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Bellman’s equation has a unique solution

Our starting point is Bellman’s equation, V = TV (V is a vector over states), where the

(nonlinear) operator, T , is given by

TV = max
π

TπV ≡ Tπ(V )V . (20)

The policy, π, consists of a vector of actions (one for each state), π ≡ (a1, a2, ...), and the ith

component of TπV , denoted (TπV )i, is defined to be

(TπV )i ≡
∑

j

P a
ij [γVj + Ra

ij ] .

Here P a
ij is the probability of going from state j to state i given action a (which really should

be ai, but we dropped the subscript for clarity), Ra
ij is the reward one receives going from

state j to state i given action a, and γ is the discount factor.

We consider two types of problems: discounted and absorbing state. For the discounted

problem, 0 < γ < 1 and
∑

j Pij = 1. For the absorbing state problem, γ = 1 and
∑

j Pij < 1

for at least one i and all policies eventually lead to the absorbing state with probability 1.

The first issue we need to address is frustration: it is not clear that Bellman’s equation,

which we write

V = max
π

TπV (30)

makes sense. Consider, for example, a situation with there two states and two policies. It

seems possible that V1 could larger under policy 1 than policy 2, and V2 could be larger

under policy 2 than policy 1. This leads to frustration: you can maximize V1 or V2, but not

both.

In fact, because of the structure of the above equations, this can never happens. That’s

because the actions in the different states decouple. Basically, an action in state i affects

only row i of Pij and (we assume) only row i of Rij . Notice that this is a pretty strong

constraint, and not always satisfied.

This rules out frustration, but now we want to know about convergence to a global

maximum. First we show that Bellman’s equation has at least one local maximum; then we

show that the local maximum is a global one.

The first step is to show that policy iteration converges to a local maximum. We start

by assuming that V 0 is the equilibrium set of values for some particular policy, π,

V 0 = TπV 0 . (40)
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Now change the policy from π to π + δ to increase the one-step value,

V 1 = Tπ+δV
0 ≥ V 0 (50)

where the greater-than-or-equal sign means: V ≥ U if Vi ≥ Ui for all i. Next, iterate,

V 2 = Tπ+δV
1 = Tπ+δ(V

0 + V 1 − V 0) . (60)

Defining the operator Pπ as

(PπV )i ≡
∑

j

P a
ijVj (70)

where a is the action corresponding to π, we have, after a small amount of algebra,

V 2 = Tπ+δ(V
0 + V 1 − V 0) = Tπ+δV

0 + γPπ+δ(V
1 − V 0) = V 1 + γPπ+δ(V

1 − V 0) . (80)

Since V 1 > V 0 and all the elements of P are positive, it follows that V 2 ≥ V 1. Using the

same analysis, it is not hard to show that V increases or stays the same on every iteration

of Tπ+δ. Since the values are bounded, V must converge to a local maximum.

We now show that the local maximum is a global maximum. For that we have to work

a little harder, and also take a couple of steps. The first one is to show that if U ≤ V

(shorthand, as above, for Ui ≤ Vi ∀i), then TU ≤ TV . This follows from a string of

inequalities,

TU = Tπ(U)U

= Tπ(U)(V − (V − U))

= Tπ(U)V − γPπ(U)(V − U) (90)

≤ Tπ(U)V

≤ Tπ(V )V

= TV .



Peter Latham, April 22, 2008 3

The second line is easy, the third requires a very small amount of algebra (it’s what we

did in Eq. (80)), the fourth follows because both P and (V − U) consist of all non-negative

elements, the fourth because, by definition, Tπ(V ) is the maximum over π of TπV , and the

last line is a definition (see Eq. (20)).

For the next step – whose rationale will not be immediately obvious – we consider only

the discounted case, for which
∑

j P a
ij = 1 no matter what the policy. What we show is

that if two value functions differ by a constant amount, then T brings them closer together.

Letting e be a vector of all 1s (ei = 1 ∀i) and r be a scalar, we see that

T (V + er) = Tπ(V +re)(V + re) = Tπ(V +re)V + rγPπ(V +re)e . (100)

Because e is a constant vector and
∑

j P a
ij = 1, the last term is simply rγe, independent of

policy. The right hand side is, therefore, largest when π = π(V ), and we have

T (V + er) = Tπ(V )V + γre = TV + γre . (110)

We are now almost done. Consider a vector V ∗ that satisfies

V ∗ = TV ∗ . (120)

In other words, V ∗ is one of the local maximum that we know exists. Consider any vector

U and choose r sufficiently large such that

V ∗ − re ≤ U ≤ V ∗ + re . (130)

Operating on Eq. (130) k times with T , using Eqs. (90) and (110), and noting that TV ∗ = V ∗,

we see that

V ∗

− γkre ≤ T KU ≤ V ∗ + γkre . (140)

Letting k → ∞ and using the fact that 0 ≤ γ < 1, Eq. (140) tells us that all vectors U

converge to V ∗. Thus, V ∗ must be a global maximum.

This proves that if we iterate T an infinite number of times, we will converge to a global

maximum. The proof basically relied on two facts; T is a contraction operator and there is

at least one local maximum (the latter is necessary to rule out loops).

The extension to the absorbing-state case is not totally trivial, but it can be done.


