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Self-organization in V1 Cortical Columns
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Abstract. We present a dynamical model of processing and learning in
the visual cortex, which reflects the anatomy of V1 cortical columns and
properties of their neuronal receptive fields (RFs). The model is described
by a set of coupled differential equations and learns by self-organizing the
RFs of its computational units – sub-populations of excitatory neurons. If
natural image patches are presented as input, self-organization results in
Gabor-like RFs. In quantitative comparison with in vivo measurements,
we find that these RFs capture statistical properties of V1 simple-cells
that learning algorithms such as ICA and sparse coding fail to reproduce.

1 Introduction

Self-organizing systems are commonly used to study learning in biological net-
works and/or to learn from a set of presented inputs. Classical examples are
systems that learn input categories [1] or systems that are learning the neighbor-
hood relationship of the input data [2]. Based on recent results on the anatomical
fine-structure of cortical columns [3], we show how self-organization can be used
to extract basic constituents of the input. The presented bottom-up approach is
based on earlier work on this subject [4, 5] and shows the applicability of the ap-
proach to natural images. We find that the components extracted by the model
have a higher degree of similarity with in vivo measurements of simple-cells than
the classical algorithmic approaches of ICA [6, 7] and sparse coding [8, 9].

2 System Dynamics

Our model column consists of k neuron populations or hidden units p1, . . . , pk

and N input units y1, . . . , yN . The inputs Ĩ1, . . . , Ĩk to the hidden units originate
from external neural units y1, . . . , yN and influences the hidden units via afferent
fibers Rαj with Iα =

∑

j Rαjyj. We implement a feed-forward inhibition that

ensures that the inputs Ĩ1, . . . , Ĩk sum to zero: Ĩα = Iα − 1
k

∑

β Iβ . It follows that

Ĩα =
∑

j R eff
αj yj with R eff

αj = Rαj − 1
k

∑

β Rβj . R eff
1 , . . . ,R eff

k will be referred to
as effective RFs or just RFs of the column. Fig. 1 visualizes the afferents and the
internal connectivity of the system. Note that the dynamics is formulated on the
population level and that there are different alternatives of its implementation.
Fig. 1 is a visualization of entities that are relevant for the dynamics.
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Fig. 1. Sketch of a cortical column with k = 3 sub-populations of excitatory neurons
(visualized as black vertical bars). Input to the column originates from N external
units y1 to yN . In a first processing stage the input is integrated. The inputs I1 to I3

are via feed-forward inhibition transformed to mean-free inputs Ĩ1 to Ĩ3. These inputs
drive the self-excitatory sub-populations with activities p1 to p3. I is the mean input.
Triangular arrow hats denote excitatory (solid) and mixed (hollow) influences, empty
circles inhibitory influences. Lateral inhibition between the self-excitatory populations
is modulated by the bifurcation parameter ν. Dashed lines indicate the influence of
dynamic variables on the modification of the populations’ receptive fields R1 to R3.
P and Y are the sums of input unit activities and population activities, respectively.
pmax is equal to the greatest population activity.



The hidden units of the system model sub-networks of excitatory neurons
as found in cortical columns [3]. We use a polynomial approximation of such
self-excitatory units as suggested in [10]. Together with a particular inhibitory
coupling between the self-excitatory units the dynamics is given by:

ν(t) = (νmax − νmin)t̃ + νmin, t̃ =
1

T
mod(t, T ), (1)

d

dt
pα = a

(

p2
α − ν(t) pα max

β=1,...,k
{pβ} − p3

α

)

+ κĨα + σ pα ηt , (2)

︸︷︷︸

self-excitation
︸ ︷︷ ︸

lat. inhibition
︸ ︷︷ ︸

self-inhibition
︸ ︷︷ ︸

input
︸ ︷︷ ︸

noise

where κ is the coupling to input Ĩα and where σ parameterizes multiplicative
Gaussian white noise. Eqn. 1 represents a linear increase of the dynamics’ bi-
furcation parameter ν. The time t̃ runs from 0 to 1 within the time interval
[0, T ). After time t = T a new input is presented and the increase of ν starts
anew. We refer to such a cycle as ν-cycle. Dynamics (1) and (2) implement a
particular kind of lateral competition between the hidden units that has proven
to be advantageous for learning distributed input encodings. The parameter ν

increases competition between the hidden units, and initially active units are
deactivated during a ν-cycle. The dynamics of neural activity, (1) and (2), has
been studied earlier [10] and represents an abstraction of a model that was based
on sub-populations of explicitly modeled excitatory neurons [4].

