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Abstract

Decision theory is a core competence for animals and humans acting and surviving in en-

vironments they only partially comprehend, gaining rewards and punishments for their trou-

bles. Decision theoretic concepts permeate experiments and computational models in ethology,

psychology and neuroscience. Here, we review a well known, coherent Bayesian approach to

decision-making, showing how it unifies issues in Markovian decision problems, signal detec-

tion psychophysics, sequential sampling and optimal exploration, and discuss paradigmatic

psychological and neural examples of each problem. We discuss computational issues con-

cerning what subjects know about their task, and how ambitious they are in seeking opti-

mal solutions; algorithmic topics addressing model-based and model-free methods for making

choices; and highlight key aspects of the neural implementation of decision-making.

1 Introduction

The abilities of animals to make predictions about the affective nature of their environments and

to exert control to maximize rewards and minimize threats to homeostasis are critical to their

longevity. Decision theory is a formal framework that allows us to describe and pose quantita-

tive questions about optimal and approximately optimal behavior in such environments (eg Bell-

man, 1957; Puterman, 2005; Berger, 1985; Bertsekas and Tsitsiklis, 1996; Bertsekas, 2007; Sutton and

Barto, 1998; Green and Swets, 1966; Mangel and Clark, 1989; Montague, 2006; Gold and Shadlen,

2002, 2007; Glimcher, 2004; Körding, 2007; Gittins, 1989; Berry and Fristedt, 1985; Wald, 1947; Yuille

and Bülthoff, 1996; McNamara and Houston, 1980), and is therefore a critical tool for modeling,

understanding and predicting psychological data and its neural underpinnings.
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Figure 1 illustrates three paradigmatic tasks that have been used to probe this competence. Fig-

ure 1A shows a case of prediction learning (Seymour et al., 2004). Here, human volunteers were

wired up to a device that delivered variable strength electric shocks. The delivery of the shocks

was preceded by visual cues (cue A through cue D) in a sequence. Cue A occurred on 50% of

trials; it was followed by cue B and then a larger shock 80% of the time; and by cue D and then a

smaller shock 20% of the time. The converse was true for cue C. Subjects can therefore in general

expect a large shock when they get cue A; but this expectation can occasionally be reversed. How

can they learn to predict their future shocks? An answer to this question is provided in section 3.1;

as described there, these functions are thought to involve the striatum and various neuromodu-

lators. Such predictions can be useful for guiding decisions that can have deferred consequences;

formally, this situation can be characterized as a Markov decision problem (MDP) as studied in

the fields of dynamic programming (Bellman, 1957) and reinforcement learning (Sutton and Barto,

1998).

[Figure 1 about here.]

Figure 1B depicts a decision task that is closely related to signal detection theory (Green and Swets,

1966), and has been particularly illuminating about the link between neural activity and percep-

tion (Britten et al., 1992, 1996; Shadlen et al., 1996; Shadlen and Newsome, 1996; Gold and Shadlen,

2001, 2002, 2007). In the classical version of this task, monkeys watch a screen that shows moving

dots. Some proportion of the dots are moving in one direction; the rest are moving in random

directions. The monkeys have to report the coherent direction by making a suitable eye move-

ment. By varying the fraction of the dots that moves coherently (called the coherence), the task

can be made easier or harder. The visual system of the monkey reports evidence about the direc-

tion of motion; how should the subject use this information to make a decision? In some versions

of the task, the monkey can also choose when to emit its response; how can it decide whether to

respond or to continue collecting information? These topics are addressed in sections 3.2 and 3.3,

along with the roles of two visual cortical areas (MT and LIP). The simpler version can be seen

as a standard signal detection theory task; the more complex one has been analyzed by Gold and
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Shadlen (2001, 2007) as an optimal stopping problem. This, in turn, is a form of partially observ-

able Markov decision problem (POMDP) related to the sequential probability ratio test (SPRT;

Wald, 1947; Smith and Ratcliff, 2004; Ratcliff and Rouder, 1998; Shadlen et al., 2007).

Finally, figure 1C shows a further decision-theoretic wrinkle in the form of a experiment into the

tradeoff between exploration and exploitation Daw et al. (2006b). Here, human subjects have to

choose between four one-armed bandit machines whose payoffs are changing over time (shown

by the curves inside each). The subjects can only find out about the current value of a machine by

choosing it; and so have to balance picking the machine which is currently believed best against

choosing a machine that has not recently been sampled in case its value has increased. Problems

of this sort are surprisingly computationally intractable (Gittins, 1989; Berry and Fristedt, 1985);

section 3.4 discusses the issues and approximate solutions, including one that, evidence suggests,

implicates fronto-polar cortex.

Despite the apparent differences between these tasks, they actually share some deep underlying

commonalities. In this review, we provide a straightforward formal framework which shows the

links, give a computationally-minded view of the method for solving the problems, and discuss

these particular cases, and their near relatives, in some detail. A wealth of problems and solu-

tions that has arisen in different areas of psychology and neurobiology are thereby integrated,

and common solution mechanisms identified. In particular, viewing these problems as differ-

ent specializations of a common task involving both sensory inference and learning components

gives strong clues as to how sensory systems and computational mechanisms involved in the sig-

nal detection tasks – such as areas MT and LIP – are likely to interact with the basal ganglia and

neuromodulatory systems that are implicated in the reinforcement learning learning tasks.

We tie the problems together by inventing a new, slightly more abstract assignment (shown in

figure 2). Particular specializations of this abstraction are then isomorphic to the tasks associated

with figure 1. The case of Figure 2 is an apparently simple maze-like choice task that we might

present to animal or human subjects, who have to make decisions (here, choices between actions

L, R and C) in order to optimize their outcomes (r). Optimal choices involve balancing current
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and future rewards and costs and handling different forms of uncertainty about the rules of the

task and the state within it.

Two critical dimensions that emerge from consideration of figure 2 concern what the subjects know

and what they are trying to accomplish. The prediction task of figure 1A arises when subjects are

ignorant of the rules of the task, but know their state or situation within it. Conversely, the psy-

chophysical discrimination tasks of figure 1B originate in a case that subjects know the rules of

the task but are only incompletely certain about the state. The exploration/exploitation tradeoff

of figure 1C can be seen as combining both of these in a case that subjects are ambitious about

behaving optimally in the face of whatever uncertainty they have. Critically, through the medium

of the task in figure 2, all these problems can be characterized as requiring common computations.

Realizing the computations leads to algorithmic issues having to do with different ways that in-

formation from past and present trials can be accumulated; and thence to implementational issues

in terms of the neural structures involved in the solutions.

[Figure 2 about here.]

2 Foundational Issues

The task in figure 2 only involves four choice points or states (x1, x2, x3, x4) signalled, perhaps

imperfectly (ie leaving some uncertainty, in a way we will formulate precisely later) by cues

(c1, c2, c3, c4). Three actions are possible (L, R and C) at the states, and it is the choices between

these that the subjects must make. The choices lead to rewards or punishments (with values or

utilities r, which depend on the states and actions), and/or to transitions from one state to the

next (x3 to x1 or x2, etc). We consider that single trials end when an actual outcome is achieved;

the subjects then start again. In general, subjects’ choices may be only probabilistically related to

the outcomes. In the standard case for this review, we will have the rewards being biggest for L

at x3 and x1, and for R at x4 and x2, and with C being costly. The subjects may not know these

payoffs at the outset.
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Computational Issues

As mentioned, there are two main dimensions defining the problem for the subjects - one having

to do with what they are assumed to know about the task; the other defining the nature of their

ambition.

In terms of knowledge, the subjects might be ignorant of their precise state in the problem (ie

which xi they currently occupy), and/or the rules of the task (ie the transition probabilities and

rewards contingent on particular actions in states). If they know both in the standard version of

the task, which requires L at x3 and x1, and R at x4 and x2, with C being costly, and they know

that they are at x3, say, they should choose L. However, if they know the rules, and know that

they are at either x3 or x4, but do not know which for sure (perhaps because the cues c3 and c4 are

similar or identical) then it might be worth the cost of choosing C in order to collect information

from c1 and c2 (if these are more distinct), the better to work out which action is then best.

The problems of balancing such costs and benefits get much harder if the subjects might not even

completely know the rules of the task. This is necessarily the case at the outset of animal experi-

ments, and also more persistently when, as is common in experiments, the rules are changed over

time. In these cases, subjects will have to learn the rules from experience. However, experience

will normally only partly specify the rules, leaving some ignorance and uncertainty, and it will

often be important to take proper account of this.

Second, in terms of their ambition, the subjects might have the modest goal of exploitation, ie

trying to make the reward for the current trial as valuable as possible, given whatever they cur-

rently know about the task. In the case that the subjects start at x3 or x4, this involves comparing

rewards available for the immediate choice of L or R with the integrated cost of C and the subse-

quent reward from L or R at x1 or x2. How to trade off immediate and deferred reward optimally

depends on subjects’ preferences with respect to temporal discounting (eg Ainslie, 2001; McClure

et al., 2004; Kable and Glimcher, 2007).

More ambitious subjects might seek to combine exploration and exploitation. That is, they might
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look to make every single choice correctly in the light of the fact that not only might it lead to a

good outcome on this trial, but that it could also provide information that will lead the subject to

be more proficient at getting better outcomes in the future. This goal — choosing so as to maximize

the integrated rewards obtained over many trials throughout the course of learning, trading off

the immediate benefits of exploitation and the deferred benefits of exploration — is sometimes

called lifetime optimality. Again, how these are balanced depends on temporal discounting.

Note that these two computational dimensions are not wholly independent – for instance, given

complete knowledge of rules and state, exploration is moot.

Algorithmic Issues

Different points along the combined computational dimensions lead to a wide variety of different

problems. Some of these are formally tractable, ie have algorithms that only require moderate

amounts of memory space or time to compute optimal solutions. Other points, particularly those

involving incomplete knowledge or lifetime optimality, are much more challenging, and typically

require approximations even for non-neurobiological systems.

Algorithms differ in how they draw on experience to estimate quantities relevant to the deci-

sion, and how they render these into choices. The most important algorithmic dimension is that

distinguishing model-based and model-free methods (Sutton and Barto, 1998). Crudely speaking,

model-based methods make explicit use of the actual, or learned, rules of the task to make choices.

Importantly, even when the rules are fully known, it takes some computation to derive the optimal

decision for a particular state from these more basic quantities.

Model-free methods eschew the rules of the task, and instead use and/or learn putatively simpler

quantities that are sufficient to permit optimal choices. For instance, in figure 2, given complete

knowledge of the state, it is clearly enough just to know four letters, viz the best choices at x1 . . . x4.

This is an example of a policy. Obtaining it in the face of ignorance of the rules lies at the heart of

reinforcement learning methods. Policies can be learned directly, or derived from other informa-

tion, like the expected future utilities (“values”) that will accrue from different actions or states, or
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(in model-based methods) from the rules of the task. Indeed, one of the most important products

of the field of reinforcement learning (Sutton and Barto, 1998) is a range of model-free algorithms

for solving the exploitation problem.

