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Quantifying a Code

e How much information does a neural response carry about a stimulus?

e How efficient is a hypothetical code, given the statistical behaviour of the compo-
nents?

e How much better could another code do, given the same components?

e Is the information carried by different neurons complementary, synergistic (whole is
greater than sum of parts), or redundant?

e Can further processing extract more information about a stimulus?

Information theory is the mathematical framework within which questions such as these
can be framed and answered.

Information theory does not directly address:

e estimation (but there are some relevant bounds)
e computation (but “information bottleneck” might provide a motivating framework)

e representation (but redundancy reduction has obvious information theoretic con-
nections)



Uncertainty and Information

Information is related to the removal of uncertainty.

S — R — P(S|R)

How informative is K about S?

P(S|R) =|0,0,1,0,. .. ,o] — high information?
11 1
P(SIR) =| 7= M} — low information?

But also depends on P(S5).

We need to start by considering the uncertainty in a probability distribution — called
the entropy

Let S ~ P(S). The entropy is the minimum number of bits needed, on average, to
specify the value S takes, assuming P(S) is known.

Equivalently, the minimum average number of yes/no questions needed to guess S.



Entropy

e Suppose there are M equiprobable stimuli: P(s,,) = 1/M.

To specify which stimulus appears on a given trial, we would need assign each a
(binary) number. This would take,

B, < loggM+1 28> M]

1
= —log, — + 1 bits
og2M+ |

e Now suppose we code N such stimuli, drawn iid, at once.
By < log, MM +1
— N log, — as N
— 089 Vi — 00
= B, — — log, p bits

This is called block coding. It is useful for extracting theoretical limits. The nervous
system is unlikely to use block codes in time, but may in space.



Entropy

e Now suppose stimuli are not equiprobable. Write P(s,,) = p,,. Then

P(S1,5,....9v) =] [ pir 'where n,, = (#0f S; = s,,)].

Now, as N — oo only “typical” sequences, with n,, = p,,/N, have non-zero prob-
ability of occuring; and they are all equally likely. This is called the Asymptotic
Equipartition Property (or AEP). Thus,

By — —log, Hm Pt = = Zm T, 1089 Dy
- = ZumN 10g2 Pm = _szm 1Og2 Pm
—H]s]

H[S| = E[log, P(.5)], also written H[P(.5)], is the entropy of the stimulus distribution.



Conditional Entropy

Entropy is a measure of “available information” in the stimulus ensemble. Now sup-
pose we measure a particular response r which depends on the stimulus according to

P(R|S).

How uncertain is the stimulus once we know r? Bayes rule gives us
P(r|S)P(S)

> P(r|s)P(s)

= — > P(s|r)log, P(s|r)

The average uncertainty in S forr ~ P(R) = > P(R|s)p(s) is then

H[S|R] = ZP ZP s|r)log, P ZPST ) logy P(s|r)

P(S|r) =

SO we can write

It is easy to show that:

1. H[S|R] < H[S]
2. H[S|R] = H[S, R] — H[R)]
3. H[S|R] = H[S]iff S 1L R




Average Mutual Information

A natural definition of the average information gained about S from R is
11S; R] = H[.S] — H[S|R]

Measures reduction in uncertainty due to R.
It follows from the definition that

R] = ZP(S) log 13 — ZP(S,T) log Blsir)




Average Mutual Information

The symmetry suggests a Venn-like diagram.

H[S| H[R)

H(S, R]

All of the additive and equality relationships implied by this picture hold for two vari-
ables. Unfortunately, we will see that this does not generalise to any more than two.



Kullback-Leibler Divergence

Another useful information theoretic quantity measures the difference between two
distributions.

KLIP(S)Q(S)] = 3 Pls 1ogg<3

:Z:P s)log Q(S) —H|[P]

cross entropy

Excess cost in bits paid by encoding according to () instead of P.

KLP|Q = 3 P(s)log L)

So KL[P||Q] > 0. Equality iff P = Q



Mutual Information and KL

I[S: Rl =) Ps,r)log 1P = KL )| P(s)P(r)

Thus:

1. Mutual information is always non-negative

11S; R] >0

2. Conditioning never increases entropy

H|S|R] < H[S]



Multiple Responses

Two responses to the same stimulus, Ry and Ry, may provide either more or less
information jointly than independently.

Lio =1[S; Ry, Ro] = H[Ry, Ro] — H|Ry, Ry|S]

Ry 1l Ry = H[Rl, RQ] = H[Rﬂ + H[RQ]
Ry 1L R2|S = H[Rl,RQ’S] = H[Rl‘S] + H[R2|S]

Ry IL Ry Ryl RS

no yes Ii» < I{ + I redundant

yes yes Iio = I1 + I, independent
yes no 15 > I + Iy synergistic

no no ? any of the above

I15 > max(I, I5): the second response cannot destroy information.

