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Abstract. Based on elementary assumptions on the interconnectivity
within a cortical macrocolumn we derive a differential equation system
which models the mean neural activities of its minicolumns. A stability
analysis shows a rich diversity of stationary points and sensitive behavior
with respect to a parameter of inhibition. If this parameter is continu-
ously changed, the system shows the same types of bifurcations as the
macrocolumn model presented in [1] which is based on explicitly de-
fined interconnectivity and spiking neurons. Due to this behavior the
macrocolumn is able to make very sensitive decisions with respect to
external input. The decision making process can be used to induce self-
organization of receptive fields as is shown in [2].
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1 Introduction

In [1] a model of a cortical neural module called macrocolumn or segregate [3] was
defined which is based on spiking neurons and columnar interconnectivity. The
model showed neuroscientifically desirable properties and far reaching functional
capabilities such as high sensitivity to external input and fast reaction times.
In this paper we show how a continuous neural dynamics with qualitatively
the same properties can be derived from few elementary assumptions about
macrocolumnar connectivity.

2 Dynamics of Minicolumn Activities

Motivated by neuroanatomical findings (see, e.g., [4, 5] or [6, 7] for an overview)
we assume a macrocolumn to consist of equal minicolumns and we take each
minicolumn to be equally and inhibitorily coupled to the mean activities pα of
all minicolumns in the macrocolumn, i.e., we assume the dynamics to be invariant
under permutations of minicolumns. An equation system which models such a
macrocolumn is given by3:

d

dt
pα = f(pα, h(p)) , α = 1, . . . , k , (1)

3 Note that we neglect external input to the minicolumns for the moment.



with functions f : R × R → R and h : Rk → R. pα is the mean activity
of minicolumn α and h is invariant under all permutations of its arguments
(I = {1, . . . , k}):

∀x ∈ Rk ∀σ : I → I permutations : h(x1, . . . , xk) = h(xσ(1), . . . , xσ(k)) . (2)

The function h models the inhibitory input to a minicolumn, i.e, it models the
effect of inhibitory postsynaptic potentials (IPSPs) on currently active neurons
of a minicolumn. As explicit inhibitory coupling between the minicolumns we
choose motivated by the inhibition function in [1]:

h(p) = ν max
β=1,...,k

{pβ} . (3)

ν ∈ R is an inhibitory gain factor which will play the role of a bifurcation
parameter. Note that (3) satisfies the assumption in (2)4.

Stationary points and stability.

To analyze the dynamic behavior of (1) with (3) we first look for stationary
points of the system. Consider the set Q of phase space points for fixed ν ∈ R
defined as follows:

P0
1 := max{q ∈ R | 0 = f(q, νq)},

P0
i := max{q ∈ R | 0 = f(q, νq) ∧ ∀j < i : q 6= P0

j },

Pj
i := max{q ∈ R | 0 = f(q, νP0

i ) ∧ q < P0
i ∧ (∀r < j : q 6= Pr

i )},

Qi := {q ∈ Rk | max
r∈I

{qr} = P0
i ∧ (∀r ∈ I ∃j ∈ No : qr = Pj

i ) },

Q :=
⋃

i Qi,







(4)

where I = {1, . . . , k}, No = N ∪ {0}, i ∈ N, j ∈ No, and r ∈ I. Note that
Pj

i does not necessarily exist for all j. It can be shown that, for a large class5

of functions f , the set Q contains all the stationary points of (1) with (3). An
element of Q, e.g. q ∈ Qi, is of the form:

q = (P0
i , . . . ,P0

i
︸ ︷︷ ︸

l(q)

,P1
i , . . . ,P1

i
︸ ︷︷ ︸

m1(q)

, . . . ,PJ
i , . . . ,PJ

i
︸ ︷︷ ︸

mJ (q)

) , l(q) +

J∑

j=1

mj(q) = k , (5)

or any permutation. For a given q ∈ Q a stability analysis results because of the
symmetries in (1) with (3) in the following eigenvalues of the Jacobian:

λ1 = ( ∂
∂x1

f)(P0

i
,ν P0

i
) + ν ( ∂

∂x2

f)(P0

i
,ν P0

i
) multiplicity 1

λ2 = ( ∂
∂x1

f)(P0

i
,ν P0

i
) multiplicity (l(q) − 1)

λ2+j = ( ∂
∂x1

f)(Pj

i
,ν P0

i
) multiplicity mj(q)







(6)

4 Note that using suitable coordinate transformation a similar analysis is also possible
with a larger class of functions satisfying (2).

5 Essentially f has to be continuous, continuously differentiable, and has to possess a
finite number of zero points but weaker assumptions are also possible.



An explicit minicolumn activation function.

We now choose a specific function f : R×R→ R for dynamics (1). For k = 1
we expect (1) to model the activity dynamics of an isolated minicolumn. Self-
excitation due to excitatory connectivity within a minicolumn (see [7] for a
review) and bounded activity due to self-inhibition and neural refraction times

suggest an activation function f̂(p) = f(p, νp) as displayed in Fig. 1. Given very

0

0

f̂(p)

p

Fig. 1. Activation function f̂(p) = f(p, νp) of an isolated minicolumn.

low activity in a minicolumn without input we expect the activity to decay to
zero because of finite neural thresholds. For neural activity above a certain level
we expect the activity to increase until neural refractoriness and self-inhibition
compensate for self-excitation.