The non-linear evaluation of an input pattern according to (1) and (2) couples
into a dynamics of Hebbian-type synaptic plasticity given by:

d

dt
Rαj =

ǫ

N

(
[pα]+ yj − [pα]+ Y Rαj

)
iff P (t) < χ , (3)

where P =
∑k

α=1 pα and Y =
∑N

j=1 yj are overall-activities of hidden units

and input units, respectively, and where [pα]+ = pα if pα ≥ 0 and [pα]+ = 0
otherwise. To learn with slowly increasing competition between the RFs1 we
change, after each ν-cycle, the threshold for learning χ and the maximal level of
lateral inhibitory coupling νmax:

∆χ = −λχ (χ − aχP ) and ∆νmax = −λν (aν − P ), (4)

where λχ and λν are modification rates. The second equation increases νmax to
counteract the effect of RFs that are increasingly specialized to the input.

Self-organization of an initially unstructured system is commonly character-
ized by: (A) random fluctuations that result in structural seeds, (B) a positive
feed-back loop amplifying certain structures or modes, and (C) a negative feed-
back loop that counteracts amplification and finally keeps the system in an active
equilibrium. For our system we start in a state with all afferents initialized to
the same value Rαj = 1

N
. (A) After an input is presented, ν is increased and the

noise in (2) breaks the symmetry among the activities pα (compare [10]). Hidden

1 which is related but not identical to the competition between the hidden units



units are deactivated until P (t) < χ. During the remainder of the ν-cycle the
RFs are modified according to their activities (3). This implies that just some
or only one RF is significantly changed to become more similar to the presented
input. (B) Hidden units with RFs similar to a certain type of input are likely
to remain active if such an input is presented. Their RFs will therefore further
specialize to this input type. (C) Lateral inhibition in (2) forces the system to
specialize to different input patterns and the negative term in (3) prevents the
afferents from growing infinitely.

For our dynamics the control of lateral inhibition represents the crucial part.
If we learn after inhibition selects a single unit, i.e. as in winner-take-all (WTA)
networks, a distributed encoding of presented input is not observed even if it con-
sists of easily to identify combinations of basic components. The same applies
if we learn after inhibition has selected, e.g., K units (K-WTA). In contrast,
dynamics (3) modifies RFs during the process of deactivation of hidden units.
Furthermore, learning favors input that results in a relatively sparse activation
of the hidden layer (small P (t)). If we learn according to dynamics (1) to (4) and
if the presented input consists of combinations of basic constituents, the system
self-organizes its RFs to represent these constituents. Continuously increasing
competition between the RFs (4) crucially helps in guiding the self-organization
process. With increasing competition groups of initially similar RFs (we initial-
ize with a relatively large χ) decay into ever smaller sub-groups. For a similar
system, such a type of self-organization was therefore termed hierarchical self-

organization in [11].
Equations (1) to (4) represent a dynamical model of a cortical column. Before

applying the dynamics to input, we have to find a set of parameters that lets the
system operate in the interesting non-linear regime between no competition and
competition with WTA characteristics. Choosing parameters is straightforward
and good results can be obtained for a large range of different parameters. To
determine the particular set of parameters used in this paper2 we have tuned
the parameters using the so-called bars test [12] as a benchmark. Once the set
of parameters is chosen, the system is extraordinarily robust with respect to
different types of input.