When the observations or cues do not precisely pin down the state, a policy mapping states to

actions is obviously of little use. Given a model of the rules, including those relating states such

as x3 to cues such as c3, the beliefs about the current state (called the belief state) can be calculated

based on the observations. The belief state can then, in a formal sense, stand in for the true state,

so the policy becomes a function of this instead. This substitution of belief state for state is a

recurring theme in the solution to the tasks discussed below.

Implementational Issues

It has long been suggested that there is a rather direct mapping of model-free reinforcement learn-

ing algorithms onto the brain, with the neuromodulator dopamine serving as a teaching signal to

train values or policies by controlling synaptic plasticity at targets such as the ventral and dorso-

lateral striatum (Wickens, 1990; Friston et al., 1994; Barto, 1995; Montague et al., 1996; Schultz et al.,

1997; Suri and Schultz, 1998; Joel et al., 2002; Daw et al., 2005). For aversive outcomes such as the

shocks of figure 1A, there is much less evidence about the overall neural substrate. More recently,

it has been suggested that the brain also employs model-based methods for planning under un-

certainty about the rules, in a different set of circuits involving prefrontal cortex and dorsomedial

striatum (Dickinson and Balleine, 2002; Everitt and Robbins, 2005; Balleine et al., 2007; Daw et al.,

2005).

Most of this work has focused on rule, value, or policy learning, ignoring the issue of state un-

certainty; indeed, arguably the primary obstacle toward employing either the model-based or

model-free methods in a real-world context is the gulf between the highly constrained and refined

state abstraction on which these theories rely, and the rich, multifarious, and ambiguous sensory

world actually facing an organism.

Conversely, model-based methods for state estimation from noisy sensory input have been ex-



N-DM002 8

tensively investigated in a rather different set of psychophysical tasks (Britten et al., 1992, 1996;

Parker and Newsome, 1998; Platt and Glimcher, 1999; Gold and Shadlen, 2007), exemplified by

figure 1B, focusing on the mapping of input information coded in sensory regions into decision-

theoretic quantities coded in more motor-associated regions of cortex. However, this work has

generally confined itself to fairly rudimentary and limited forms of learning.

The remainder of this article aims to situate both learning and state estimation mechanisms in a

single framework.

3 Examples

We use the examples of figure 1 rendered in the abstract forms of figure 2 to illustrate the key gen-

eral principles established above. The examples cover neural reinforcement learning (Montague

et al., 1996; Schultz et al., 1997), Bayesian psychophysics (Britten et al., 1992; Shadlen and New-

some, 1996), information gathering and optimal stopping (Gold and Shadlen, 2001, 2007) and the

exploration/exploitation tradeoff (Daw et al., 2006b). The first example develops basic reinforce-

ment learning methods for tasks in which the state is known; the rest exemplify how these can be

extended with belief states as the formal replacement for uncertain true states.

In each section, we first describe the formal computational notions and ideas, then the relevant

algorithmic methods associated with the computations, and finally the psychological and neuro-

biological tasks and mechanisms that are implicated.

3.1 The Markov decision problem

The central problem in the prediction task of figure 1A is that until the subject observes cue A or

C at the start of a trial, she does not know whether she will receive a shock at the end of the trial;

the cue makes the outcome more predictable. In Markov problems, that is domains in which the

only the current state matters and not the previous history, there turns out to be a computationally

precise way of defining the goal for predicting future reinforcers. When a choice of actions is



N-DM002 9

available, the goal also provides a formalization of optimal selection. There is also a variety of

algorithmic methods for acquiring predictions, and using the predictions for control.

The Computational Problem

Consider the case of figure 3A in which the cues unambiguously identify the state (c1 for x1, and so

on). We first consider decision-making when the rules are given, and then move onto the standard

reinforcement learning problem in which the rules of the task are unknown, and the subject must

discover how best to behave by trial and error.

Given the rules, the task for the subject is simply to work out the best policy, π∗
i (the asterisk

identifying it as being best), which specifies an assignment of an action a ∈ {L,R,C} to each state

xi. The probabilities pij = pij(C) indicate the probabilities of going from state xi to xj under action

C, whose cost is ri(C); actions L and R have deterministic consequences. Exactly how the ‘best’

policy is defined depends upon the particular goal. For now, we will assume that the rewards and

costs earned across each whole single trial are simply summed, and this sum is what has to be

predicted and optimized.

[Figure 3 about here.]

First, consider the case that the goal is exploitation within a single trial, to maximize the average,

or expected, reward. If we consider state x1, the task is straightforward – the value of each action

Q∗
1(a), defined as the expected return for performing that action is

Q∗
1(a) = r1(a) (1)

and the best action, ie one that maximises this expected return is

π∗
1 = argmaxa∈{L,R} [Q∗

1(a)] = L and similarly π∗
2 = argmaxa∈{L,R} [Q∗

2(a)] = R (2)

All these quantities are shown in figure 3B (the best actions are boxed).
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The case for x3 and x4 is more complicated, since if C is chosen, then it would seem that one should

consider not only the action there, but also the subsequent action at x1 or x2, since the rewards

associated with each action are to be summed. Critically, the task has a Markov structure, meaning

that how the subject gets to x1, for instance, does not bear at all on the choice to be made at that

point and the rewards that will subsequently accrue (the Markovian mantra is that ‘the future is

independent of the past, given the present state’). The theory of dynamic programming (Bellman,

1957; Ross, 1983; Bertsekas, 2007) fashions this observation into computational and algorithmic

methods, which themselves underly reinforcement learning (RL). The idea is that states x1 and x2

also get values V ∗
i under the optimal policies there, defined as the best possible expected return

starting there

V ∗
1 = maxa∈{L,R} [Q∗

1(a)] = 2 and similarly at x2 V ∗
2 = maxa∈{L,R} [Q∗

2(a)] = 2 (3)

which are shown in figure 3B. These values will be available provided the subjects choose correctly

(ie according to π∗
i if they get to those states), and thus can act as surrogate rewards for reaching

the respective states, hiding all the complexity of how those rewards are achieved. Then, we can

write the value of choosing C at x3 as

Q∗
3(C) = r3(C) +

∑

j

p3jV
∗
j = r3(C) + p31V

∗
1 + p32V

∗
2 (4)

since the reward for the first action (at state x3; r3(C)) is added to that for the second action (at

state x1 or x2). The probabilities p31 and p32 arise because the value of the action is the expected

value of doing the action. These quantities determine the probabilities of the transitions, which

multiply the values V ∗
1 and V ∗

2 indicate the reward that can be achieved starting from those states,

given appropriate actions there.

The values of L and R at x3 are just Q∗
3(L) = r3(L) and Q∗

3(R) = r3(R), and so the optimal policy

at x3 is, as in equation 2,

π∗
3 = argmaxa∈{L,R,C} [Q∗

3(a)] = C and similarly π∗
4 = argmaxa∈{L,R,C} [Q∗

4(a)] = C (5)
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That is, in the example in figure 3A-C, it is optimal to take action C at x3 (and x4), since 1.5 =

r3(C) + r1(L) > r3(L) = 1. That this is true of course depends on the precise values of the

rewards.

Although we only showed the computations underlying the simplest dynamic programming

problem, solving more realistic cases which nevertheless retain the structure of our task is a

straightforward extension (see, for example, Bertsekas, 2007; Sutton and Barto, 1998). The cen-

tral requirements are that the states and rules are known, that rewards are additive over time

(although future rewards can be discounted exponentially, as if by an interest rate), and that the

problem is Markovian, so future transitions and rewards only depend on the current state, and

not the path the subject took to achieve the current state. The constraint that the state satisfy this

Markov property is critical to all the analysis above, and, concomitantly, is a major hurdle in con-

necting this abstract formalism with more realistic situations in which the cues are not determinate

of the state. This issue is central to the remaining examples in the paper.

We have so far assumed that the subjects know the rules of the task. In section 3.4 we consider

the (much more involved) computational problem that arises in the case that the subjects do not

know the rules, and have the ambition of optimally balancing exploration to find them out, and

exploitation of what they already know. However, there is an important intermediate case in

which the subjects do not know the rules, and so have to learn them from experience, but in

which their only ambition is exploitation - that is, doing as well as possible in the current trial,

ignoring the future. The standard way to conceive of experience here is in terms of sampling states,

transitions and rewards, for instance, starting at a state (x3), choosing an action (C), experiencing

a transition (probabilistically to x1 or x2), and receiving a reward (r3(C), which in general could

also be stochastic). Learning about the task from such samples is, of course, an example of a very

general statistical estimation problem on which we can only touch. The critical consequence that

we will consider, though, is that given only limited numbers of samples, subjects will be making

choices in the face of uncertainty about the task. Even without considering exploration to reduce

the uncertainty, exploitation can be significantly affected by it.
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Algorithmic Approaches

The theory of dynamic programming (Bellman, 1957; Ross, 1983) specifies various algorithms for

calculating the optimal policy, notably policy- and value- iteration (Puterman, 2005; Bertsekas, 2007;

Sutton and Barto, 1998). The key observation is that equation 4, which is one of a number of forms

of so-called Bellman equation, specifies a consistency condition between the optimal Q∗ values

at one state (x3) and those at other states (x1 and x2), via relationships such as equation 3. The

different algorithms find optimal values by attacking any inconsistencies, but do so in different

ways.

Standard dynamic programming algorithms are model-based, in the sense that they solve the equa-

tions by making explicit use of the quantities ri(a) and pij(C), following just the sort of reasoning

described above. However, in the case of learning from experience in an unknown task, it is first

necessary to acquire estimates of these from the samples. This can be relatively straightforward

– for instance, consider the case that the subject performs action C at state x3 a total of M times,

getting to states xj1 . . . xjM , for j1, . . . , jM ∈ {1, 2} sampled from p31; p32, and experiencing re-

wards r1 . . . rM , sampled from r3(C). Then, one might estimate r3(C) and p31 by the sample mean

estimates

r̂3(C) =
1

M

M
∑

k=1

rk and p̂31 =
1

M

M
∑

k=1

χ
(

xjk , x1

)

, (6)

where χ is the characteristic function, meaning that the second sum just counts the number of

times the transition was to x1. Note that since the transitions are random (and the rewards, in

general, might also be), these estimates involve sampling error. Bayesian estimates of the rules

would quantify this error as uncertainty, a remark to which we return when we consider explo-

ration. For the purpose of exploitation, it is conventional simply to compute the optimal policy

under the so-called “certainty-equivalent” assumption that the current estimates are correct.

By contrast with the model-based methods, whose calculations depend explicitly on the rules,

there are various reinforcement learning (RL) algorithms that are model-free, and estimate values

or policies directly using individual samples of rewards and state transitions in place of estimated

average rewards or state transition probabilities. One family of methods, called temporal differ-



N-DM002 13

ence algorithms (Sutton, 1988), estimates values by computing a “prediction error” signal mea-

suring the extent to which successively predicted values and sampled rewards fail to satisfy the

consistency prescribed by equation 4. A typical prediction error, derived from the difference be-

tween right and left hand sides of equation 4, is

δk = r3(C) + V ∗
jk − Q∗

3(C) (7)

for trial k in which the transition went from state x3 to state xjk . Such errors can be used to update

value estimates (in this case of Q∗
3(C)) to reduce inconsistencies. These algorithms are guaranteed

to converge to optimal value functions (which determine optimal policies) in the limit of indefinite

sampling (Watkins, 1989; Jaakkola et al., 1994; Bertsekas and Tsitsiklis, 1996). However, given only

finite experience, the value estimates will again be subject to sampling noise, and so decisions

derived from them may therefore be incorrect. Model-free methods of this sort are sometimes

called bootstrapping methods, since they change estimates (here, of Q∗
3(C)) based on other estimates

(V ∗
jk). This makes them statistically inefficient, since early on, estimates such as V ∗

jk are inaccurate

themselves, and so can only support poor learning.

