mathcal{X} is the vector $\mathcal{X} = (x_1,...,x_n)$.

$$f(t_1,\ldots,t_n)=\frac{\partial^n}{\partial_1t_1\ldots\partial_nt_n}F(t_1,\ldots,t_n).$$

Suppose $(X_i)_{i=1}^n$ and $(Y_i)_{i=1}^m$ are random variables. The *conditional* cumulative distribution function $F(X_1, \ldots, X_n | Y_1, \ldots, Y_m)$ is:

$$F(x_1,...,x_n|y_1,...,y_n) = \Pr(X_1 = x_1,...,X_n = x_n|Y_1 = y_1,...,Y_m = y_m).$$

Suppose $(X_i)_{i=1}^n$ and $(Y_i)_{i=1}^m$ are random variables. The *conditional* cumulative distribution function $F(X_1, \ldots, X_n | Y_1, \ldots, Y_m)$ is:

$$F(x_1,...,x_n|y_1,...,y_n) = \Pr(X_1 = x_1,...,X_n = x_n|Y_1 = y_1,...,Y_m = y_m).$$

If for all subsets $X_{k_1}, \ldots, X_{k_\ell}$ of $X_{k_1}, \ldots, X_{k_\ell}$,

$$F_{X_{k_1},...,X_{k_{\ell}}|Y_1,...,Y_m}(x_{k_1},...,x_{k_{\ell}}) = F_{X_{k_1}|Y_1,...,Y_m}(x_{k_1})\ldots F_{X_{k_{\ell}}|Y_1,...,Y_m}(x_{k_{\ell}}).$$

then $X_{k_1}, \ldots, X_{k_\ell}$ are conditionally independent given Y_1, \ldots, Y_m (written $X_1, \ldots, X_n \perp | Y_1, \ldots, Y_m$).

If *F* has partial derivatives everywhere then the *conditional* probability density function is:

$$f(x_1,\ldots,x_n|y_1,\ldots,y_n) = \frac{\partial^n}{\partial x_1\ldots\partial x_n} F(x_1,\ldots,x_n|Y_1=y_1,\ldots,Y_m=y_m).$$

If *F* has partial derivatives everywhere then the *conditional* probability density function is:

$$f(x_1,\ldots,x_n|y_1,\ldots,y_n) = \frac{\partial^n}{\partial x_1\ldots\partial x_n}F(x_1,\ldots,x_n|Y_1=y_1,\ldots,Y_m=y_m).$$

The conditional probability distribution function for finite Ω is by analogy with the joint case.

Let $\varphi : \mathbb{R}^n \to \mathbb{R}^m$. If Ω is finite, and X_1, \ldots, X_n are random variables on Ω then the expected value of $\varphi(X_1, \ldots, X_n)$ is:

$$\mathbb{E}_{X_1,\dots,X_n}[\varphi(X_1,\dots,X_n)] = \sum_{x_1 \in X_1(\Omega)} \dots \sum_{x_n \in X_n(\Omega)} \varphi(x_1,\dots,x_n) p(x_1,\dots,x_n) \\ = \sum_{x_1,\dots,x_n} \varphi(x_1,\dots,x_n) p(x_1,\dots,x_n), \\ = \sum_{\mathcal{X}} \varphi(\mathcal{X}) p(\mathcal{X}).$$

Sometimes this is denoted $\langle \varphi(\mathcal{X}) \rangle_{\mathcal{X}}$ or $\mathbb{E}_{\mathcal{X}}(\varphi(\mathcal{X}))$.

Suppose $\mathcal{X} = (X_i)_{i=1}^n$, $\mathcal{Y} = (Y_i)_{i=1}^n$ are random variables. For Ω finite the expected value of $\varphi(\mathcal{X})$ conditioned on $\mathcal{Y} = (y_1, \dots, y_n)$ is:

$$\mathbb{E}[arphi(\mathcal{X})|\mathcal{Y}] = \sum_{\mathcal{X}} arphi(\mathcal{X}) p(\mathcal{X}|\mathcal{Y}).$$

Suppose $\mathcal{X} = (X_i)_{i=1}^n$, $\mathcal{Y} = (Y_i)_{i=1}^n$ are random variables. For Ω finite the expected value of $\varphi(\mathcal{X})$ conditioned on $\mathcal{Y} = (y_1, \dots, y_n)$ is:

$$\mathbb{E}[\varphi(\mathcal{X})|\mathcal{Y}] = \sum_{\mathcal{X}} \varphi(\mathcal{X}) p(\mathcal{X}|\mathcal{Y}).$$

Sometimes this is written as $\langle \varphi(\mathcal{X}) \rangle_{p(\mathcal{X}|\mathcal{Y})}$ or $\mathbb{E}_{\mathcal{X}|\mathcal{Y}}[\varphi(\mathcal{X})]$.