3 Simulation Results

To model input to our dynamics that resembles input received by cortical col-
umns in V1, we will use gray-level images patches as input. We expect the column
model to self-organize its RFs such that the activities of hidden units can repre-
sent the input distributedly. Input is taken from 20 randomly selected images
of the van Hateren database [7] that do not show man-made structures. We use
difference of Gaussians (DoG) transformed versions of these images to emulate
the preprocessing of visual input by the retina and the lateral geniculate nucleus
(LGN). We used a standard deviation of σ+ = 1.0 pixels for the positive part

2 Eqn. 1: νmin = 0.4, T = 25ms; Eqn. 2: a = 200ms−1, κ = 1.0ms−1, σ = 0.01ms−1;
Eqn. 3: ǫ = 0.02; Eqn. 4: λχ = 5 × 10−5, aχ = 1.2, λν = 10−3, aν = 0.7.
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Fig. 2. RFs of the model column if natural images are used as input. (A) Effective
RFs R eff

α after 2 × 106 ν-cycles if difference of Gaussians (DoG) filtered images are
used as input. For each of k = 100 RFs, values are color coded to lie between dark
blue (-max) and dark red (+max) where max is the maximal absolute value of the RF,
max = maxj |R

eff
αj |, which ensures that R eff

α = 0 is assigned to the same color (green)
for all RFs. See (C) for the color coding scheme. (B) Effective RF α = 97 of the
simulation displayed in (A). The index j is replaced by the two-dimensional vector x.
The same coding scheme as in (A) is used with max = 1.67 × 10−3 in this case. The
small arrows in the center represent the principal axes of the Gaussian envelope after
the RF was matched with a Gabor wavelet. The lengths of the arrows are the wavelet’s
standard deviations σx = nx

f
and σy =

ny

f
. The dimensionless entities nx and ny (f is

the wavelet frequency) are used for further analysis (see Fig. 4). (C) The same RF as
in (B) plotted in three dimensions to illustrate the color coding. (D) Three examples
of matching the RFs with Gabors. RFs 4 and 31 illustrate artifacts of rectangular
sampling and Gabor matching, respectively. Columns show original RFs (1st column),
corresponding filters that act on the raw pixel images (2nd column), Gabor wavelet
matches of the raw filters (3rd column), and differences (residuals) of raw filters and
Gabor fits, which shows the error made by the wavelet approximation (4th column).
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Fig. 3. Orientation and frequency distribution of RFs. (A) Distribution of frequency
vs. angle for the RFs displayed in Fig. 2A after being transformed to filters on the
raw pixel values and matched with Gabor wavelets. RFs are relatively homogeneously
distributed in orientation space apart from a preference of horizontal and vertical RFs.
(B) Distribution of RFs in frequency space. Receptive fields cluster around f ≈ 0.1 cycles

pixel

and cover approximately one octave.

and σ
−

= 3.0 pixels for the negative part, consistent with the biologically mea-
sured ratio [13] of σ+

σ
−

≈ 1
3
. From the 20 images we randomly selected patches of

N = 20 × 20 pixels whose values were scaled linearly to lie in the interval [0, 1].
In Fig. 2A the effective RFs of a system with k = 100 hidden units are shown
for DoG preprocessed input after being trained for 2 × 106 ν-cycles3. The RFs
have the familiar Gabor-like shape (see Fig. 2C) and represent filters acting on
the already DoG transformed images. For comparison with physiological data as
obtained in simple-cell recordings, we first have to compute the corresponding
filters that act on the raw images. For DoG preprocessed input this amounts
to a convolution of the RFs in Fig. 2A using the same DoG-kernel as for the
preprocessing of the image. In Fig. 2D the resulting filters are shown for three
examples. The filters are, in theory, infinitely large but are virtually zero for
all pixels outside a central region of 40 × 40 pixels. For further analysis, and
as is customary in the literature, we match the real filters using Gabor wavelet
functions (see e.g. [14, 15]). Matching works well in most cases but the artificial
rectangular sampling can result in notable artifacts. The effect of these artifacts
on the later analysis can be well understood, however, and they will be discussed
below using RFs 4 and 31 in Fig. 2D.

An analysis of the parameters of the matched Gabors shows a relatively even
distribution of RF positions (data not shown). Plotting orientation vs. frequency
(Fig. 3A) shows a distribution similar to the ones obtained by using independent

