
Hilberticus - a Tool Deciding an Elementary
Sublanguage of Set Theory

c© Springer, pp. 690-695, LNCS/LNAI 2083, IJCAR 2001

Jörg Lücke

Univ. Dortmund, Fachbereich Informatik, LS 5, 44227 Dortmund, Germany
luecke@ls5.cs.uni-dortmund.de, http://www.hilberticus.de

Abstract. We present a tool deciding a fragment of set theory. It is
designed to be easily accessible via the internet and intuitively usable
by anyone who is working with sets to describe and solve problems. The
tool supplies features which are well-suited for teaching purposes as well.
It offers a self explaining user interface, a parser reflecting the common
operator bindings, parse tree visualization, and the possibility to generate
Venn diagrams as examples or counterexamples for a given formula. The
implemented decision procedure which is based on the semantics of class
theory is particularly suitable for this.

Keywords: Set Theory, Decision Procedures, First-Order Logic.

1 Motivation

The language of set theory is one of the most common formal languages. It is
used in research fields ranging from mathematics, computer science over natu-
ral science and engineering up to economy. This success is probably due to the
fact that set theory can be used informally in most of its applications and that
the well-known Venn diagrams can illustrate relations and combinations of sets.
In contrast to this, in logics the precise definition of the syntax and semantics
of languages of set theory is crucial and it provides methods which allow the
automatic decision whether formulas of set theory are true, satisfiable, or in-
consistent. However, the number of actual users of such methods is far smaller
than the number of users of set theory. This is probably the case because an
average user of the language of set theory is often not aware of such methods
and because existing implementations are not easy to find, to install, and often
difficult to learn even if the user should be familiar with the notation of logic.
The Hilberticus tool is designed to overcome these problems and it supplies the
user with a graphical feedback in the form of Venn diagrams which eases its use
and illustrates examples and counterexamples of a satisfiable formula in a con-
venient way. An alpha version of the tool is accessible via www.hilberticus.de.
The name Hilberticus is a synthesis of the names Hilbert and abacus.

2 Syntax and semantics of the language SL

Syntax of SL. The language SL (Set Language) contains the parentheses sym-
bols ‘)’ and ‘(’, the logical connectives ¬, ∧, ∨, ⇒, and ⇔, the predicate symbols
=, ⊆, and ⊂, the function symbols ∩, ∪, and \, the constant symbols ∅ and D- ,
and a countable set of class variables A, B etc. The formulas of SL are defined in

the usual way. A string t of the above symbols is called a term if t is a constant
symbol, if t is a variable, or if t is of the form (t1 • t2) where t1 and t2 are
terms and where • denotes a function symbol. A string Φ is called an atomic
formula if Φ is of the form (t1 = t2), (t1⊆ t2), or (t1⊂ t2) (where t1 and t2

are terms). Finally, we call Φ a formula if it is a propositional combination of
atomic formulas. To write and read SL-formulas more conveniently we allow
the suppression of parentheses using binding priorities for function symbols and
logical connectives. The binding of the function symbols is defined according to
the list ∩, ∪, \ which is ordered descendingly by binding priority. Similarly, the
binding of the logical connectives is defined according to the list ¬, ∧, ∨, ⇒, ⇔,
where ⇒ and ⇔ have the same priority and associate to the right, in contrast
to all other binary symbols.

Semantics of SL. The semantics of SL is taken from [1, 2]. There a constructive
definition of set theory is developed which is based on the Zermelo-Fraenkel
axioms. We denote by σ : V → D an assignment from the set of variables V
into the collection of all classes D. The interpretation I of the predicate and
function symbols =, ⊆, ⊂ and ∩, ∪, \ is standard. The constant symbols ∅ and
D- are interpreted as empty and universal class respectively. The domain D of
all classes and the interpretation I make up the model of interest which we will
denote by M. A formula Φ is satisfiable in M if it is true for some assignment
σ and Φ is true in M if it is true for all assignments σ.

