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1. Stochastic processes and entropy rates

(a) Prove that the two definitions of the entropy rate given in class:

lim
n→∞

1
n
H(X1, . . . Xn) and lim

n→∞
H(Xn | Xn−1 . . . X1),

are equivalent. [Hint: If an → a as n → ∞, what can be said about the running averages
bn = 1

n

∑n
i=1 ai?]

(b) Consider a point process Pλ with a constant mean rate constrained to be λ. We are interested in
the form of the maximum entropy process consistent with this constraint.

i. First, consider the stochastic process defined by taking successive inter-event intervals gen-
erated by Pλ. How does the constraint on Pλ’s rate constrain the ISI process? What is the
maximum entropy ISI distribution [recall the discussion of maximum entropy distributions
from lecture]? What does this imply about Pλ?

ii. Now consider the stochastic process defined by counting events from Pλ that fall in successive
intervals of length ∆. What does the mean rate constraint for the point process mean as a
constraint for this discretised counting process? What is the maximum entropy counting
process under this constraint? Is this consistent with the form of Pλ you obtained above?

iii. Suppose we were to expect spike trains in the brain to achieve maximum entropy with con-
strained spike rate. Which of the two preceding approaches to the obtaining the maximum
entropy distribution is likely to be the more relevant to the brain. [Hint: how does the process
obtained in the second case depend on ∆? Is there a preferred ∆ for the brain?]

2. Communication through a probabilistic synapse

(a) The Blahut-Arimoto algorithm.
In this part of the question, we derive an algorithm to find an input distribution that achieves
the capacity of an arbitrary discrete channel.

i. Given a channel characterised by the conditional distribution P (R|S), we wish to find a source
distribution P (S) that maximises the mutual information I(R;S). Show that

I(R;S) ≥
∑
s,r

P (s)P (r|s) log
Q(s|r)
P (s)

for any conditional distribution Q(S|R). When is equality achieved?
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ii. Use this result to derive (in closed form) an iterative algorithm to find the optimal P (S).∗

This is called the Blahut-Arimoto algorithm. Prove that the algorithm converges to a unique
maximal value of I(R;S).

∗ Hint: by analogy to EM, alternate maximisations of the bound on the right hand side with
respect to Q and to P (S).

(b) Synaptic failure.
Many synapses in the brain appear to be unreliable; that is, they release neurotransmitter stochas-
tically in response to incoming spikes. Here, we will build an extremely crude model of commu-
nication under these conditions.
Assume that the input to the synapse is represented by the number of spikes arriving in a 10 ms
interval, while the output is the number of times a vesicle is released in the same period. Let the
minimum inter-spike interval be 1 ms (taking into account both the length of the spike and the
refractory period), and assume that at most 1 vesicle is released per spike. Thus, both input and
output symbols on this channel are integers between 0 and 10 inclusive.
Let the probability of vesicle release be independent for each spike in the input symbol, and be
given by αn where α is a measure of synaptic depression and n is the number of spikes in the
symbol. (We are neglecting order-dependent effects within each 10ms symbol, and any interactions
between successive symbols. This is a terrible model of synaptic behaviour).

i. Generate (in MATLAB) the conditional distribution of output given input for this synapse.
Take α = 0.9. Use Blahut-Arimoto to derive the capacity-achieving input distribution and
plot it.

ii. Try to interpret your result intuitively. Might this have anything to do with the short “bursts”
of action potentials found in many spike trains?

iii. OPTIONAL: Improve on the model of synaptic transmission. Consider 5 ms input and output
symbols, each being a 5-bit binary number where a 1 indicates a spike or a vesicle release.
The probability of transmission for each spike in the symbol is again αn but n is now the
number of vesicles released so far for this symbol. Construct a new conditional distribution
table and repeat the optimisation. Do you get a qualitatively similar result?