Although these algorithms are model-free, (ie not making explicit use of terms such as p31), they

are value-based, since they work by estimating quantities such as Q∗
i (a) and V ∗

i , which are values

of states and actions, or states in terms of the summed reward that is expected to accrue across

the whole rest of the trial. Apart from these value-based RL algorithms, there is also a range of

model-free methods that learn policies directly, without using the values as intermediate quanti-

ties. These policy-based methods (Williams, 1992; Baxter and Bartlett, 2001) use stochastic policies

(to allow sampling of the various options) which are parameterized, and adjust the parameters

using learning rules that perform a form of stochastic gradient ascent or hill-climbing on the over-

all expected reward. For instance, consider the case of state x1. We can represent a stochastic

parameterized policy there as

P1(a = L;w1) = π1(w1) = σ(w1) where σ(w) = 1/(1 + exp(−w)) (8)
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is the standard logistic sigmoid function. Naturally, P1(a = R;w1) = 1 − π1(w1) = σ(−w1). Here,

the greater w1, the more likely the subject is to choose L at state x1. The average reward based on

this policy is

〈r1〉w1
= σ(w1)r1(L) + σ(−w1)r1(R)

If the subject employs this policy, choosing action ak and getting reward rk on trial k, and w1 is

changed according to a particular Hebbian correlation between the reward rk and the probability

of choice

w1 ⇒ w1 + ǫ∆wk
1 where ∆wk

1 = rk(1 − P1(a = ak;w1)) (9)

then it can be shown that the average change in w1 is proportional to the gradient of the expected

reward:

〈∆wk
1〉k ∝

∂〈r1〉w1

∂w1

and so the latter quantity should increase in the average, at least provided the learning rate ǫ,

which governs how fast w1 changes, is sufficiently small. Indeed, tight theorems delineate cir-

cumstances under which this rule leads in the end to the optimal policy π∗
1.

Rules of this sort are an outgrowth of some of the earliest ideas in animal behavioral learning –

crudely suggesting that actions that are followed by rewards should be favoured. As advertized,

they work directly in terms of policies, not employing any sort of value as an intermediate quan-

tity. They just require adapting so that they can, for instance, increase the probability of doing

action C at state x1 based on the reward r3(L) that is only available at a later point.

Psychology & Neuroscience

There is a wealth of work in both psychology and neuroscience on tasks that can be considered as

Markov decision problems, and the exploitation problem has been a key focus. Importantly, the

theory views predicting summed reinforcement as a key subproblem for decision making, and so

much work has concerned predicting reinforcement in tasks without decisions.

Perhaps the best developed connection between these ideas and neural data is through predic-
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tion errors for model-free RL, as in equation 7. Versions of these have long played an important

role in theories of behavioral conditioning, most famously that of Rescorla and Wagner (1972).

More recently, neural correlates of such error signals have been detected in a number of tasks and

species.

[Figure 4 about here.]

Consider the experiment of figure 1A. The task was designed to induce higher-order prediction

errors, ie, those arising from changes in expectations about future reinforcement rather than the

immediate receipt (or nonreceipt) of a primary reinforcer. Such errors are characteristic of the

bootstrapping strategy of temporal-difference algorithms, which take the changes in expectations

(e.g., the difference between V ∗
jk and Q∗

3 in equation 7) as signs of inconsistencies or errors in value

predictions. Figure 4A highlights brain regions, notably in the ventral putamen (lateral striatum),

where the measured BOLD signal was found to correlate over the task with a prediction error

timeseries generated from a temporal-difference model.

For instance, figure 4B shows the average BOLD signal from the right putamen on trials in which

the subjects see cue C followed by cue B. In this case, the first cue indicates that a large shock is

unlikely, but the later cue signals that it is certain. The change in expectation occasioned by the

second cue induces a prediction error, reflected in increased BOLD activity. Conversely, cue D

following cue A signals that a large shock previously though to be likely will not occur; this is

negative prediction error (and a relative decrease in BOLD; figure 4C). Figure 4D illustrates how

we can extend the same logic a further step back, just as in the dynamic programming analysis of

Markov decision processes. Here, since cue A indicates that cue B (and thence the large shock) is

likely, it also induces positive prediction error when it appears, signaling an end to the relatively

safe period between trials.

Seymour et al. (2004)’s study is in the aversive domain. For appetitive outcomes, there is ample

evidence that the phasic activity of dopamine cells in the ventral tegmental area (VTA) and sub-

stantia nigra pars compacta (SNc) in monkeys (eg Schultz, 2002), and the release of dopamine at
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striatal targets in rats (Day et al., 2007) report quantities akin to the temporal difference prediction

error in equation 7. This comes on top of a huge body of results on the involvement of dopamine

and its striatal projection in appetitive learning and appetitively motivated choice behaviour (see,

for some recent highlights, Joel et al., 2002; Hyman et al., 2006; Wickens et al., 2007; Costa, 2007).

The proposal that this operates according to the rules of reinforcement learning (O’Doherty et al.,

2003, 2004; Barto, 1995; Montague et al., 1996; Schultz et al., 1997; Suri and Schultz, 1998; Joel et al.,

2002; Balleine et al., 2007; Daw and Doya, 2006; Haruno et al., 2004) in a way that ties together the

at least equally extensive data on the psychology of instrumental choice with these neural data,

has extensive, though not universal, support (eg Berridge, 2007; Redgrave et al., 2007).

However, behaviorally sophisticated experiments (reviewed in Dickinson and Balleine, 2002; Balleine

et al., 2007) show that this is nothing like the whole story. These experiments study the effects

of changing the desirability of rewards just before animals are allowed to exploit their learning.

Model-based methods of control can use their explicit representation of the rules to modify their

choices immediately in the light of such changes, whereas model-free methods, whose values

only change through prediction errors (such as equation 7) require further experience to do so

(Daw et al., 2005). There is evidence for both sorts of control, with model-based choices (called

goal-directed actions) dominating for abbreviated experience, certain sorts of complex tasks, and

actions close to final outcomes; and model-free choices (called habits) evident after more exten-

sive experience, simpler tasks, and actions further from outcomes. Furthermore, these two forms

of control can be differentially suppressed by selective lesions of parts of medial prefrontal cor-

tex in rats (Killcross and Coutureau, 2003). Daw et al. (2005) argued that the tradeoff between

goal-directed actions and habits is computationally grounded in the differential uncertainties of

model-based and model-free control in the light of limited sampling experience.

Though more comprehensive, even this synthesis has an extremely limited scope. As hinted

above, the question of most relevance to the present review is how internally to create or infer

a state space from just a booming, baffling, confusion of poorly segmentable cues. That is, how

to extract the equivalent of x1 . . . x4, the underlying governors of the transitions and rewards, au-

tomatically from experience in an environment. The simplest versions of this issue are related to
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topics much more heavily studied in sensory neuroscience and psychophysics, and we now turn

to these.

3.2 Signal detection theory

The task shown in figure 1B, in the version that the subject cannot influence the length of time

that the dots are shown, is one of sensory discrimination. Here, noisy and therefore unreliable

evidence provided by motion-processing areas in the visual system has to be used to make as

good a decision as possible to maximize reward. It maps onto the basic task in the case that the

rules are known, but the inputs ci associated with the states are only partially informative about

the states (because of the effects of noise).

Variants of this task, notably ones involving the detection of a very weak sensory signal in the

face of noise in the processing of input are among the most intensively studied quantitative psy-

chophysical tasks; it was because of this that they came to be used to elucidate the neural under-

pinnings of decision-making.

The computational problem

Figure 5A shows the variant of the basic abstract problem that is a form of a classic signal discrim-

ination task (Green and Swets, 1966). Here, the subject always starts in state x1 or x2, and the rules

are assumed to be known, so that it is optimal to execute L in x1 and R in x2. However, the cues c1

and c2 are partly confusable – in other words, the subject observes cα which does not completely

distinguish x1 and x2, and so it is uncertain which of the two states it occupies. This problem

is sometimes called partially observable, or involving hidden state, since the subject occupies a true

state in the world which we write as xα∈{x1, x2}, but its identity is at least partially hidden from

the subjects. The subjective problem is illustrated in figure 5B.

[Figure 5 about here.]
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To formalize this task, it is necessary to specify the coupling between cues and states. The natural

model of this involves the conditional distributions over the possible observations (the cues) given

the states:

p1(cα =c|xα =x1) ≡ p1(cα|x1) and p2(cα =c|xα =x2) ≡ p2(cα|x2)

which in signal detection theory are often assumed to be Gaussian, with means µ1 and µ2 (say,

with µ1 > µ2) and variances σ2
1 and σ2

2. These distributions are shown in miniature in figure 5A;B.

If the subject observes a particular cα, then, given these distributions, what should it do? It needs

a decision rule – a mapping, sometimes called a test – from its observation cα, to a choice of action

L or R.

There are four possibilities for executing one of these actions at one of the two states. Standard

signal detection theory privileges one of the actions (say L) and thus one of the states (here x1)

and defines the four possibilities shown inside the table:

action

actual state L R

x1 hit miss

x2 false alarm correct rejection

although note that we could just as well have privileged R at x2. Signal detection theory stresses

the trade-off between pairs of these outcomes. For instance, subjects could promiscuously choose

L despite evidence from cα that x2 is more likely. This would reduce misses, at the expense of

introducing more false alarms.

[Figure 6 about here.]

Under Bayesian decision theory, subjects should maximize their expected reward given the infor-

mation they have received. The first step is to use the observation cα to calculate the subjective
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belief state, ie the posterior distribution over being in x1 or x2 given the data:

P (xα = x1|cα) ≡ P (x1|cα) =
p1(cα|x1)P (x1)

p(cα)
=

1

1 + 1
l(cα)

P (x2)
P (x1)

(10)

where

l(cα) =
p1(cα|x1)

p2(cα|x2)
(11)

is the so-called likelihood ratio, which indicates the relative chance that the observation cα would

have originated from x1 versus x2 and P (x1)=1 − P (x2) is the prior probability of starting in x1.

Figure 6A shows the logarithm of the likelihood ratio in the case that the Gaussians have the same

variance σ1 = σ2, and figure 6B shows the resulting posterior probabilities as a function of cα (for

P (x1) = 0.5). Errors occur where the posterior is uncertain, near P (x1|cα) = 0.5. The steeper the

posterior, the lower the chance of error; in turn, this happens when the likelihood distributions

are well separated.