3 The decision procedure and its implementation

The decision procedure consists of two steps. Firstly, a formula of SL is trans-
formed to a formula of the more fundamental language SBL (Set Basis
Language) using the calculus LC- of [1, 2]. Secondly, the formula in SBL is
decided via the transformation to a propositional formula. The language SBL
is a first-order language without function symbols and with ‘∈’ as the only (un-
interpreted) predicate symbol. The calculus SBL is the usual predicate calculus
for this signature and we call a formula valid if it is true in all models of SBL.

The calculus LC- . Descriptions of set theory are typically based on a first-order
language with ‘∈’ and ‘=’ as the only predicate symbols. As soon as the formulas
of this first-order language are becoming large and unreadable abbreviations are
introduced and this not only for formulas but also for terms denoting sets or
set-like objects. The abstraction terms ‘{v |Φ}’ are used for this purpose. Gen-
erally, the use of abstraction terms is only informal which can lead to problems
(as discussed in [1]). In LC- such problems are avoided by the introduction of
abstraction terms as a part of the language together with axioms and inference
rules for their manipulation. A number of theorems show the equivalence of set
theories based on LC- and set theories based on a usual predicate logic. In the
following we focus on some elements of LC- and formulate relevant results in
a way appropriate to the scope of this paper. For a thorough investigation of
LC- (including the notation of frames) we refer to [1, 2]. For our purposes the
following derivations are of interest [2]:

`
LC-

{v|Φ} ∈ t ⇔ ∃w (w={v|Φ}∧w ∈ t),

`
LC-

t ∈ {v|Φ(v)} ⇔ Φ(t), `
LC-

t1=t2 ⇔ ∀v (v ∈ t1⇔v ∈ t2)
(1)

By successively applying these formulas it is always possible to eliminate all
abstraction terms of an LC- -formula in favor of an equivalent SBL-formula.
The fact that the additional axioms and rules for the abstraction terms do only
serve as abbreviations in our case is reflected by the following theorem.

Theorem 1. If Φ is a formula in LC- and Φ̃ the formula in SBL derived by
the application of the formulas of (1) to Φ, then Φ is derivable in LC- iff Φ̃ is
derivable in SBL,

`
LC-

Φ iff `
SBL

Φ̃ . (2)

We can now use the calculus LC- to introduce the following abbreviations:
A⊆B ⇔def ∀x (x∈A ⇒ x∈B), A∪B =def {y| y∈A ∨ y∈B},
A⊂B ⇔def A⊆B∧¬(A=B), A∩B =def {y| y∈A ∧ y∈B},

∅ =def {x|¬(x = x)}, D- =def {x| x = x}, A\B =def {y| y∈A ∧ ¬(y∈B)}

(3)

To translate a formula in SL to a formula in SBL we replace the predicates
and functions of SL by the corresponding definitions and subsequently apply
the formulas of (1) as shown below. The semantics of SL (Sect.2) is the same as
the semantics of LC- defined in [1]. Due to the soundness and completeness of
the calculus LC- [1] a formula Φ of SL is thus true in the underlying model M
if it is derivable in LC- . Together with (1) and the soundness and completeness
of the predicate calculus we obtain the result:

Theorem 2. If Φ is a formula in SL and Φ̃ the formula derived after the ex-
pansion of Φ by the use of the abbreviations of (3) and the successive elimination
of abstraction terms by the use of the formulas of (1) then Φ is true in M iff Φ̃
is valid in SBL.

Theorem 2 reduces the decidability problem of SL to the decidability problem
of the calculus SBL.

Transformation to a propositional formula. As mentioned earlier the calculus
SBL is a predicate calculus without function symbols and with ‘∈’ as the only
predicate symbol. Such a calculus is undecidable in general (see for instance [3]).
The translation procedure described above produces, however, formulas lying in
a certain subset of SBL which we call SBL2. The variables of a formula of
this subset can always be divided into one set of variables occurring only on
the left-hand side of the ‘∈’ predicate (element variables) and one set of vari-
ables occurring only on the right-hand side of the ‘∈’ predicate (class variables).
Furthermore only quantifiers for element variables are introduced in the course
of the translation from SL to SBL because due to the syntax of SL the first
formula of (1) is not applied. A formula in SBL2 can be transformed to a propo-
sitional formula F(ρ1, . . . , ρm) where ρ1, . . . , ρm are SBL2-formulas of the form:
∀x(x∈A1∨ . . .∨x∈An)︸ ︷︷ ︸