3 To reduce undesirable boundary effects, image patches (20 × 20 pixels) are large
compared to patch sizes used by other methods (e.g. 12 × 12 in ICA [6] and sparse
coding [8, 9]). Larger patch sizes exceed the already extensive computational re-
sources required to simulate dynamics (1) to (4). Note that the range of preferred
spatial frequencies is determined by the DoG preprocessing (Fig. 3B). Increasing this
frequency with a smaller DoG kernel is not possible because the standard deviation
of its positive part is already as small as one pixel.
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Fig. 4. Distributions of RF extensions parallel and orthogonal to the RFs’ wave vector
(compare Fig. 2B). nx and ny are parameters of wavelets that were matched to the RFs
acting on the raw input, Rraw (compare Fig. 2D). nx is the size of the Gaussian envelope
in wave vector direction expressed in terms of the wave length of the wavelet and ny

is the size of the Gaussian envelope orthogonal to the wave vector. (A) Distribution
in the nx/ny-plane of the k = 100 RFs displayed in Fig. 2A (blue) together with
the distribution of macaque simple-cells (bright magenta) as measured in vivo [15].
The data points of the three RFs displayed in Fig. 2D are explicitly labeled. (B) The
distributions displayed in (A) overlaid with the corresponding distributions of RFs
obtained using sparse coding (yellow) as described in [9] and ICA (green) as described
in [7]. Data are taken from [15]. The dashed diagonal line is the bisection line.

component analysis (ICA) [6, 7] and sparse coding [8, 9]. The orientation pref-
erences are relatively evenly distributed apart from a stronger preference for
vertical and horizontal orientations. As for sparse coding and ICA, and unlike
RFs measured in vivo, the RFs obtained in our model are clustered around a
preferred frequency which is given by f ≈ 0.1 cycles

pixel
(see Fig. 3). In our case, the

frequency distribution is largely explained by the bandpass properties of the DoG
preprocessing, which prefers frequencies in the range of the obtained filters.

The most notable feature of the RFs in Fig. 2A is the variation in the widths
and lengths of their Gaussian envelopes. In [15] an analysis of properties of the
envelopes relative to the wavelets’ frequency was suggested as a means for com-
paring the RFs of computational models with data. For quantitative comparison
the RF parameters are plotted in the nx/ny-plane with nx = σxf and ny = σyf

where f is the frequency of the matched wavelet and σx and σy are, respectively,
the standard deviations of the Gaussian envelope in the direction of, and per-
pendicular to, the wave vector (compare Fig. 2B). Fig. 4A shows the distribution
predicted by our model together with in vivo measurements of simple-cell RFs
in macaque primary visual cortex [15]. Both distributions have similar variance
and show the same correlation between nx and ny, with a preference for RFs to



be elongated in the ny-direction if they are distant from the origin. Note that
the RF distribution in cat primary visual cortex also shows this property [14,
15]. Two notable differences between the measured distribution and the RFs of
the model are the absence of model RFs with values near the origin and with
values far away from it.

The absence of RFs distant from the origin can be explained by the chosen
data representation which restricts RFs to a rectangular patch size. As can be
seen in Fig. 2D (2nd row), the Gabor match results in a Gaussian envelope
that is artificially restricted in ny-direction. Because of the range of preferred
frequencies, Fig. 3, this prevents values of ny from being larger than ny ≈ 0.8.
The cluster of data points near (0.5, 0.7) in Fig. 4A can therefore be interpreted
as a consequence of rectangular patch sizes (compare RF 4). Less artificial or
larger patches would move some of these points, e.g. RF 4, further away from
the origin and presumably closer to the measured data.

RFs with values near to the origin are associated with what was called ‘glob-
ular’ RFs in [15], i.e., RFs with no or weak orientation preference. Although RFs
with weak orientation preference are actually developed by our system (see, e.g.,
RF 31 in Fig. 2D), the plot in Fig. 4 does not show any points near the origin.
The reason for this is that we use Gabor wavelets to match localized RFs whose
positive and negative parts sum to zero. Even in the case of perfectly radial
symmetric RFs, Gabor matching would break the symmetry to a preferred ori-
entation (compare Fig. 2D, 3rd row). RFs measured in vivo have values near the
origin in Fig. 4 because they are not subject to this effect. Many of the simple-cell
RFs in [15] are therefore essentially matched by a Gaussian, which represents a
degenerated wavelet with zero frequency.

Comparison of the distribution predicted by our model and distributions pre-
dicted by sparse coding [8, 9] and ICA [6, 7] are shown in Fig. 4B. Sparse coding
seems to partly predict the measured ny/nx-correlation but shows an incorrect
preference for RFs elongated in nx-direction near (0.5, 0.5). The distribution of
RFs obtained using ICA is concentrated in a small region on the bisecting line
near (0.7, 0.7). ICA neither predicts the variety of Gaussian envelopes nor any
preference for RF elongation in any direction.