Next, we can write down the equivalent of the Q∗ values from equation 1 as the expected returns

for each action, given the observation cα (rather than the state x1 or x2):

Q∗
cα

(L) = E [rcα(L)|cα] = P (x1|cα)r1(L) + P (x2|cα)r2(L) (12)

Q∗
cα

(R) = E [rcα(R)|cα] = P (x1|cα)r1(R) + P (x2|cα)r2(R) (13)

These value expressions are functions of the cue cα only through the belief state, which in this

sense serves as a sufficient statistic for the cue in computing them. Another way of saying this

is that the belief state satisfies the Markov independence property on which our reinforcement

learning analysis relies: given it, the future reward expectation is independent of the past (here,

the cue). By determining the value expectations for each action, the belief state plays the role of

the state from the previous section, which is unobservable here.
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Given values, then, as in equation 2, we can choose an optimal policy

π∗
cα

= argmaxa∈{L,R}

[

Q∗
cα

(a)
]

(14)

which, by direct calculation, turns out to just take the form of a threshold on the belief state, or

equivalently on the likelihood ratio l(cα), and be written as

π∗
cα

=























L if l(cα) > θ

R if l(cα) < θ

× if l(cα) = θ

(15)

where ‘×’ implies that either L or R should be chosen with equal probability.

Given our assumption that r1(L) > r1(R), the Bayes-optimal threshold θB is determined by the

rewards and priors according to:

θB =
r2(R) − r2(L)

r1(L) − r1(R)

P (x2)

P (x1)
(16)

which comes from the point at which the values of the two actions are equal, ie Q∗
cα

(L) = Q∗
cα

(R).

To summarize, Bayesian decision theory in the case of state uncertainty is formally just the same

as in the case of complete knowledge of the state, except redefining the state to be the belief state

P (xα =x1|cα). Given this, the same ideas as in the previous section apply in terms of maximizing

the expected return.

In standard decision theory, there is an important result called the Neyman-Pearson lemma, which

implies that decisions should again be based on thresholds associated with the likelihood ratio

l(cα). However, unlike the Bayesian analysis that defines a single policy maximizing expected

reward, misses and false alarms are not traded off against each other directly in standard decision

theory, and so there is just a whole, one-dimensional, family of optimal tests created by varying

the threshold θ. The trade-off is depicted in the famous Receiver Operating Characteristic (ROC)

curve, illustrated in figure 6C, which plots the probability of a hit against that for a false alarm,
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across the whole range of thresholds. The area under the ROC curve is a measure of the quality

of the cue cα for discriminating x1 and x2, which itself is determined by the separation of the two

likelihood distributions shown in figure 5B. It is also related to other signal detection quantities

such as the discriminability, d′ (Green and Swets, 1966).

Algorithmic Approaches

Here, we assume that subjects have knowledge of the rules (the conditional distributions, priors,

and rewards) and must determine or learn the optimal policy. Model-based Bayesian methods

are algorithmically simple given this knowledge: they correspond literally to the derivation of the

optimal policy outlined above. Model-free methods act to learn values such as Q∗
cα

(L) or, more

directly, the best policy π∗
cα

, without explicit reference to the distributions and priors — they must

instead learn, as before, by bootstrapping from sampled experience. Under the same assump-

tions about exploitation as above, ie that we are not trying to solve the exploration/exploitation

problem, it is again sensible to consider the same learning rules.

The main issue that makes this different is that values and policies are functions of the continuous,

real-valued, quantity cα — or of the continuous one-dimensional belief state that summarizes it —

rather than a discrete quantity like x1 in the fully observable MDP. Further, although the the policy

dependency actually takes a simple form — a single threshold θ – in terms of the belief state, model

free methods cannot directly compute the belief state, and so face a more complicated problem.

For instance, in the case that σ1 = σ2, the optimal decision can also be described by a threshold in

the observable quantity cα. However, if σ1 6= σ2, then, illustrated in figure 6D, the likelihood ratio

l(cα) is not monotonic in cα, and therefore two thresholds θl and θu are necessary, with

t(cα) =























L if cα < θl or cα > θu

R if θl < cα < θu

× if cα = θl or cα = θu

(17)

Similarly, the nature of the dependence of values such as Q∗
cα

(L) on cα is determined by quantities
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to which model-free methods have no direct access. One general solution is to use a flexible and

general form for representing functions, for instance writing

Q∗
cα

(L) =
∑

k

fk(cα)wk(L) (18)

Here, fk(cα) are so-called basis functions of cα and wk are parameters or weights whose settings

determine the function. Depending on properties of Q∗
cα

(L) such as smoothness, a close approxi-

mation to it can result from relatively small numbers of basis functions. Furthermore, the model

free methods described in the previous section can be used to learn the weights.

Similarly, model-free and value-free policy gradient methods can be used to learn weights that

parameterize a policy π∗
cα

directly. As is frequently the case, the policy (just one, or sometimes

more, thresholds) may be much simpler than the values (a form of sigmoid function), making it

potentially easier to learn appropriate weights.

Psychology & Neuroscience

The ample studies of human and animal psychophysics provide rich proof that subjects are so-

phisticated signal detectors and deciders in the terms established above. Behavior is exquisitely

sensitive to alterations in the payoffs for different options (Stocker and Simoncelli, 2006), and

changes in the observations (Körding and Wolpert, 2004); subjects even appear to have a good

idea about the noise associated with their own sensations (Whiteley and Sahani, 2008) and actions

(Trommershäuser et al., 2003b,a, 2006), and can cope with even more sophisticated cases in which

cues are two dimensional (visual: cv
α and auditory: ca

α) and are conditionally independent given

the state (Ernst and Banks, 2002; Battaglia et al., 2003; Jacobs, 1999; Yuille and Bülthoff, 1996).

There is also a range of influential neurophysiological investigations into the neural basis of these

sorts of decisions. One set, prefigured in figure 1B, and executed by Britten et al. (1992, 1996);

Shadlen and Newsome (1996) and their colleagues, has focused on the processing of visual mo-

tion in area V5/MT in monkeys. Monkeys observe random dot kinematograms, in which small
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dots appear and jump in various directions (figure 7A). Some proportion of the dots all moves

coherently, in the same direction, the remainder move at random, and the job of the monkey is to

report which direction the coherently moving dots favour based on 2 seconds’ worth of observing

the motion. Typically, the monkeys only have two choices, 180◦ apart, ie up and down in the fig-

ure. The filled-in circles in figure 7B show the average performance of the monkey at this task as a

function of the coherence level; for well-trained animals, performance is near perfect at a level of

around 10-15%. This is often called a psychometric curve.

[Figure 7 about here.]

Figure 7C shows example histograms of the firing rates of an MT neuron over the relevant period

when faced with these stimuli, as a function of the coherence of the stimulus (ie the percentage

of the random dots moving in a coherent direction), for both of the two directions of motion.

Mapping this onto our problem, the firing rate is the cue cα (from the perspective of neurons

upstream), the state is the actual direction of motion of the stimulus, and these histograms in

the figure are the conditional distributions p1(cα|x1) (hashed) and p2(cα|x2) (solid). It is apparent

that these distributions are well separated for high coherence trials, thus supporting low error

discrimination; and less well for low coherence ones.

The open circles in figure 7B shows the remarkable conclusion of this part of the study. These

report the result of the Bayesian decision-theoretic analysis described above, applied to the neural

activity data of the neuron shown in figure 7C. This so-called neurometric curve shows the prob-

ability that an ideal observer knowing the firing rate distributions of a single cell and making

optimal decisions, would get the answer right. This single cell would already support decisions

of the same quality as are made by the whole monkey. Of course, the monkey’s problem is to pick

out the cells of this calibre (and particularly collections of cells whose activity is as independent as

possible given the motion direction, Shadlen et al., 1996), integrate their activity over the duration

of the trial, and limit the ability of noise to affect their actual decisions. The difficulty of doing

these should mitigate our surprise that the overall performance of the monkey is not substantially

better than that of a single, somewhat randomly recorded, neuron.
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3.3 Temporal state uncertainty

The examples of the last two sections can be combined to show how belief state estimation and

reinforcement learning can be combined to find optimally exploitative decisions in partially ob-

servable Markov decision problems (POMDPs). This is exemplified by the other version of the

task in figure 1B, in which the monkeys have to choose not only the direction of the motion, but

also when they are sufficiently confident to make this choice. Here, they must balance the benefits

of making their decision early, namely avoiding the costs of waiting, against the change of making

the wrong decision and getting no reward at all.

The computational problem

Figure 8A;B show a version of the task which combines some of the Markov decision problem as-

pects of section 3.1 with the state uncertainty of section 3.2. Here, the subjects start at xβ ∈ {x3, x4},

and again see a cue (referred to as cβ) that only partially distinguishes these states. Subjects could

either choose L (which is correct at x3), R (correct at x4), or they could choose C, which incurs a

small penalty (−0.1), but delivers them to xα ∈ {x1, x2}. It might be wise, if the cue available there

cα (assumed to be suitably independent of cβ) better resolves their state uncertainty (ie making

them more sure about which of x1 or x2 they occupy than they were between x3 and x4), and thus

more certain to get the reward for choosing L or R according to their beliefs. The choice of C is

called probing, and can be considered as a form of exploration.

[Figure 8 about here.]

The Bayesian decision-theoretic ideas articulated in section 3.1 extend smoothly to this case, just

taking into account the idea that the subject’s state should actually be its subjective belief state,

given its observations. We first consider the evolution of the belief state, and then see how this

is employed to make optimal decisions. The graphs in figure 9 refer to the Gaussian likelihood

distributions used above, and shown in figure 8.
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The case for x3 and x4 here is just as for x1 and x2 in section 3.2. Given cβ , the posterior probability

P (x3|cβ) of being in x3 is given by Bayes’ rule just as in equation 10, proportional to the prior P (x3)

and the likelihood p3(cβ |x3).

Now if the subject chooses C at the first stage, then it will observe cα at xα ∈ {x1, x2}; given

this observation, it is again straightforward to compute a new belief state P (x1|cβ, cα) using the

previous belief state together with the the transition and cue probabilities. Because the successive

observations are independent, and since the only way to get to x1 is from x3, the update takes

a particularly simple form as the product of the previous belief state with the new observation

probability:

P (x1|cβ , cα) ∝ p1(cα|x1)P (x3|cβ) (19)

= p1(cα|x1)p3(cβ |x3)p(x3)

In short, the simple form of the problem means that incorporating each new cue into the belief

state just involves multiplying the likelihood terms associated with the new observations (and

renormalizing to make the sum of the beliefs equal to 1).

Note that the belief state after the second step depends on both cues, but it depends on the first

cue only by way of the previous belief state P (x3|cβ). Similarly, as it turns out, the expected

future rewards will depend on both cues, but only through the belief state. This is an instance of

a general and important fact about multistep problems with hidden state. In general, cues like

cα will not suffice to determine future expected reward, because the entire previous history (in

this case just cβ) may still be relevant. However, in POMDPs, the current belief state is always

a sufficient statistic for the entire cue history: that is, unlike any individual cue, it satisfies the

Markov independence property. This is why it can always be used in place of an observable state

for reinforcement learning.