A simple choice for f which is consistent with these expectations and Fig. 1
is given by:

f(pα, h(p)) = a pα (pα − h(p) − Θ − b p2
α) , (7)

where a, b > 0, Θ ≥ 0. Note that for k = 1 the function f(p, νp) is a polynomial
of order 3. A special case is to choose b = 1 and Θ = 0 such that we get the
dynamics:

d

dt
pα = a pα (pα − ν max

β=1,...,k
{pβ} − p2

α), where a > 0, and ν ∈ [0, 1]. (8)

Note that the inhibition by other minicolumns cannot drive the activities to
non-biological negative values. Other functions f : R×R→ R are also possible
but (7) is especially well analyzable.

For ν > 1
2 we get using definitions (4) P0

1 = 1 − ν, P0
2 = 0, P1

1 = 0. If ν < 1
2

we compute P1
1 = ν (instead of zero) and additionally P2

1 = 0. Thus, for ν < 1
2 ,

the stationary points of the system are given by

Q1 = {(P0
1 , . . . ,P0

1
︸ ︷︷ ︸

l

,P1
1 , . . . ,P1

1
︸ ︷︷ ︸

m1

, 0, . . . , 0
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m2

) and permutations | l ≥ 1, m1,2 ≥ 0} ,

Q2 = {(0, . . . , 0)} ,

(9)



and for ν > 1
2 by

Q1 = {(P0
1 , . . . ,P0

1
︸ ︷︷ ︸

l

, 0, . . . , 0
︸ ︷︷ ︸

m

) and permutations | l ≥ 1, m ≥ 0} ,

Q2 = {(0, . . . , 0)} .

(10)

Note that, by applying elementary combinatorics to (9) and (10), we get a num-
ber of (3k − 2k + 1) stationary points for ν < 1

2 and 2k stationary points for
ν > 1

2 . Using (6) the stabilities of the points in Q1 and Q2 are for ν < 1
2 given

by the eigenvalues (together with their multiplicities):

λ1 = a (2(1 − ν)P0
1 − 3(P0

1 )2) = −a (1 − ν)2 mult. 1
λ2 = a ((2 − ν)P0

1 − 3(P0
1 )2) = a (1 − ν) (2ν − 1) mult. (l − 1)

λ3 = a (2P1
1 − νP0

1 − 3(P1
1 )2) = a ν (1 − 2ν) mult. m1

λ4 = −a νP0
1 = −a ν (1 − ν) mult. m2







(11)

For ν > 1
2 we get the same eigenvalues except for λ3 which does not exist. The

stationary point (0, . . . , 0) of Q2 has as only eigenvalue λ = 0 and it turns out
to be unstable with polynomial behavior in the vicinity of (0, . . . , 0). Because of
(11) we know that, e.g. for k = 2, the set of points Q++ := {(P0

1 , 0), (0,P0
1 )}

exists and is stable for all ν ∈ (0, 1) and that the stable stationary point
Q+ := {(P0

1 ,P0
1 )} exists for all ν ∈ (0, 1) but is only stable for ν < 1

2 . The
set of points in Q− := {(P0

1 ,P1
1 ), (P1

1 ,P0
1 )} only exists for ν < 1

2 and the points
are unstable. The stationary points in Q− define the subcritical branches with
respect to Q+.

In Fig. 2 we plotted the phase velocity of (8) for k = 2 and two different
values of ν. For ν < 1

2 we get as non-zero stationary points the three stable
points of Q++ and Q+ and the two unstable points of Q−. If ν is increased
to a value greater than 1

2 , the unstable points in Q− merge with the stable
point in Q+ in the point of structural instability νc = 1

2 and we get an unstable
symmetric stationary point (P0

1 ,P0
1 ) for ν > νc. This dynamic behavior exactly

matches the behavior of the macrocolumn model with k = 2 minicolumns as it is
described in [1]. For higher dimensions we know because of the multiplicities in
(11) that all stationary points in a generalized Q+ (points in Q+ have l(q) ≥ 2)
loose their stability for the same value νc (νc = 1

2 in this case). The dynamics,
therefore, generalizes to higher dimensions as the macrocolumn dynamics in [1].
Using (9), (10) and (11) it can further be shown that (2k − k − 1) non-trivial
stable stationary points loose their stability in νc.

3 Conclusion

We derived a neural dynamics motivated by cortical connectivity. In contrast
to [1], in which an explicit connectivity and a time-discrete neuron model was
used, we here derived a dynamics from a small set of more abstract assumptions
on macrocolumn connectivity. The resulting system of differential equations (8)
represents a continuous time version of the difference equation system discussed
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Fig. 2. Phase velocities F (p), Fα(p) = f(pα, h(p)), of dynamics (8). A Phase velocity
for ν = 0.4 < νc. Black points mark stationary points as given in (9). B Phase velocity
for ν = 0.6 > νc. Black points mark stationary points as given in (10).



in [1]. Dynamics (8) has proven to capture the essential dynamical features of the
model in [1], i.e., it spontaneously breaks the symmetry of minicolumn activities
if the proportionality factor of inhibition ν is increased. If input to the mini-
columns is considered as perturbation of the dynamics, the system breaks the
symmetry on the basis of small input differences. Thus, the system is theoreti-
cally infinitely sensitive to external input. Using an oscillating ν the dynamics
can make sensitive decisions during each oscillation (compare [1]). This behavior
is further exploited in [2] where the dynamics is used to enable self-organization
of RFs of minicolumns with far reaching computational capabilities.

Compared to the system [1] the dynamics presented in this paper is continu-
ous, more compact and easier to handle than its predecessor. At the same time,
it was derived from few assumptions on interconnectivity and is, in a sense, more
independent of the concept of minicolumns and macrocolumn, i.e., any neural
entities and connectivities giving rise to such an equation system possess equiv-
alent information processing capabilities.
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