Thus, the Venn-like diagram with three variables is misleading.



Data Processing Inequality

Suppose S — R; — R, form a Markov chain; that is, Ry L S|R;.

Then,
P(Ry, S|R1) = P(Ro|R1)P(S|Ry)
= P(S‘Rl, RQ) = P(S|R1>

Thus,
H[S|R,] > H[S| Ry, Ry| = H[S|R]
= |[S, RQ} < |[S, Rﬂ

So any computation based on R; that does not have separate access to .S cannot add
information (in the Shannon sense) about the world.

Equality holds iff S — Ry — R; as well. In this case R; is called a sufficient statistic
for S.



Entropy Rate

So far we have discussed S and R as single (or iid) random variables. But real stimuli
and responses form a time series.

Let S = {51,5:,95...} form a stochastic process.

H[Sb SQ7 R Sn] — H[Sn‘sla SQ: R Sn—l] -+ H[Sla SQ: R Sn—l]
= H[Sn\Sl, SQ, Cee Sn_1] -+ H[Sn_1|51, SQ, Cee Sn_g] +...+ H[Sl]

The entropy rate of S is defined as

. H[S,Sy,..., 5]
HIS] = Jim. N

or alternatively as

H[S] = lim H[Sn|Sl, SQ, ceey Sn—l]
If S; /< P(S) then H[S] = H[S).
If S is Markov (and stationary) then H[S] = H[S,,|S,,_1].



Continuous Random Variables

The discussion so far has involved discrete .S and R. Now, let S € R with density p(s).
What is its entropy?

Suppose we discretise with length As:

Zp )As log p(s;)As

= —Zp )As(log p(s;) + log As)

:—Zp )As log p(s; 1ogASZp

= — ZAsp )logp(s;) — log As

— — / ds p(s)logp(s) + oo

We define the differential entropy:

h(S) = — / ds p(s)log p(s).

Note that h(S) can be < 0, and can be +oc.



Continuous Random Variables

We can define other information theoretic quantities similarly.
The conditional differential entropy is

h(S|R) = —/ds dr p(s,r)logp(s|r)

and, like the differential entropy itself, may be poorly behaved.
The mutual information, however, is well-defined

- /dT p(r) (‘ ZAS p(silr)log p(s;|r)—log AS)
— h(S) — h(S|R) |

as are other KL divergences.



Maximum Entropy Distributions

1. H[Rl, RQ] = H[Rl] + H[RQ] with equality iff R, 1L R».

2. Let [ ds p(s)f(s) = afor some function f. What distribution has maximum entropy?
Use Lagrange multipliers:

L= / ds p(s)log p(s) — Ao [ / ds p(s) — 1] N [ / ds p(s)f(s) — a]

oL
5p5) = 1+4logp(s) — Xo— Aif(s) =
= log p(s) = 0+>\1f( ) —

= p(s) =

S

The constants Ay and A\, can be found by solving the constraint equations.
Thus,

f(s)=s5 = p(s) = %e“s. Exponential (need p(s) = 0 for s < 7).
f(s)=s* = p(s) = e Mis - Gaussian.

Both results together = maximum entropy point process (for fixed mean arrival rate)
is homogeneous Poisson — independent, exponentially distributed ISls.



Channels

We now direct our focus to the conditional P(R|S) which defines the channel linking
Sto R.

g ") g
The mutual information
P(s,r) P(r|s)
= P | P(s s)1
2 Pl m)los peps Z o8 50

depends on marginals P(s) and P(r) =) P(r|s)P(s) as well and thus is unsuitable
to characterise the conditional alone.

Instead, we characterise the channel by its capacity

Cpis = supl[S; R
P(s)

Thus the capacity gives the theoretical limit on the amount of information that can be
transmitted over a channel. Clearly, this is limited by the properties of the noise.



Joint source-channel coding theorem

The remarkable central result of information theory.

encoder 7~ channel decoder =5
S ———S — R——T
CR\§

Any source ensemble S with entropy H[S| < C )5 can be transmitted (in sufficiently
long blocks) with P.,,, — 0.

The proof is beyond our scope.

Some of the key ideas that appear in the proof are:

e block coding
e error correction
e joint typicality

e random codes



The channel coding problem

encoder 7~ channel decoder 25
S———S — R—T
CR\§

Given channel P(R|S) and source P(S), find encoding P(S5|S) (may be deterministic)
to maximise I[S; R].
By data processing inequality, and defn of capacity:

I[S; R] <I[S; R] < Cp3

By JSCT, equality can be achieved (in the limit of increasing block size).
Thus 1[S; R] should saturate Cris-

~

See homework for an algorithm (Blahut-Arimoto) to find P(.5) that saturates C, ; for a
general discrete channel.