[Figure 9 about here.]
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To calculate the optimal policy, we now proceed exactly as in section 3.1, backwards from the second

state to the first. If the subject gets to x1 or x2, it will be able to make its choice based on its

observation cα. Given the rewards shown in figure 8, it will choose L if P (x1|cα, cβ) > P (x2|cα, cβ),

and R otherwise. Thus the value of being at xα is

V ∗
α,cα,cβ

= max {P (x1|cα, cβ), P (x2|cα, cβ)} (20)

This is shown in figure 9C. The value is high (white) when cα and cβ are such that the subject can

be rather sure whether xα =x1 or xα =x2, ie when it can be sure which action to perform. If instead

the cues are inconsistent, then the value is closer to 0.5, which is that of random guessing.

However, the subject has to decide whether it is worth choosing C at state xβ before observing cα.

Thus to work out the value of doing so, she has to average over what cα might be, which in turn

depends on the probability accorded to ending up in state x1 before seeing cα. Figure 9D shows

the conditional distribution p(cα|cβ) – note, for instance, that if cβ strongly favours x3, then the

subsequent state is likely to be x1, so the distribution is close to p1(c1|x1).

Averaging over this distribution, we get the mean value:

V ∗
α,cβ

= Ep(cα|cβ)

[

V ∗
α,cα,cβ

]

(21)

= P (x3|cβ)

∫

cα

V ∗
α,cα,cβ

p(cα|x1)dcα + P (x4|cβ)

∫

cα

V ∗
α,cα,cβ

p(cα|x2)dcα (22)

since the transitions can only occur from x3 → x1 or x4 → x2. This is the exact equivalent of

equation 3, except that taking an expectation over the belief state requires an integral (because it

is continuous) rather than a discrete sum.

The last step is to work out the values of executing each action at xβ . For action C, from equation 4

and the transition probabilities:

Q∗
β,cβ

(C) = rcβ
(C) + V ∗

α,cβ
= −0.1 + V ∗

α,cβ
(23)
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This value is shown as the solid line in figure 9E. It is high when the subject can expect to be

relatively certain about the identity of xα, and low when this is not likely. The maximum value is

1 + rcβ
(C) = 0.9, given the cost −0.1 of probing.

The expected values to the subject of performing L or R at xβ are

Q∗
β,cβ

(L) = P (x3|cβ) Q∗
β,cβ

(R) = P (x4|cβ) (24)

which are the exact analogues of the Q∗
cα

(a) terms in equation 12. The dashed line in figure 9E

shows the value of the better of L and R. This is near 0.5 for intermediate values of cβ , where the

subject will be very unsure between x3 and x4, and thus between the actions. In this region, action

C is preferable because the additional observation cα is likely to provide additional certainty and

a better choice at the next step, even weighed against the −0.1 cost of C.

Combining the above equations, the subject should choose C if

max {P (x3|cβ), P (x4|cβ)} < −0.1 + Ep(cα|cβ) [max {P (x1|cα, cβ), P (x2|cα, cβ)}] , (25)

that is, if the benefit of the added certainty about being in x1 or x2 outweighs the cost −0.1 of

sampling.

The two points at which the two curves in figure 9E cross are thresholds cl and ch in cβ such

that probing is preferred when cl < cβ < ch. We will see that this sort of test is quite general

for problems with this character, although the thresholds are normally applied to the belief states

associated with the observations rather than the observations themselves.

Algorithmic Issues

The case of temporally extended choices in the face of incomplete knowledge is known to pose

severe computational complications as the number of states grows larger than the simple problem

described here. The difficulties have to do with the definition of the state of the subject – there
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are actually two ways to look at this, both of which are problematic. One way is to see the state

as a summary of the entire history (and, for planning, future) of observations (say cβ, cα, . . .) of

the agent. Indeed, we indexed value functions such as V ∗
α,cα,cβ

by this history. The trouble with

this representation is that the history grows over time (the number of steps in the problem might

be much larger than the two here) and so the dimensionality of the optimization problem grows

also. It also poses severe demands on short term memory. In general, it is not possible to represent

optimal value functions and policies with only few basis functions as in equation 18.

The alternative representation, which we have stressed, is to note that, given a model, the full

history of observations can be summarized in a single belief state P (xτ |{c1, . . . cτ}), which can

then be updated recursively at each step. This has the advantage of not changing dimension over

time, and thus also not placing such an obvious load on working memory. However, like the

cue history (but unlike the states of an observable MDP), this probability distribution is still a

multidimensional, continuous object, which makes learning values and policies as functions of it

still difficult in general.

Since belief states of this sort are computed by inference using a model, model-free methods

cannot create them, and therefore generally have to work with the history-based representation.

However, the Markov sufficiency of the belief state immediately suggests an appealing hybrid of

model-free and model-based approaches, whereby a model might be used only to infer the cur-

rent belief state, and then model-free methods used to learn values or policies on the basis of it

(Chrisman, 1992; Daw et al., 2006a). This view separates the problem of state representation from

that of policy learning: the use of a model for state inference addresses the insufficiency of the

immediate cues c. Having done so, it may nevertheless be advantageous to use computationally

simple model-free methods (rather than laborious model-based dynamic programming) to obtain

values or policies.

When using belief states, algorithmic issues also arise in updating them using equation 19. No-

tably, it may be simpler to represent the belief state by its logarithm, in which case the multiplica-

tion to integrate each new observation becomes just a sum. The idea of manipulating probabilities
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in the log domain is ubiquitous in models of the neural basis of this sort of reasoning (Rao, 2004;

Ma et al., 2006), including the one discussed next. However, it is important to note that in gen-

eral, belief updates involve not just multiplication as above, but also addition, which means the

expression is no longer simplified by a logarithm. For instance, if it were possible to get to state x1

from both x3 and x4, then equation 19 would sum over both possibilities:

P (x1|cβ, cα) ∝ p1(cα|x1)P (x1 | x3)P (x3|cβ) + p1(cα | x1)P (x1 | x4)P (x4 | cβ) (26)

Purely additive accumulation is therefore limited to a class of problems with constrained tran-

sition matrices and independent observations. Also, it is only in a two-alternative case that the

normalization may in general be eliminated by tracking the ratio, or log ratio, of the probability of

the states, as in equation 11.

Finally, in discussing partially observable situations, we have so far assumed that the model is

known. In general, of course, this might also be learned from experience. In the observable MDP,

this simply requires counting state transitions (equation 6); however, when states are not directly

observable, their transitions obviously cannot be counted. One family of algorithms for learning a

model in the face of hidden states involves so-called expectation-maximization methods (Demp-

ster et al., 1977). The algorithm takes a starting guess at a model, and improves it using two

steps. In the first, the ’expectation’ phase, the model is assumed to be correct and, the inference

algorithms we have already discussed are used to infer which (hidden) state trajectory was re-

sponsible for observed cues. In the second, ’maximization’ phase, these beliefs about the hidden

trajectory are treated as being correct, and then the best model to account for them is inferred

using a counting process analogous to equation 6. These phases are repeatedly alternated, and it

can be shown that each iteration improves the model in the sense of making the observed data

more likely under it (Neal and Hinton, 1998). In actuality, these model-learning methods require

substantial data, are difficult to extend to practical online learning from an ongoing sequence of

experience, and are prone to getting stuck at suboptimal models that occupy “local maxima” of

the hill-climbing update.
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Psychology & Neuroscience

Drift diffusion decision-making

In the original studies described in figure 1B and figure 7 that linked the activity of MT neurons

to choice behavior, the monkeys observed the random dot motion displays for a fixed period of 2

seconds before making their choice as to its direction of motion. The other version of the task, in

which the the subjects are free to choose when to make their decision, has been the topic here. It

is a version of one of the most important developments in decision theory, namely the sequential

probability ratio test (SPRT Wald, 1947; Gold and Shadlen, 2001, 2007; Smith and Ratcliff, 2004;

Ratcliff and Rouder, 1998; Shadlen et al., 2007), which is a highly active area of investigation in

both psychology and neuroscience.

The SPRT is designed for the circumstance in which subjects receive a stream of observations (like

cβ , cα, but continuing potentially indefinitely: . . . , cτ , . . .), pertaining to a binary discrimination

(in our case between x3, x1, which both require one choice, and x4, x2, which require a different

choice). We will call all the states that require L xL, and all those that require R xR. Subjects can

choose at any time (picking L or R), or they can wait (C) and sample more information. In our

framework, we would seek Bayesian optimal choices in the light of the costs; the SPRT is derived

from the slightly different goal of minimizing the average decision time for a given probability of

getting the answer correct.

As in all of our examples the critical observation is that the subjective state of the subject at stage T ,

which comprises the information required to calculate the current posterior over the choices at that

stage, depends only on the belief state or something equivalent to it. For the SPRT, this is normally

represented as the accumulated log likelihood ratios of all the pieces of evidence cT = {c1, . . . , cT }

given the two state possibilities, which can be written:

ℓT (cT ) = log
p(c1, ..., cT | xL)

p(c1, ..., cT | xR)
=

∑

τ

log
p(cτ |xL)

p(cτ |xR)
=

∑

τ

ℓτ (cτ )

given independent evidence and the trivial transition structure. Thus a decision-maker need only
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keep track of this running quantity, plus at most some function of the index of the current stage T .

The SPRT is an extremely simple test that uses two thresholds φl and φh and has:

π(c1 . . . cT ) =























L if ℓT (cT ) ≥ φh

R if ℓT (cT ) ≤ φl

C if φl < ℓT (cT ) < φh

(27)

or equivalently for other representations of the belief state, which are typically monotonic in the

log likelihood ratio.

We saw in discussing figure 9E, that the test for performing C for the problem in figure 8A;B has

exactly this form too. The surprising fact about the SPRT, which follows from the Markov property

together with a constraint that the cues at each stage be independent and identically distributed,

is that the thresholds φl and φh are independent of the stage or time.

Implementing tests such as the SPRT or other tests associated with the basic task would therefore

require integration of the belief state associated with the observations, plus a decision rule which

will look like a threshold on the belief state.

Figure 10 shows schematic results of an experiment (cartooned in part A) in which animals had a

free choice of decision time, reporting their decision by making a saccade from a fixation point to

one of two targets (Roitman and Shadlen, 2002; Gold and Shadlen, 2001, 2007). The main curves in

figures 10B;C show average activity of neurons in the lateral intraparietal area (LIP), a site that may

report the output of the putative integrator. Neurons in this area have eye movement response

fields (the grey patches in figure 10A); that is they fire selectively when subjects are planning

saccades to targets in space of the sort employed this experiment. The curves in figures 10B;C

show the mean firing rates of such neurons under various conditions over the course of trials.

[Figure 10 about here.]

Consider first the bottom inset to figure 10B, taken from data in Britten et al. (1992), which shows

the activity of MT neurons to random dot motion (albeit in the fixed duration task) over the course
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of trials, locked to the motion onset for trials of different coherences (colours) in two opposite

directions (solid or dotted). This is effectively a different way of looking at the data in figure 7,

and shows that following a transient response to the onset, their firing rates are rather constant.

