
Assignment 5

Theoretical Neuroscience

Maneesh Sahani

12 November 2010

1. Estimation Theory

(a) We derived the Fisher information J(θ) as the expected value of the second derivate (curvature) of
the log-likeihood in the lecture.

i. Repeat the derivation for a vector parameter (or stimulus in our setting) θ, showing that the
Fisher information in this case is given by a matrix.

As mentioned in the lecture, there is an alternate definition in terms of the first derivative. For vector
parameters this is:

J(θ0) = Covθ0

(
∇ log p(n|θ)

∣∣∣∣
θ0

)
.

where Covθ0 means the covariance evaluated under p(n|θ0).
ii. Demonstrate that these two definitions are the same (or more precisely, give conditions under

which these two definitions are the same).
(b) Consider an LNP model:

p(n|x) = Poiss(g(w · x))
i. What is J(x) (the Fisher Information about the stimulus value available to the rest of the brain)?

How does it depend on w? Working in two dimensions (recall the picture from lecture) show
how J(x) varies around the vector linear projection vector w.

ii. What is J(w) (the Fisher Information about the weight vector available to an experimenter —
consider the case of multiple measurements ni, each in response to a different stimulus xi)? How
does it depend on the distribution of x? What would be a good distribution with which to probe
the cell if we knew (say) the orthant of stimulus space in which w lay?

2. Population Coding

Shadlen and collaborators have claimed that if the activities of neurons in population codes are corrupted
by correlated noise, then there is a sharp limit to the useful number of neurons in the population. Prima
facie this is wrong – the stronger the correlations, the lower the entropy of the noise, and therefore the
stronger the signal.

Resolve this issue for the case of additive and multiplicative noise by considering the following three models
for the noisy activities r1 and r2 of two neurons which form a population code for a real-valued quantity
x:

a)
{

ra
1 = x + ε1

ra
2 = x + ε2

(1)

b)
{

rb
1 = x(1 − δ) + ε1

rb
2 = x(1 + δ) + ε2

(2)

c)
{

rc
1 = x(1 − δ)(1 + η1)

rc
2 = x(1 + δ)(1 + η2)

(3)

where δ 6= 0 is known, and, ε and η are Gaussian, with mean 0 and covariance matrices:

Σ =
(

1 c
c 1

)

1



(a) What is the maximum likelihood estimator (MLE) for x on the basis of r1 and r2 in each case?

(b) How does the expected accuracy in each case depend on the degree of correlation c? [Hint: begin by
showing that the Fisher Information for a Gaussian distribution with mean µ(θ) and variance Σ(θ)
both dependent on a scalar parameter θ is:

J(θ) = ∇µTΣ−1∇µ +
1
2
Tr

[
Σ−1(∇Σ)Σ−1(∇Σ)

]
where the matrix “gradient” is the matrix of elementwise derivatives.]

(c) What conclusions would you draw about the clash between Shadlen and common sense?
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