ρ1

, ∀x(x∈A1∨ . . .∨¬(x∈An))︸ ︷︷ ︸
ρ2

, . . . , ∀x(¬(x∈A1)∨ . . .∨¬(x∈An))︸ ︷︷ ︸
ρm

This is possible because due to the restricted quantification a universal quantifier
∀x can be moved (after elimination of ⇒ and ⇔) to the right until a disjunction
of the form (x ∈A1∨ . . .∨x ∈Ak) is encountered (where k ≤ n, and atomic
formulas are possibly negated). This can be achieved by the use of the formulas
below where Φ(x), Ψ(x) denote formulas containing x as a free variable and Φ, Ψ
are formulas not containing x as a free variable.

`
SBL

∀x(Φ(x)∧Ψ(x)) ⇔ ((∀x Φ(x))∧(∀x Ψ(x))),

`
SBL

∀x(Φ∨Ψ(x)) ⇔ (Φ∨(∀x Ψ(x))), `
SBL

Φ ⇔ (Φ∨Ψ)∧(Φ∨¬Ψ)

(4)

In Example 1 below we demonstrate the complete transformation of an SL-
formula to a propositional formula. We use the abbreviations of (3), the second
formula of (1), the formulas of (4), and the notation:
P A

x := x ∈ A, P A
x := ¬(x ∈ A), [P A

x , . . . , P C
x] := P A

x ∨ . . .∨P C
x .

Example 1
A∩B⊆C⇒ (A⊆C ∨B⊆C)

{v|v∈A∧ v∈B}⊆C⇒ (A⊆C ∨B⊆C)

(∀x(x∈{v|v∈A∧ v∈B}⇒x∈C))⇒ ((∀y(y∈A⇒ y∈C))∨(∀z(z∈B⇒ z∈C)))

(∀x((x∈A∧x∈B)⇒x∈C))⇒ ((∀y(y∈A⇒ y∈C))∨(∀z(z∈B⇒ z∈C)))

(∀x((P A
x ∧P B

x)⇒P C
x))⇒ ((∀y(P A

y ⇒P C
y))∨(∀z(P B

z ⇒P C
z)))

¬(∀x(¬(P A
x ∧P B

x)∨P C
x))∨((∀y(P A

y ∨P C
y))∨(∀z(P B

z ∨P C
z)))

¬(∀x[P A
x , P B

x , P C
x])∨(∀y[P A

y , P C
y])∨(∀z[P B

z , P C
z])

¬(∀x[P A
x, P B

x, P C
x])∨(∀y([P A

y, P C
y , P B

y]∧[P A
y, P C

y , P B
y]))∨(∀z([P B

z , P C
z , P A

z]∧[P B
z , P C

z , P A
z]))

¬(∀x[P A
x, P B

x, P C
x])∨(∀y[P A

y, P C
y , P B

y]∧∀y[P A
y, P C

y , P B
y])∨(∀z[P B

z , P C
z , P A

z]∧∀z[P B
z , P C

z , P A
z])

¬(∀x[P A
x, P B

x, P C
x]︸ ︷︷ ︸

ρ7

)∨(∀x[P A
x, P B

x, P C
x]︸ ︷︷ ︸

ρ5

∧∀x[P A
x, P B

x, P C
x]︸ ︷︷ ︸

ρ7

)∨(∀x[P A
x, P B

x, P C
x]︸ ︷︷ ︸

ρ3

∧∀x[P A
x, P B

x, P C
x]︸ ︷︷ ︸

ρ7

)

