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1. Linear analysis

Consider an equation of the form

dz

dt
= A · z (1)

which in component form looks like dzi/dt =
∑

j Aijzj . (The “.” notation, favored by physicists

worldwide, can be used for multiplying both matrices with vectors and vectors with vectors. For the
former, the ith component of A · z is

∑

j Aijzj , and for the latter x · y =
∑

i xiyi.)

Define vk, v
†
k, and λk via the equations

A · vk = λkvk (2a)

v
†
k ·A = λkv

†
k . (2b)

The vk and v
†
k are eigenvectors and adjoint eigenvectors, respectively (the latter sometimes called left

eigenvectors), and the λk are the associated eigenvalues. If A is an n× n matrix (which would mean

that z has n components), there are n eigenvectors. Assume a normalization such that vk · v
†
l = δkl.

Show that if z evolves according to Eq. (1) and z(t = 0) = z0, then

z(t) =
∑

k

vkv
†
k · z0 e

λkt . (3)

Remember this! If you stay in computational neuroscience, you will use it over and over and over.

2. A memory network

Consider firing rate equations of the form

τ
dνi
dt

= φ



γν +
β

Nf(1− f)

N
∑

j=1

ηi(ηj − f)νj



− νi (4)
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where N is the number of neurons, γ and β are constants, γ is negative, ν is, as usual, the firing rate

averaged over neurons,

ν =
1

N

∑

i

νi , (5)

η is a random binary vector,

ηi =

{

1 probability f
0 probability (1− f) ,

(6)

and φ is sigmoidal (and thus monotonically increasing).

Let

m =
1

Nf(1− f)

∑

i

(ηi − f)νi . (7)

Note that m is the firing rate of the “memory” neurons relative to the mean firing rate, with an extra

factor of 1/(1− f) thrown in to simplify the equations that you will derive.

2a. Derive dynamical mean field equations for ν and m in the large N limit. By “dynamical,” I mean
derive equations for dν/dt and dm/dt.

2b. Sketch the nullclines for ν and m assuming φ is sigmoidal. Work in a regime in which there are
three equilibria, and indicate their stability. The bistability (two stable equilibria) is the reason we call

this a memory network.

Take the N → ∞ limit wherever applicable.

Assume the following:

• φ(0) > 0.

• βφ′(γν0) < 0 where ν0 be the equilibrium mean firing rate when m = 0.

• When ν = ν0, m has three equilibria.

This is a hard, but important, problem.

2c. Suppose we have multiple memories; that is, in Eq. (4), we make the replacement

N
∑

j=1

ηi(ηj − f)νj →

p
∑

µ=1

N
∑

j=1

ηµi (η
µ
j − f)νj (8)

How would this affect your analysis? Can you get similar nullclines?

3. Hopfield networks reduce energy

Consider a Hopfield network that evolves asynchronously according to

Si(t+ 1) = sign





∑

j

JijSj(t)



 (9)
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where Jij is symmetric and has no diagonal elements,

Jij = Jji (10a)

Jii = 0 . (10b)

Define the energy,

H(t) = −
1

2

∑

ij

Si(t)JijSj(t) . (11)

3a. Show that if the Si obey the dynamics given in Eq. (10), then the energy never increases; i.e.,
H(t+ 1) ≤ H(t).

3b. Show that if Jii 6= 0, it is possible for the energy to increase. It is sufficient to find an example,

with as few neurons as you want.
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