Next, consider the solid curves in the main part of figure 10B. These show cases in which the re-

sponse was to the target defined by the LIP neurons (Tin cases as in figure 10A), for three different

coherence levels (motion strengths). For the most coherent motion (gold), following a (different)

transient, this rises steeply. For less coherent motion (red), this rises less steeply; for incoherent

motion (blue) it rises still less steeply. The idea is that the LIP neurons report belief states for the

choice associated with their response fields, perhaps represented as an log likelihood ratio com-

puted by integrating opponent activity from MT neurons with opposing preferences. The belief

states rise more steeply when the motion is stronger. For 0% coherent motion, they rise only be-

cause it is the trials on which the monkey ultimately chooses the particular response field that are

averaged, and so these should be the ones in which the evidence, by chance, ultimately favours

this direction.

Figure 10C shows the same conditions, but now triggered on the saccades themselves. The curves

all lie on top of each other, even for the 0% coherence case, coming near to a single point just

before the saccade happens. This is exactly the behavior to be expected from the action of an

upper threshold (like φh in equation 27), which is applied directly to the firing rate, giving rise

to a response (after a short delay). The same considerations as in section 3.2 make it reasonable

that the (trial-average) firing rate of single neurons could seemingly be directly associated with a

response-triggering threshold.

The dashed lines in these figures report the activity averaged over cases in which the monkeys

chose the opposite direction (Tout). The simplest version of the idea is that the cells continue to

report the accumulated belief state, which now tends to decrease rather than increase. However,

responses are not triggered by crossing a lower threshold φl; rather there is an upper threshold

φh for other neurons with response fields preferring the actual saccade location that is ultimately

chosen.
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The SPRT models cases in which information accumulates over time from an external source.

However, a wealth of very important studies has used it and related models (eg Smith and Rat-

cliff, 2004; Ratcliff and McKoon, 2008) to characterize reaction times in cases such as search tasks,

in which the external information is constant, but internal processing associated with this infor-

mation might unfold over time. There is also a number of influential connectionist (Usher and

McClelland, 2001) and neural (Wang, 2002, 2006; Lo and Wang, 2006) models of this, together with

mathematical theory about their interrelationship (Bogacz et al., 2006).

There is an active theoretical and experimental debate about the nature of coding and decision-

making associated with LIP in tasks that are more complicated than this, involving coherences

that vary from trial to trial, or differential rewards or priors for different options and non-constant

thresholds (eg Platt and Glimcher, 1999; Glimcher, 2004; Yu, 2007). One trouble with the random

dot motion is that it is not clear what likelihood contributions to each direction of motion should

arise from each segment of the stimulus: that is, the cues cτ from our idealization are internal

to MT and therefore not well controlled experimentally. A test of LIP’s report of an integration

process with more discretely controlled cues showed promising, but partial results (Yang and

Shadlen, 2007), with extreme values of the summed log likelihood ratios failing to be quite cor-

rectly represented.

The SPRT is a seminal contribution to the theory of decision-making, and indeed there is a sub-

field studying analytical methods rather different from the ones we have presented here for solv-

ing it (the basic results are beautifully reviewed in Shadlen et al., 2007). However, the SPRT is

brittle, in that most changes to the task will break its guarantees. In fact, even the case of more

than two options is surprisingly complicated. This is one reason why here, we have framed this

problem in terms of a more general model of decision-making in the face of uncertainty, which

gives a similar account of this particular task but readily accommodates a host of elaborations.

However, as already mentioned, the solutions can be extremely hard to compute or even approx-

imate.

Viewing the random dots task as a partially observable reinforcement learning problem also sug-
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gests broadly how the brain might solve the policy learning problem for it (Gold and Shadlen,

2002, Ahmadi & Latham, personal communication): by using general reinforcement learning tech-

niques — such as those described in section 3.1 and putatively implemented by systems such as

midbrain dopamine — over a belief state representation (as described here for LIP). In other work,

the idea that the dopamine system might learn employing a belief state representation has also

been used to explain how it might cope with partial observability arising from the unpredictable

timing of cues, and to explain some characteristics of dopaminergic responses in such situations

(Daw et al., 2006a).

3.4 Exploration and Exploitation

So far we have considered exploitation: choices that maximize the expected single-episode return,

given whatever is known about the rules by the time of that episode. As we have already men-

tioned, a more ambitious subject might wish to maximize lifetime utility, earning as much reward

as possible over a whole series of episodes. This is exactly the goal in the task of figure 1C.

Doing so requires balancing exploitation against exploration: choices that might not be expected

to pay off as much immediately, but, by improving knowledge of the rules, might improve the

prospects for earning reward on subsequent trials. This is a difficult balance, but its elegant

decision-theoretic solution follows directly from the analysis we have already developed. In par-

ticular, ignorance of the rules can be treated in exactly the same way we treated ignorance of the

state — by planning on the basis of beliefs rather than directly on observations directly. In turn, the

value of exploration can be quantified just as we have previously evaluated information-gathering

(“probing”) actions like C.

The computational issue

[Figure 11 about here.]

Consider the one-state (x1) example of figure 11A, known in this context as a two-armed bandit.
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This time, the rewards are binary (0 or 1), and a choice of action L or R delivers reward 1 with

probability pL or pR, respectively. The agent starts out ignorant of these probabilities, has a limited

number N of trials (say, 50) in which to play the game, and aims to maximize the total obtained

reward. The dotted lines emphasize the iterative nature of the task. The explore/exploit dilemma

arises here because pL and pR remain the same throughout the 50 trials; choices not only earn

immediate rewards but also help the subject to learn the values of these probabilities, potentially

improving its subsequent choices.

If the subject starts with the additional prior knowledge that pL and pR were each drawn uni-

formly and independently between 0 and 1, then clearly the expected value of either is 0.5 per

choice, and the expected cumulative reward of blindly choosing either 50 times is 25. However,

given two options whose payoffs were chosen in this manner, the expected value of the better one

(whichever it is) is actually higher, namely 2/3. If, therefore, the subject was told which one is

better, then she could exploit it and expect to earn about 33 rewards. Without this knowledge, but

choosing so as optimally to balance exploring to find it and exploiting it, the subject can expect

still to obtain about 96% of that value.

We can define this optimal balance, and compute its expected value, using dynamic programming

in the space of belief states. This proceeds just as in the previous sections, except that the belief is

over the rules (pR and pL) rather than the state xβ . What we arrive at is a form of master policy

specifying which option to choose given any current beliefs about the rules.

In this task, pR and pL can be estimated at any stage using counts of the number of times each

option was rewarded and unrewarded (e.g., rL and uL for rewarded and unrewarded choices on

the left). Since the prior distribution over pL is uniform, the posterior distribution (the equivalent

of that in equation 10) is known as a beta distribution, with parameters rL + 1 and uL + 1. Various

properties flow straight from this, such as the posterior mean, which is one estimate for pL:

E[pL] =
rL + 1

rL + uL + 2
(28)

Importantly, we can denote any belief state by a vector of counts, 〈rL, uL, rR, uR〉; together, these
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counts are sufficient statistics for the entire history of the game.

Let us, then, consider the value Q〈0,0,0,0〉(L) of choosing L at the start of the game. Either the choice

is rewarded, in which case the new belief state will be 〈1, 0, 0, 0〉, or it is not rewarded, in which

case the belief state will be 〈0, 1, 0, 0〉. Crucially, we know the probability of attaining either result:

it is just that given by equation 28: i.e., 50%. That is, equation 28 does not just give the subject’s

best guess as to the rules: since it arises from correct inference given a presumptively true prior

about how the rules were generated, this is also the actual probability, over games, that a choice

will be rewarded conditional on what the subject has observed so far. Therefore, working towards

the same sort of recursion as in equation 4 by using the optimal values V ∗
〈1,0,0,0〉, V

∗
〈0,1,0,0〉 of the

belief states consequent on either option, we can write

Q∗
〈0,0,0,0〉(L) = 0.5 · (1 + V ∗

〈1,0,0,0〉) + 0.5 · (0 + V ∗
〈0,1,0,0〉) (29)

or more generally

Q∗
〈rL,uL,rR,uR〉(L) =

rL + 1

rL + uL + 2
· (1 + V ∗

〈rL+1,uL,rR,uR〉) +
uL + 1

rL + uL + 2
· (0 + V ∗

〈rL,uL+1,rR,uR〉)

and similarly for the value of R.

Finally, just as in equation 3, the value V ∗ of a belief state is just that of the better choice there:

V ∗
〈rL,uL,rR,uR〉 = max

[

Q∗
〈rL,uL,rR,uR〉(L), Q∗

〈rL,uL,rR,uR〉(R)
]

and we complete the recursive definition by defining the future values Q∗ and V ∗ as zero at the

end of the game, when no further choices remain.

Together, these equations quantify the explore/exploit tradeoff. First, because of the boundary

condition, at the last choice (when rL+uL+rR +uR = N −1), the value of each action is just its

chance of immediate reward, given by equation 28. Here, the subject should simply exploit by

choosing the option with the better immediate reward expectation.
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In contrast, farther from the end of the game, exploration has value. To see why, consider a game

in which pR is known to be exactly 0.5 and we focus only on learning pL. At the start of the game,

the expected immediate payoff of 0.5 is the same for both L and R. However, the uncertainty sur-

rounding this value for action L represents an opportunity: if the option’s true reward probability

turns out to be more than 0.5, then finding this out will allow the agent to choose it, earning more.

On the other hand, if it turns out to be less, the agent can always just go back to choosing action R.

Therefore, even though the immediate expected return for L is the same as for R, the information

gained by choosing it gives the uncertain option a higher expected future return. This can be seen

by considering the future value terms V ∗ in equation 29: the future value V ∗
〈1,0,0,0〉 after a win on

L will involve another left choice now expected to pay off with probability 2/3 (from equation 28

with rL = 1, uL = 0); but even after losing on L, the future value V ∗
〈0,1,0,0〉 can’t be worse than that

coming from the choice of the safe option R.

The extra future value from exploration means that it can be, on balance, worth choosing an option

that is more uncertain, even if it has a lower immediate reward expectancy than the alternative.

Figure 11B illustrates this point: it shows the total expected values (over N = 50 trials; normalized

per trial) of the first choice of a range of uncertain options L with different expected means which

were generated by giving the agent 7 observations of L prior to the game, in different mixtures of

wins and losses. The dotted line shows the value of choosing the known 50% reference R.

Figure 11C illustrates directly how the value of exploration follows from uncertainty, by plotting

how the value of choosing L increases monotonically as the uncertainty about its payoff proba-

bility increases, while holding the overall expected chance that it will pay off fixed at 50 percent.

Here, the agent is given extra observations of equal numbers of wins and losses on L prior to

starting the game; uncertainty is increased by reducing these numbers.

In short, exploration is valuable because it has the possibility of improving choices on future

episodes, earning more reward in the long run. This is exactly the same reason why probing

to reduce state uncertainty was worthwhile in the example in the previous section. In principle,

the same analysis extends directly to exploration in unknown multistep decision processes such
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as those considered in the previous section, in which case the belief state includes beliefs about

the transition probabilities as well as the rewards. A different form of probing arises in this case,

in that actions can be taken to reach areas of the state space that are poorly explored, in order to

learn about them. In practice, exact solution to even the smallest such problems is intractable, due

to continuous nature or the high dimensionality of the belief state.