Entropy maximisation

IS R] = HR  — H [R]S*’}
marginal entropy ; g

noise entropy

If noise is small and “constant” = maximise marginal entropy = maximise H {S}

Consider a (rate coding) neuron with 7 € [0, 7ax]-

hir) = - /Om dr p(r)log p(r)

To maximise the marginal entropy, we add a Lagrange multiplier (x) to enforce normal-
isation and then differentiate

sl [ (1 g

= p(r) = const for r € [0, 7'pax]

l.e. ' [ ]
r € |0, Tmax
plr) = { 0  otherwise




Histogram Equalisation

Suppose r = 5 + 1 where 1) represents a (relatively small) source of noise. Consider
deterministic encoding s = f(s). How do we ensure that p(r) = 1/ryax?
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Histogram Equalisation
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Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian chan-
nel coding, where it is called the water filling algorithm.

We will need the differential entropy of a (multivariate) Gaussian distribution:

Let 119 1
pZ)=2ns ey | -2 - w2 - )|

then,
2=~ [ 42 p(2) |3 losins] - 32 - WS Z - )
— %10g 2my| + % / dZ p(Z)Tr [ZNZ —p)(Z —p)']
= %log 27| + %Tr [2_12}
= %1og 2my| + %d (loge)
= —log |2meY]|

2



Gaussian channel — white noise

Z ~ N (0,k.) I[S; R]= h(R) — h(R|S)
* = h(R) — h(S + Z|S)
§F (% - R = ()~ h(Z)
<S2> - p N N 1

Without constraint, h(R) — oo and Cps = oo.

1
Therefore, constrain — Z 57 < P.
1=1

Then, ()= <<§+Z)2>:<§2+22+2§Z>§P+kz+0

— W(R)< h(N (0,P 4 k.)) = %log 2re(P + k)

1 1 1 P
[S R|< §1og 2me(P + k) — 5 log 2mek,= §1og 27e (1 + k_)

1 P
CR\§ = ilogQWe (1 + k_2>

The capacity is achieved iff R ~ N (0,P +k.) =S ~ N (0,P).



Gaussian channel — correlated noise

Now consider a vector Gaussian channel:
Z: Zl,... Zd) NN(O,KZ)

S=(5,...,8) )Q - R=(Ry,...,Ry)
1Tr[SS} p—

Following the same approach as before:

18:R) = h(R) — h(Z) < 3 log (2me)" [K; +K.[] — 3 lo [(2me)" [K.|]

= Cp|s achieved when S (and thus R) ~ A, with |K; + K.| max given STrKs] < P.

Diagonalise K, =K; is diagonal in same basis.
For stationary noise (wrt dimension indexed by d) this can be achieved by a Fourier
transform = index diagonal elements by w.

ki(w) = argmaXH (ks(w) + k. (w)) such that — Z ks (



Water filling

Assume that optimum is achieved for max. input power.

k%(w) =argmax Z log (ks(w) + k( (d Z ks( )

1 A 0
ki(w)+k.(w) d
= ki(w)+k.(w) =v (const.)
(ks =2 0) = ki(w) = [ = k(W)

Waterfilling: choose v so

Z kg((,d) =

(0]

R is white or decorrelated (within power budget) =variance equalisation.



Decorrelation at the retina

Atick and Redlich (1992) argued that the retina decorrelates natural spatial statistics.
RGCs exhibit roughly linear (centre-surround) processing:

fra—<’ra>:/dx Di(x —a) S\<i>/

filter  stimulus

Therefore the correlation (covariance) between cells is
Qufab) = { [ dxdy D.(x~ a)D.y - bsxsty) )

N /dx dy Ds(x —a)Ds(y — b) (s(x)s(y))

~

Qs(x,y)

Using (spatial) stationarity, we can transform to the Fourier domain:
Qr(k) — ’Ds(k)PQs(k)
and thus output decorrelation requires

1

l~)sk 2 x —
Dk Qs(k)




Decorrelation at the retina

Spatial correlations of natural images fall off with f2:

~ 1
s(k

and the optical filter of the eye introduces (crudely) a low-pass term oc eIk,

So decorrelation requires

~ k|? + k2
’DS(kMQO(‘ | + 0

e_a|k’
But: not all input is signal.
Photodetection introduces noise. Therefore, cascade linear filters:

S + > S > r
n D, Dy
with

lN)n<k) _ @s(k>

Qs(k) + Qy(k)
Thus the combined RGC filter is predicted to be:

(Wiener filter)

Qs(k)

D,(k)| D, (k) ox = -
| Ds (k)| Dy (k) 5.0 - Ok




Decorrelation at the retina
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Decorrelation at the retina
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Related ideas

e efficient channel utilisation
e output entropy maximisation
e variance equalisation

e redundancy reduction

e decorrelation

e discovery of independent projections or components