In contrast to sparse coding and ICA, the distribution predicted by our model
is in good agreement with in vivo measurements (see Fig. 4). It has to be clearly
stated, however, that the results depend on various choices made in the experi-
ment and the analysis. In particular these are: the DoG preprocessing, rectangu-
lar patches that restrict RFs, and Gabor matching which can artificially remove
globular RFs. Likewise, different preprocessing and analysis techniques can af-
fect the RF properties of other computational systems (see [15] for a discussion).
Bearing in mind these various influences, it can nevertheless be stated that the
dynamics described in this paper captures a property of simple-cell RFs that has
not been reproduced by earlier systems. That is, the broad distribution of RFs
in the ny/nx-space and their ny/nx-correlation with elongation of RFs in ny-
direction if they are distant from the origin (Fig. 4). For our RFs this property
is already recognizable by considering the raw RF data as displayed in Fig. 2A.



4 Discussion

Motivated by cortical interconnectivity and earlier modeling work we have de-
veloped and analyzed a dynamical bottom-up model of a cortical column. The
system models the first stages of columnar processing and self-organization of
afferent fibers. Its dynamics is based on self-excitatory populations, feed-forward
inhibition, and modulation of lateral inhibitory coupling (compare [3] and [16]).
Anatomically the model predicts that two stages of processing (see Fig. 1) are
required to enable the emergence of a distributed stimulus encoding. The inte-
gration stage has linear response properties and projects to an evaluation stage
with non-linear responses of neurons. For V1 our model predicts that these two
stages are a pre-requisite for the emergence of Gabor-like RFs. For natural im-
ages, no simple-cell-like RFs were obtained without feed-forward inhibition. With
the use of feed-forward inhibition, self-organization generated a rich diversity of
RFs if randomly selected and DoG filtered image patches were presented. Sim-
ilar to properties of simple-cell RFs and classical models thereof the obtained
RFs show sensitivity to different spatial orientations, frequencies, and locations.
Furthermore, as analyzed by matching Gabor wavelets, the RFs show a specific
variety in the extents of their Gaussian envelopes relative to their frequencies.
This feature is consistent with in vivo measurements of simple-cell like RFs [14,
15] (Fig. 4A) and has earlier not been reproduced to such an extend as reported
here. Only very recently, in two functionally motivated approaches developed
in parallel to this work, distributions of Gaussian envelopes comparable to the
one presented here were reported. The resulting distributions in [17] are broader
than in vivo measurements, however. In the model suggested in [18], which im-
plements a form of sparse coding, RF distributions are obtained that contain
globular RFs. These RFs can be matched by degenerated Gabor wavelets and
correspond to points near the origin of an nx/ny-plot. Otherwise the RFs are
reminiscent of those obtained by sparse coding (compare Fig. 4B). That is, they
partly match the measured distributions well but show, distant from the origin,
numerous RFs that are incorrectly elongate in nx- instead of ny-direction. Also
note that the model in [18] was tuned to fit the data. The classical models for the
emergence of simple-cell RFs [8, 7, 6], in particular ICA, do not accurately repro-
duce the experimental data (see Fig. 4B). Bottom-up models for the emergence
of Gabor-like RFs include BCM [19] and CBA [20], which model learning based
on single neurons. Quantitative comparison of the RFs obtained with these sys-
tems is difficult. To the knowledge of the author, no data about the variability
of Gaussian envelops (as used in Fig. 4) is available for BCM; and RFs obtained
with CBA do not seem localized enough for an analysis using Gabor matching.

To conclude, we have defined and simulated a dynamical model of a cortical
column. The dynamics evaluates input using a balance between excitation and
two forms of inhibitory interaction. If coupled to Hebbian synaptic plasticity, the
dynamics induces a self-organization process of afferent fibers. If natural images
are used as input, self-organization results in Gabor-like RFs of columnar sub-
populations. These RFs match the variability of simple-cell RFs better than
classical methods. The dynamics models important functions associated with



cortical columns and represents, by directly combining cortical anatomy and the
emergence of neuronal RFs, a coherent model of the first stages in columnar
processing.
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