Algorithmic issues

So far, we have characterized the computational issues underlying exploration as concerning am-

bition, that is, optimizing reward accumulated across episodes rather than myopically exploiting

within each. In this respect, the problem can be seen to relate to issues of temporal discount-

ing: an unambitious subject is like an impatient one, who discounts future reward sharply. In

practice, however, even for minimally patient subjects, the limiting constraint on exploratory be-

havior is more likely to be the extreme complexity of decision-theoretically optimal exploration.

Rather than differences in discount preferences or goals, different exploratory behaviors can arise

from different algorithmic approaches to the decision problem. For instance, ignoring uncertainty

about the rules is what enables many of the standard RL algorithms discussed in 3.1 to work; but

this can just as easily be viewed as a simplifying assumption that precludes optimal exploration,

rather than a myopic goal.

In fact, even though the decision-theoretic analysis of exploration is formally equivalent to that of

partial observability, indeed leading to similar practical problems in actually solving for the opti-

mal policy, researchers have developed a number of special purpose approaches to the exploration

problem.

First, Gittins (1989) showed how a subset of exploration problems could be simplified by comput-

ing an index, similar to a Q value, for each action separately in a smaller (though still non-trivial)

subproblem. The approach takes advantage of a sort of independence between the actions aris-

ing from the problem structure. It works for multi-armed bandit problems of the sort described

above, though only when the number of trials N is either infinite (and future reward is discounted
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exponentially) or unknown with a constant hazard function, ie a constant probability per trial of

terminating.

However, most problems, including exploration in multistep decision problems, cannot be simpli-

fied this way. In reinforcement learning, heuristic approaches are therefore common, more or less

qualitatively inspired by the optimal analysis above. Some approaches evaluate actions according

to their expected exploitative value plus an uncertainty bonus intended to capture the additional

value of exploration (Sutton, 1990; Kaelbling, 1993; Dayan and Sejnowski, 1996; Dearden et al.,

1998). Authors differ as to how uncertainty should be estimated (which is itself not simple in

this context) and the exact form of bonus itself. One particularly simple variation is the novelty

bonus (eg Ng et al., 1999), which approximates an uncertainty bonus for unexplored options sim-

ply by initializing estimates of their values “optimistically” high, encouraging their exploration

until their true value is discovered.

A more primitive alternative, which is less well grounded in the analysis above, is to encourage

exploration more blindly by introducing some sort of randomness into the choice process.

One aspect of all of these approximate approaches is that they typically require careful adjustment

of factors such as the degree of randomness or the lucrativity of the uncertainty bonuses in order

to perform well. Although finding the optimal exploratory policy is not normally considered a

learning problem (since the goal, after all, is lifetime optimality), learning of a sort is implicated in

tuning the parameters of the approximate approaches to improve their performance.

Neuroscience and psychology

Outside the field of ethology, (eg McNamara and Houston, 1980; Pyke, 1984; Mangel and Clark,

1989) exemplified by some early work on the exploration of birds (Krebs et al., 1978), there is

relatively little direct evidence as to how animals or humans explore. There is, however, a number

of models. In this vein, Kakade and Dayan (2002) noted that dopamine neurons respond to novel

but affectively neutral stimuli with a burst-pause response; they suggested that this pattern could

be explained if the neurons were reporting the effect on reward prediction error of stimuli that
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were up-valued due to a novelty or uncertainty bonus.

Subsequently, in the task shown in figure 1C, Daw et al. (2006b) sought to test a similar idea

more directly, in an fMRI study of humans making choices for money in a four-armed bandit

task similar to the two-armed bandit analyzed above. Subjects had additional uncertainty, and

pressure to explore, because the bandits’ values were constantly changing. The authors sought

to quantify the effect of this uncertainty on exploratory choices, by fitting subjects’ trial-by-trial

behavior with a reinforcement learning model incorporating uncertainty bonuses, but found no

such influence. Instead, subjects’ exploration was best explained by a random exploration model,

the so-called ‘softmax’, which, for two choices involves a variant on equation 8 with

P1(a = L) = σ
(

β
(

Q〈rL,uL,rR,uR〉(L) − Q〈rL,uL,rR,uR〉(R)
))

where β > 0 regulates the strength of competition, ie the extent to which a small difference in

expected values of the actions translates into a large difference in their probability of choice. This

parameter is therefore another of the more primitive ways of trading off exploration and exploita-

tion.

[Figure 12 about here.]

The neural data supported a similar conclusion. Bonus models such as that of Kakade and Dayan

(2002) (or indeed, the optimal decision theoretic analysis) quantify the value of exploration and

exploitation in terms of a single currency of expected future reward. They therefore predict that

exploratory value should be reported just like that of exploitation, for instance through dopamin-

ergic spiking. Contrary to this expectation, Daw et al. (2006b) found that while dopaminergic

efferent areas such as striatum were activated by predictions and prediction errors for money,

they exhibited no additional activation that might reflect bonus values involved in exploration.

Instead, separate areas — the frontal pole, and also an area of intraparietal cortex — were acti-

vated preferentially when subjects explored rather than exploited (figure 12). Here, exploration

was operationally defined as a choice of an option other than the one for which the subject was
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estimated to expect the most reward. Together with the behavioral results, and other imaging find-

ings suggesting the involvement of anterior prefrontal areas in processing uncertainty (eg Yoshida

and Ishii, 2006) and of intraparietal cortex in belief states (as discussed above), this neural dissoci-

ation suggests that rather than being encouraged by a bonus reported in a common currency with

exploitative value, exploration in this task somehow draws on distinct neural processes.

It is certainly possible that high-level regulation of the sort associated with the frontal pole over-

rides a prepotent drive to exploit; however, we should stress that it is not clear from these data

what function, if any, these areas causally contribute to exploration. It is also unclear how to rec-

oncile these findings with the observation that dopaminergic neurons are activated by novelty

(though, of course, BOLD activations are far from direct measurements of dopaminergic activity).

One possibility, suggested by the Kakade and Dayan (2002) model and also by a followup imaging

study (Wittmann et al., 2008), is that the brain approximates the value of exploration by assigning

bonuses for novelty rather than uncertainty. Novelty bonuses are particularly easy to compute —

they only require optimistic initialization — but they are only an imperfect proxy for uncertainty.

For instance, such bonuses would likely not be engaged by the task of figure 1C and figure 12,

because the exploration there was mandated by changing reward probabilities in familiar bandits

rather than explicit novelty.

Finally, if organisms indeed use some sort of random exploration rather than exploration guided

toward uncertainty, then the dynamic regulation of the degree of randomness becomes particu-

larly crucial. While there is no direct evidence how this might be conducted, theoretical specu-

lation has focused on the neuromodulator norepinephrine (NE) as a potential substrate for such

control Doya (2002); McClure et al. (2006); Cohen et al. (2007).

4 Conclusions

We have reviewed some basic results in decision theory as they pertain to data in the psychol-

ogy and neuroscience of choice. We considered the central computational issues surrounding
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the depths of the subjects’ ignorance about the rules of the tasks they face and their immediate

state within the task, and also the heights of their ambition as to whether to try and jointly opti-

mize exploration and exploitation. We also considered a number of different algorithmic dimen-

sions, most importantly separating model-based algorithms, which make direct, computationally-

expensive, use of the (perhaps estimated) rules of the task to work out optimal actions, and value-

or policy-based model-free algorithms, that do away with these complexities, at the expense of

being less statistically efficient at turning information from the world into good actions. We il-

lustrated these issues with a number of paradigmatic special cases in which we could also report

relevant psychological and/or neural data.

A main focus of this review has been to highlight the commonalities among a large class of prob-

lems through the medium of Bayesian decision theory. Even though certain particular problems

such as the SPRT admit particularly simple solutions (that can be analyzed by special methods;

Shadlen et al., 2007), apparently straightforward extensions take us back to the general case.

Broader solutions involve turning observations into beliefs about the state of the subject in its

environment, and handling sequential decision problems which involve optimization over multi-

ple steps. We end by considering some of the classes of question under current investigation.

From a computational perspective, the most interesting and pressing direction for future studies

concerns the construction of a relevant state space. We have stressed the notion of a belief state in

the context of a probabilistic model of a domain. This offers a critical, crisp, foundation; however,

it also poses a brace of challenging problems – a statistical one of determining such models from

experience, and a computaitonal one of doing inference in the face of the lurking intractability

to which we have often referred. Even approximate inference is extremely hard. Defining, and

finding, minimal models is an obvious direction; and indeed there is much current interest in

taking advantage of structural properties of ecologically relevant domains, such as various forms

of hierarchy, in order to make progress with these problems. There is also a wealth of work in

unsupervised learning that is a fertile source of ideas.

A second key computational and algorithmic topic is that of approximations in general. There
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are some obvious routes to creating approximately optimal policies – for instance restricting the

number of basis functions in the representation of value functions, discretising the belief state very

coarsely, or restricting the length of the history of past observations used to create an effective state

space. However, there are few broad results about the consequences of these approximations for

the quality of control.

From a neural and psychological perspective, there are many open issues. One question under

active debate is the way that uncertain information, such as belief states, might be represented in

the activity of populations of neurons, and support the basic computations of Bayesian decision

theory such as belief updating (equation 26) and the calculation of expected values (equation 22)

(Zemel et al., 1998; Sahani and Dayan, 2003; Ma et al., 2006; Deneve, 2008; Rao, 2004; Jazayeri

and Movshon, 2006; Beck et al., 2007; Beck and Pouget, 2007). Conversely, it is as yet unclear the

extent to which subjects can perform these operations in rich domains (for instance with multi-

modal posterior distributions) let alone getting near to an optimal balance between exploration

and exploitation.

A second important point concerns the existence and interaction of different classes of mecha-

nisms and systems involved in decision-making. We have mentioned studies in rats suggest-

ing that model-based mechanisms and goal-directed control (involving the dorsolateral prefrontal

cortex and the dorsomedial striatum) and model-free mechanisms and habitual control (involv-

ing the dorsolateral striatum and dopaminergic neuromodulation) coexist, and indeed compete

to control choices (Dickinson and Balleine, 2002; Balleine et al., 2007; Daw et al., 2005; Killcross

and Coutureau, 2003). As far as exploitation is concerned, these two mechanisms represent two

ends of a spectrum trading off the statistical efficiency of learning (favoring model-based control

over model-free control, which learns by bootstrapping) for the computational efficiency of use

(favoring model-free methods, which do not have to solve dynamic programming problems on-

line). Other structures may also be involved, for instance with the hippocampus contributing to

control based on episodic memory (Lengyel and Dayan, 2008). The existence of discrete areas in

exploration (Daw et al., 2006b) is less expected from the perspective of Bayesian decision theory,

in which the benefits of exploration apparent in figure 9 are calculated of a piece with the benefits
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of exploitation.

