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1. The Hodgkin-Huxley neuron

Numerically integrate the Hodgkin-Huxley equations with matlab. Best idea is to use the Matlab ode45

function. The equations are:

C
dV

dt
= −ḡNam

3h(V − ENa) − ḡKn4(V − EK) − ḡL(V − EL) + Istim (1)

dx

dt
= αx(1 − x) − βxx where x is m, n or h (2)

αn(V ) = 0.01(V + 55)/ [1 − exp(−(V + 55)/10)] (3)

βn(V ) = 0.125 exp(−(V + 65)/80) (4)

αm(V ) = 0.1(V + 40)/ [1 − exp(−(V + 40)/10)] (5)

βm(V ) = 4 exp(−(V + 65)/18) (6)

αh(V ) = 0.07 exp(−(V + 65)/20) (7)

βh(V ) = 1/ [exp(−(V + 35)/10) + 1] (8)

Let C = 1 µF/cm2, ḡL = .003 mS/mm2, ḡK = 0.36 mS/mm2, ḡNa = 1.2 mS/mm2, EK = −77mV, EL =
−54.387 mV and ENa = 50 mV. Use an integration time step of 0.1 ms.

Hint: Choose a surface area for your membrane and make sure you get all the units right. Remember,

F/S = Farad/Siemens = 1 second. You won’t see any spikes unless you apply some input current (try
200 nA/mm2).

(a) Plot a spike (V versus time). Plot the gating variables as a function of time during a spike. What
happens?

(b) Plot the equilibrium value of the gating variables (e.g., m∞) as a function of voltage.

(c) Plot the firing rate versus Istim. The firing rate should suddenly jump from zero to a non-zero

value. This is called a type II behaviour. Type I behaviour is when the firing rate begins at zero
and increases continuously without any jumps.

(d) What happens as you decrease ḡK?

(e) Spikes are initiated at the axon hillock, where the axon meets the soma. This is because ḡNa is

very high there. What happens as you increase ḡNa?
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2. The linear integrate and fire neuron

An approximate treatment of spiking neurons is to think of them as passively integrating input and,

when the voltage crosses threshold, emitting a spike. This leads to the linear integrate and fire neuron
(sometimes called the leaky integrate and fire neuron, and often abbreviated LIF), which obeys the

equation

C
dV

dt
= −gL(V − EL) + I0 .

This is just the “linear integrate” part. To incorporate spikes, when the voltage gets to threshold (Vt),

the neuron emits a spike and the voltage is reset to rest (Vr).

(a) Compute the firing rate of the neuron as a function of I0. This firing rate will be parameterized

by three numbers: EL, Vt, and Vr.

Hint #1: Compute the time it takes the voltage to go from Vr to Vt. The inverse of this time is the

firing rate.

Hint # 2: Changing variables, and defining new quantities, almost always makes life easier. For
example, you might let v = V − EL and define V0 ≡ I0/gL and τ ≡ C/gL.

(b) Now consider a time-varying input current I(t). Show that if the neuron doesn’t spike (we raise

the threshold to ∞) and V (t = 0) = EL, then

gL

∫
∞

0

dt (V (t) − EL) =

∫
∞

0

dt I(t) .

Note that
∫
∞

0
dt I0(t) is the total injected charge.

3. The quadratic integrate and fire neuron

Another popular model, the quadratic integrate and fire (QIF) neuron, obeys the equation

C
dV

dt
= gL

(V − Vt)(V − Vr)

Vt − Vr

+ I(t)

where Vt > Vr . Here the spike mechanism is a little different than with the LIF: a spike is emitted when
V = +∞, at which point the voltage is rest to −∞. (Yes, the voltage does go to infinity in finite time.)

(a) Show that when I = 0, the voltage has fixed points at Vr and Vt. (A fixed point is a voltage at
which dV/dt = 0.) Which one is stable and which is unstable? Why?

Hint: Consider the equation dx/dt = f(x). A fixed point occurs at values of x such that f(x) = 0.

Let x0 be one such fixed point. To find its stability, linearize by letting x = x0 + δx where
δx is small, plug that into the ODE, Taylor expand, and keep only the linear term. The result

is dδx/dt = f ′(x0)δx where a prime denotes a derivative. The sign of f ′(x0) tells you about
stability. In other words, it tells you whether δx decays to zero (the fixed point is stable to small

perturbations) or grows exponentially (the fixed point is unstable).

(b) Let I(t) = I0 = constant. Find the range of I0 that allows fixed points. The value of I0 at which

the fixed points disappear is called the threshold.

(c) For a value of I0 that allows fixed points, linearize around the stable one and compute the time

constant. How does the time constant behave near threshold? What does this mean in terms of

the neurons ability to integrate small fluctuations in the input (e.g., I(t) = I0 + δI(t) where δI(t)
is small).

Hint: In the previous hint we had the linearized equation dδx/dt = f ′(x0)δx. If f ′(x0) < 0, then

the time constant, τ is 1/[−f ′(x0)], because the equation can be written τdδx/dt = −δx.
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(d) (Optional) Compute the firing rate as a function of I0.

Hint #1: As usual, it simplifies your life to make a change of variables. In this case a good one is

V = (Vt + Vr)/2 + v(Vt − Vr)/2.

Hint #2: As in the previous problem, you will want to compute the time it takes the neuron to

go from reset (V = −∞) to threshold (V = +∞); the inverse of this is the firing rate. A couple
math things you will need to know. First, suppose you have the equation dx/dt = f(x). Usually

we solve this for x as a function of t. However, we can write the equation dt/dx = 1/f(x), and
solve it for t as a function of x. This is easy, since we have only x on the right hand side,

t(xb) = t(xa) +

∫ xb

xa

dx

f(x)
,

which we write

t(xb) − t(xa) =

∫ xb

xa

dx

f(x)
.

The left hand side, t(xb)− t(xa), is just the time it takes for x to go from xa to xb. This formalism
can be used to compute the period of the QIF neuron (and the LIF).

Second,

∫ +∞

−∞

dx

1 + x2
= π ,

which is easily verified by making the change of variables x = tan(θ).
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