Suppose $\mathcal{X} = (X_i)_{i=1}^n$, $\mathcal{Y} = (Y_i)_{i=1}^n$ are random variables. For Ω finite the expected value of $\varphi(\mathcal{X})$ conditioned on $\mathcal{Y} = (y_1, \dots, y_n)$ is:

$$\mathbb{E}[\varphi(\mathcal{X})|\mathcal{Y}] = \sum_{\mathcal{X}} \varphi(\mathcal{X}) p(\mathcal{X}|\mathcal{Y}).$$

Sometimes this is written as $\langle \varphi(\mathcal{X}) \rangle_{p(\mathcal{X}|\mathcal{Y})}$ or $\mathbb{E}_{\mathcal{X}|\mathcal{Y}}[\varphi(\mathcal{X})]$.

 $\mathbb{E}_{\mathcal{Y}}[\mathbb{E}_{\mathcal{X}}[\varphi(\mathcal{X})|\mathcal{Y}]] = \mathbb{E}_{\mathcal{X}}[\varphi(\mathcal{X})].$

If \mathcal{X}, \mathcal{Y} are random variables with probability distribution function $p(\mathcal{X}, \mathcal{Y})$ then the *marginal* distribution function of \mathcal{X} is:

$$egin{aligned} p(\mathcal{X}) &= \sum \mathcal{Y} p(\mathcal{X}|\mathcal{Y}) p(\mathcal{Y}), \ &= \mathbb{E}_{\mathcal{Y}}[p(\mathcal{X}|\mathcal{Y})]. \end{aligned}$$

Example

Let Y_1, Y_2 be the outcome of two successive die rolls. Suppose they are independent $(Y_1 \perp Y_2)$. Let $X = Y_1 + Y_2$. Then,

 $Y_1 \not\perp Y_2 | X.$

(1)

Theorem (linearity of expected value) Let X_1, \ldots, X_n be any random variables.

$$\mathbb{E}[X_1+\ldots+X_n]=\mathbb{E}[X_1]+\ldots+\mathbb{E}[X_n].$$

Throw *n* dice and let X_n again be the sum of their spots. Don't assume independence. But assume each die has the same distribution: $Pr(r_i = j) = a_j$. The linearity of expected value provides a much simpler way to compute $E[X_n]$. Suppose r_i is the number of spots on the *i*-th die. Then, $X_n = r_1 + \ldots + r_n$ has expected value:

Throw *n* dice and let X_n again be the sum of their spots. Don't assume independence. But assume each die has the same distribution: $Pr(r_i = j) = a_j$. The linearity of expected value provides a much simpler way to compute $E[X_n]$. Suppose r_i is the number of spots on the *i*-th die. Then, $X_n = r_1 + \ldots + r_n$ has expected value:

$$\mathbb{E}[X_n] = \mathbb{E}[r_1] + \ldots + \mathbb{E}[r_n]$$

= $n(a_1 + 2a_2 + \ldots + na_n).$

If X_1, \ldots, X_n are random variables then the covariance between X_i and X_j is:

$$Cov[X_i, X_j] = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])]$$

If X_1, \ldots, X_n are random variables then the covariance between X_i and X_i is:

$$Cov[X_i, X_j] = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])]$$

Some properties of covariance:

1.
$$\operatorname{Cov}[X_i, X_i] = \operatorname{Var}[X_i]$$

2.
$$\operatorname{Cov}[X_i, X_j] = \operatorname{Cov}[X_j, X_i]$$

3.
$$\operatorname{Cov}[aX_i, bX_j] = ab\operatorname{Cov}[X_i, X_j]$$

4.
$$\operatorname{Cov}[X_1 + X_2, X_3] = \operatorname{Cov}[X_1, X_3] + \operatorname{Cov}[X_2, X_3]$$

If X_1, \ldots, X_n are random variables then the covariance between X_i and X_i is:

$$Cov[X_i, X_j] = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])]$$

Some properties of covariance:

1.
$$\operatorname{Cov}[X_i, X_i] = \operatorname{Var}[X_i]$$

2.
$$\operatorname{Cov}[X_i, X_j] = \operatorname{Cov}[X_j, X_i]$$

3.
$$\operatorname{Cov}[aX_i, bX_j] = ab\operatorname{Cov}[X_i, X_j]$$

4.
$$\operatorname{Cov}[X_1 + X_2, X_3] = \operatorname{Cov}[X_1, X_3] + \operatorname{Cov}[X_2, X_3]$$

These properties mean Cov is a bilinear form (like an inner product).

Let X_n be the sum of the outcomes of n successive die rolls. Define $S_n = \frac{X_n - n\mathbb{E}[X]}{\sqrt{n\text{Var}[X]}}$.

Let X_n be the sum of the outcomes of n successive die rolls. Define $S_n = \frac{X_n - n\mathbb{E}[X]}{\sqrt{n \operatorname{Var}[X]}}$. $f_{S_n}(x) \longrightarrow \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$ as $n \to \infty$.

1. What about discrete distributions (where Ω is infinite but the cdf of a random variable on Ω is not differentiable)?

- 1. What about discrete distributions (where Ω is infinite but the cdf of a random variable on Ω is not differentiable)?
- 2. How is the expected value defined for random variables that don't have pdfs?

- 1. What about discrete distributions (where Ω is infinite but the cdf of a random variable on Ω is not differentiable)?
- 2. How is the expected value defined for random variables that don't have pdfs?
- 3. What properties do Ω , Pr(A) have to satisfy?