To summarize, decision theory is one of the few areas in which there is a tight and productive

coupling between normative theory from statistics, operations research, artificial intelligence, eco-

nomics and engineering, behavioural results in ethological and psychological paradigms, and

electrophysiological, pharmacological and even anatomical neural data. In a surprising set of

cases, algorithmic ideas from the former disciplines have found relatively direct psychological

and neural instantiations in the latter ones, although this obviously need not be case, particularly

as the computations and algorithms get more complicated. The fruits of fifty years of analytical

research into decision-making are being actively reaped in the form of biologically-based models

– the high quality choices made by animals and humans in environments replete with extreme

computational challenges coming from uncertainty about states and rules are poised to provide a

whole new impetus towards the theory of appropriate approximation.
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7 Britten et al. (1992)’s experiment on primate signal detection. A) Macaque mon-
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this neuron would be able to judge the direction. Adapted from (Britten et al., 1992;
Dayan and Abbott, 2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8 Information integration and probing. A;B) Subjects start at xβ ∈ {x3, x4} but with
uncertainty due to an aliased cue cβ , and can either act (perform L or R) immedi-
ately, or perform action C, which incurs a small cost rcβ

= −0.1, but takes them
to xα ∈ {x1, x2}, where a new, independent, observation cα can help resolve the
uncertainty as to which of L or R would be better. As in figure 5, (A) shows the ob-
jective state and outcomes; (B) similar quantities from a subjective viewpoint. The
distributions show how the cues are related to the states. This is a simple task, since
the transitions are deterministic p31 = p42 = 1. . . . . . . . . . . . . . . . . . . . . . . 63

9 The value of sampling. A) The posterior distribution P (xβ = x3|cβ) at the first state
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based on data from Britten et al. (1992); Roitman and Shadlen (2002), and shows the
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MT neurons, albeit from a different experiment. C) These plots are triggered on the
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11 A) Two-armed bandit task. For each episode, the agent can choose Lor R, which
pay off with (initially unknown) probabilities pL and pR. Subjects have a fixed total
number of choices N (emphasized by the dotted lines) and seek to optimize their
summed reward. (B) The value of exploration: The long-term value of choosing
uncertain option Las a function of its expected immediate payoff. (The cumula-
tive Q-value over 50 choices is plotted normalized to a per-choice value.) Note that
even when the immediate payoff is expected to be less than 50 percent, the value
lies above that for repeated choice of option R, which pays off 50 percent for cer-
tain. C) The value of uncertainty: The long-term value of choosing uncertain option
Las a function of how uncertain it is (measured as posterior variance), holding the
expected immediate payoff fixed at 50%. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

12 Areas differentially active during exploration, from (Daw et al., 2006b). Top: Both
bilateral frontopolar cortex (rFP, lFP) and anterior intraparietal sulcus (rIPS, lIPS)
exhibited higher BOLD activity during choices estimated to be exploratory com-
pared to exploitative ones. Bottom: BOLD timecourses from these regions aver-
aged over exploratory (red) and exploitative (blue) trials; both areas exhibit positive
BOLD excursions during exploration and the opposite for exploration. . . . . . . . . 67
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Figure 1: N-DM002 Paradigmatic tasks. A) Subjects can predict the magnitude of future pain from
partially informative visual cues that follow a Markov chain (Seymour et al., 2004); see section 3.1.
B) Monkeys have to report the direction of predominant motion in a random dot kinematogram by
making an eye movement (Britten et al., 1992); see section 3.2. In some experiments, the monkeys
have the additional choice of whether to act or collect more information (Gold and Shadlen, 2007);
see section 3.3. C) Subjects have to choose between four evolving, noisy bandit machines (whose
payments are shown in the insets), and so must balance exploration and exploitation (Daw et al.,
2006b); see section 3.4.
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Figure 2: N-DM002 An abstract decision theoretic task. Subjects normally start in state x3 or x4,
signalled by cues c3 or c4. They have three options L, R or C, the former two leading to rewards or
punishments such as r3(L); the latter leading via stochastic transitions (probabilities such as p31) to
states x1 or x2, which are themselves signalled by cues c1 and c2, and license rewarded or punished
choices L and R. Subjects could be (partially) ignorant about their states if the cues are confusable
(eg if x3 ‘looks like’ x4), and/or about the rules of the task (the rewards and probabilities). In some
cases, the subjects might start in x1 or x2. Different options generate a wide family of popular
decision theoretic problems.
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Figure 3: N-DM002 Markov decision problem. A) The version of the basic task rendered as a
simple MDP. Each state xi has a distinct cue ci, and the rewards and transition probabilities are as
shown (the case for C at x4 is symmetric with respect to x3). B;C) The solution to MDP involves
optimal state-action values Q∗

i (a), state values V ∗
i , and thence the optimal policy π∗

i (shown in the
boxes) first for states x1 and x2 (B), and then for x3 and x4 (C). The calculation for x3 and x4 only
depends on V ∗

1 and V ∗
2 and not the manner by which the reward from x1 or x2 is achieved.
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Figure 4: N-DM002 BOLD signals correlating with higher-order prediction error in the aversive
conditioning task of figure 1A, adapted from Seymour et al. (2004). A) Regions of bilateral ventral
putamen (put; also right anterior insula: ins) where the BOLD signal significantly correlated with
prediction error. B-D) BOLD timecourses from right putamen. B) Positive prediction error: cue
B (contrasted against cue D) following cue C. C) Negative prediction error: cue D (contrasted
against cue B) following cue A. D) Biphasic prediction error: Cue A followed by cue D, contrasted
against cue C followed by cue B.
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Figure 5: N-DM002 Signal detection theory task. Subjects start in xα ∈ {x1, x2}, but the cue cα is
confusing between these two possibilities, according to the distributions shown inside the states.
A) The objective state in the environment shows the consequence of choosing L or R at either of the
two states. B) The subjective state of the subject shows the confusion between the two possibilities,
in particular (overloading the notation), the reward rcα(L) might be either r2(L) = 0 or r1(L) = 1.
The distributions show pi(cα|xi) (for the simple, equal-variance, Gaussian case). Here, x1, which
requires L, is associated with slightly higher values of cα than x2, which requires R.
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Figure 6: N-DM002 Signal detection theory for the Gaussian case. A) The log likelihood ratio
indicates how the observation cα favors one or other state xi. For the equal-variance Gaussian
case, this is linear in the observation cα. Standard decision theoretic tests are based on thresholding
the likelihood ratio (or its logarithm, since this is a monotonic transform). B) Bayesian decision
theory is based on the posterior probabilities P (xi|cα), which combine the likelihood ratio and any
prior information. Given the reward structure in figure 5, and equal priors, these are also the Q∗

values for the choices L and R. C) The Receiver-Operator Characteristic plots the two independent
quantities size (false alarm rate) and power (hit rate) of the test against each other. The area under
the curve is related to the discriminability d′ and is a measure of the quality of the cue cα for
distinguishing x1 from x2. D) If σ1 6= σ2, the log likelihood ratio need not be monotonic in cα, and
so implementing a single threshold on log(l(cα)) can require more than one threshold on cα.
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Figure 7: N-DM002 Britten et al. (1992)’s experiment on primate signal detection. A) Macaque
monkeys observed random dot motion displays made from a mixture of coherent dots interpreted
as moving in one direction and incoherent dots moving at random. For these dots, the task would
be to tell whether the coherent collection is moving up or down. The percentage of coherently
moving dots determines difficulty. B) The filled points show the psychometric curve; ie the dis-
crimination performance as a function of the percentage of coherent dots. The open points show
the quality of performance that would be optimally supported by a recorded neuron. C) The
graphs show histograms of the activity of a single MT neuron at three coherence levels over a 2
second period, when the coherent motion was in its preferred direction (hashed) or opposite to this
(solid). The larger the coherence, the larger the discriminability d′, and the more easily an ideal
observer counting the spikes just of this neuron would be able to judge the direction. Adapted
from (Britten et al., 1992; Dayan and Abbott, 2005).
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Figure 8: N-DM002 Information integration and probing. A;B) Subjects start at xβ ∈ {x3, x4} but
with uncertainty due to an aliased cue cβ , and can either act (perform L or R) immediately, or
perform action C, which incurs a small cost rcβ

= −0.1, but takes them to xα ∈ {x1, x2}, where
a new, independent, observation cα can help resolve the uncertainty as to which of L or R would
be better. As in figure 5, (A) shows the objective state and outcomes; (B) similar quantities from
a subjective viewpoint. The distributions show how the cues are related to the states. This is a
simple task, since the transitions are deterministic p31 = p42 = 1.
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Figure 9: N-DM002 The value of sampling. A) The posterior distribution P (xβ = x3|cβ) at the
first state xβ is just as in figure 6C. B) The log likelihood ratios just add, to give the posterior
distribution P (x1|cα, cβ). C) The value of state xα depends on cα, cβ according to the maximum
max {P (x1|cα, cβ), P (x2|cα, cβ}, since the subject will choose L or R according to these probabili-
ties. D) At xβ , the subject has to use cβ to work out the chance of seeing cα at xα. E) Averaging
the value in (C) over the distribution in (D), and including the cost rcβ

(C) = −0.1 gives the value
Q∗

β,cβ
(C) of probing (solid line). This is greater than the value of choosing the better of L and R

(dashed line) for values of cβ that create the least certainty about xβ .
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Figure 10: N-DM002 Evidence accumulation in LIP. This figure is taken from Gold and Shadlen
(2007) based on data from Britten et al. (1992); Roitman and Shadlen (2002), and shows the putative
integration of opponent evidence from MT to construct a net log likelihood ratio associated with
an SPRT-like threshold-based decision. A) monkeys discriminate by making saccades the direction
of motion of the motion either into (Tin) or away from (Tout) the response field of LIP neurons.
B) The main plots show the average activity of LIP neurons as a function of motion strength or
coherence, temporally triggered on the motion onset. Solids lines are Tin cases; dashed lines, Tout

cases. Following a transient, the curves evolve in a manner roughly consistent with a putative
log likelihood ratio. The inset plot shows the constancy of the activity of MT neurons, albeit from
a different experiment. C) These plots are triggered on the time of the saccade, to examine a
threshold-like policy.
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Figure 11: N-DM002 A) Two-armed bandit task. For each episode, the agent can choose Lor R,
which pay off with (initially unknown) probabilities pL and pR. Subjects have a fixed total number
of choices N (emphasized by the dotted lines) and seek to optimize their summed reward. (B)
The value of exploration: The long-term value of choosing uncertain option Las a function of its
expected immediate payoff. (The cumulative Q-value over 50 choices is plotted normalized to
a per-choice value.) Note that even when the immediate payoff is expected to be less than 50
percent, the value lies above that for repeated choice of option R, which pays off 50 percent for
certain. C) The value of uncertainty: The long-term value of choosing uncertain option Las a
function of how uncertain it is (measured as posterior variance), holding the expected immediate
payoff fixed at 50%.
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Figure 12: N-DM002 Areas differentially active during exploration, from (Daw et al., 2006b). Top:
Both bilateral frontopolar cortex (rFP, lFP) and anterior intraparietal sulcus (rIPS, lIPS) exhibited
higher BOLD activity during choices estimated to be exploratory compared to exploitative ones.
Bottom: BOLD timecourses from these regions averaged over exploratory (red) and exploitative
(blue) trials; both areas exhibit positive BOLD excursions during exploration and the opposite for
exploration.