The resulting propositional formula is F = ¬ρ7∨(ρ5∧ρ7)∨(ρ3∧ρ7). In general
the formula can have m = 2n ρ-arguments if n is the number of different vari-
ables occurring in the SL-formula. The ρ-arguments are independent of one
another except that all of them cannot be true simultaneously. The validity of
a formula in SBL2 can be decided by a Boolean valuation of the propositional
formula F excluding the case that all ρ-arguments are simultaneously true. Note
at this point that a formula F in which all possible ρ-arguments occur repre-
sents the worst case. In the great majority of cases only a small subset of the
theoretically possible ρ-arguments actually occur in F making the evaluation of
F much more efficient (see Example 1). In the case of a satisfiable SL-formula
it is possible to construct a collection of finite sets from a Boolean valuation
b : {ρ1, . . . , ρm} → {false, true}m of the corresponding formula F . These sets
can subsequently serve to generate Venn diagrams as counterexamples (or ex-
amples) of the SL-formula. A description of such a generation can be found on
the homepage of the tool.

The implementation. The Hilberticus tool decides whether an SL-formula is
true, satisfiable, or inconsistent in the model M described in Section 2. Given
an SL-formula the tool generates a strictly typed abstract syntax tree (AST)
using the syntax and the priorities of functions and logical connectives described
in Section 2. Then the tree is transformed to an AST representing the corre-
sponding SBL-formula which is subsequently decided according to the described
procedure. The tool is written in Java c© to be easily accessible. It is made up of
different modules which are tested and bound together within the Electronic Tool
Integration platform (ETI) [4], the experimental platform of the Int. J. STTT.
The integrated parser was generated using SableCC, a suitable Java c© compiler
compiler [5]. The ASTs of SL- and SBL-formulas can be visualized using the
PLGraph class library which is supplied by the ETI platform.

4 Related and future work
The language SL is a sublanguage of a language first described in [6] and later
named Multi-level Syllogistic (MLS), see for instance [7]. Later on, various vari-
ants of (MLS) have been shown to be decidable. The most recent decision pro-
cedures use semantic tableaux [7]. The semantics of the languages is based on
Zermelo-Fraenkel set theory or parts of it. The sublanguage of MLS which is
the most similar to SL is called 2LS and is described together with a decision
procedure in [8]. As mentioned earlier the Hilberticus tool is the first implemen-
tation of the decision procedure described in Section 3. It was chosen because it
supplies a convenient way to obtain finite sets for Venn diagram generation and
because of the calculus LC- offering a natural possibility to extend the language.
The use of abstraction terms makes it an easy task to introduce new function
symbols. With a test implementation containing a generalized decision proce-
dure we were able to find the incorrect formula

⋃
(M∩N) =

⋃
M∩

⋃
N in [9,

p.545], a book which is used as reference for all kinds of mathematical formulas.
We are currently working on a version of the tool which uses tableaux based
procedures such as mentioned above and the described translation to SBL in
combination with decision (or verification) procedures for predicate and monadic
logic. In this context the ETI platform supplies the ideal environment for the in-
tegration, comparison, and testing of these translation and decision procedures.

References
1. Glubrecht, J.-M., Oberschelp, A., Todt, G.: Klassenlogik. BI Wissenschaftsv. (1983)
2. Oberschelp, A.: Allgemeine Mengenlehre. BI Wissenschaftsverlag (1994)
3. Enderton, H.B.: A mathematical introduction to logic. Acad. Press (1972)
4. Steffen, B., Margaria, T., Braun, V.: The Electronic Tool Integration platform:

concepts and design. Int. J. STTT (1997) 1:9-30, eti.cs.uni-dortmund.de
5. Gagnon, E.M., Hendren, L. J.: SableCC. In Proc. TOOLS’98, IEEE
6. Ferro, A., Omodeo, E., Schwartz, J.T.: Decision Procedures for Elementary Sublan-

guages of Set Theory I. Comm.Pure Appl. Math. Vol. XXXIII (1980) 599–608
7. Cantone, D., Ferro, A.: Techniques of Computable Set Theory with Applications to

Proof Verification. Comm.Pure Appl. Math.Vol. XLVIII (1995) 901–945
8. Cantone, D., Omodeo, E., Policriti, A.: Set Theory for Computing. Springer (2001)
9. Bronstein, I. N., Semendjajew,K.A.: Taschenbuch der Mathematik. (25.Aufl., 1991)