3. Doubly stochastic Poisson processes and spike patterns.

In the 1980s Abeles suggested that the integrative properties of neurons, coupled with the density
of connections between them, would lead to self-supporting synchronous volleys of firing that could
propagate between different constellations of neurons with extremely high temporal precision (a phe-
nomenon called a “synfire chain”). This prompted an experimental search for the precisely timed spike
patterns that might be a signature of such a phenomenon. A single neuron might participate in more
than one synchronous volley of a synfire chain. Thus, in part because of technological limitations,
many experiments looked for patterns in the spike train of a single cell. Here, we will look at one such
hypothetical experiment.

Suppose the mean response rate of a neuron to a stimulus flashed shortly before time 0, is given by
the function

λ(t) = Θ(t)ρe−t/T

where Θ(t) is the Heaviside function (0 if t < 0 and 1 if t ≥ 0) and ρ and T are constants. We begin
by making the common assumption that the firing of the neuron is described by an inhomogeneous
Poisson process with intensity λ(t).

(a) On average, how many spikes will the cell emit in response to the stimulus (assume the experi-
mental counting interval is � T ).
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(b) Under the inhomogeneous Poisson model, what is the intensity with which we would observe
spikes within small intervals around three specific times t, t+ τ1 and t+ τ2 all greater than 0. [We
want the marginal probability of those 3 times – don’t assume anything about what the cell is
doing at any other time].

(c) Integrate your expression with respect to t to find σ(τ1, τ2), the intensity of observing a pattern
with intervals τ1 and τ2 at any point. [Assume τ1 and τ2 are positive.]

(d) An experimenter reports that, looking at a neuron with ρ = 80s−1 and T = 0.05s and binning
spikes in 1 ms intervals, he observed the pattern (5, 50) (i.e., τ1 = 5 ms and τ2 = 50) 8 times in
1000 trials. Given your result above, is this surprising? Assume that he looked only for the (5,50)
ms pattern. [OPTIONAL Why should that matter to your answer?]

Looking more closely at his data, you note that the Fano Factor of the spike count is about 2. This
leads you to consider a doubly stochastic Poisson process model instead, with an intensity

λ(t) = Θ(t)ρe−t/T

which depends on a random variable ρ ∼ Gamma(α, β).

(e) Use moment matching to estimate values of the parameters α and β. [That is, find an expression
for the variance of a Poisson counting distribution with random mean parameter drawn from
Gamma(α, β). Find values of α and β for which this expression matches the observed Fano
factor.]

(f) Repeat the calculation for the expected number of (5,50) ms patterns. [Hint: you’ll need the third
moment of the Gamma distribution]. Is the experimental result surprising now?

4. The expected autocorrelation function of a renewal process.

In class, we analysed the autocorrelation function of a point process in terms of its intensity function
λ(t, . . .). For a self-exciting point process, λ depends on the past history of spiking, and so computing
the expected value of the correlation in this way can be quite difficult. Fortunately, for the special case
of a renewal process (i.e. a point process with iid inter-event intervals), there is an alternative way to
compute the autocorrelation function.

Consider a neuron whose firing can be described by a renewal process with inter-spike interval proba-
bility density function p(τ).

(a) Given an event at time t, the probability that the next spike arrives in the interval Iτ = [t+ τ, t+
τ + dτ) is p(τ)dτ . What is the probability that the second spike after the one at t arrives in Iτ
instead? The third spike?

(b) What is the probability that, given a spike at t, there is a spike in Iτ , regardless of the number
of intervening spikes?

(c) Your answer to the previous question has given you the positive half of the autocorrelation func-
tion. What does the negative half look like? What happens at τ = 0?

(d) Show that for a Gamma process with ISI density

p(τ) = β2τe−βτ ,

the Laplace transform of (the right half of) the expected autocorrelation function is

L[Q(τ)](s) =
β2

(β + s)2 − β2
.

[Hint: Recall that L[f ](s) =
∫∞
0
dx f(x)e−sx. Apply the Laplace convolution theorem, after

setting p(τ) = 0 for τ < 0. Finally, use the fact that for |x| < 1, (1− x)−1 = 1 + x+ x2 + x3 + ...]

3



(e) Find the expected power spectrum (i.e. the Fourier transform of the expected autocorrelation
function) for this process.
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