
Assignment 4

Theoretical Neuroscience

Maneesh Sahani

31 October 2008

1. Doubly stochastic Poisson processes and spike patterns.

In the 1980s Abeles suggested that the integrative properties of neurons, coupled with the density
of connections between them, would lead to self-supporting synchronous volleys of firing that could
propagate between different constellations of neurons with extremely high temporal precision (a phe-
nomenon called a “synfire chain”). This prompted an experimental search for the precisely timed spike
patterns that might be a signature of such a phenomenon. A single neuron might participate in more
than one synchronous volley of a synfire chain. Thus, in part because of technological limitations,
many experiments looked for patterns in the spike train of a single cell. Here, we will look at one such
hypothetical experiment.

Suppose the mean response rate of a neuron to a stimulus flashed shortly before time 0, is given by
the function

λ(t) = Θ(t)ρe−t/T

where Θ(t) is the Heaviside function (0 if t < 0 and 1 if t ≥ 0) and ρ and T are constants. We begin
by making the common assumption that the firing of the neuron is described by an inhomogeneous
Poisson process with intensity λ(t).

(a) On average, how many spikes will the cell emit in response to the stimulus (assume the experi-
mental counting interval is � T ).

(b) Under the inhomogeneous Poisson model, what is the intensity with which we would observe
spikes within small intervals around three specific times t, t+ τ1 and t+ τ2 all greater than 0. [We
want the marginal probability of those 3 times – don’t assume anything about what the cell is
doing at any other time].

(c) Integrate your expression with respect to t to find σ(τ1, τ2), the intensity of observing a pattern
with intervals τ1 and τ2 at any point. [Assume τ1 and τ2 are positive.]

(d) An experimenter reports that, looking at a neuron with ρ = 80s−1 and T = 0.05s and binning
spikes in 1 ms intervals, he observed the pattern (5, 50) (i.e., τ1 = 5 ms and τ2 = 50) 8 times in
1000 trials. Given your result above, is this surprising? Assume that he looked only for the (5,50)
ms pattern. [OPTIONAL Why should that matter to your answer?]

Looking more closely at his data, you note that the Fano Factor of the spike count is about 2. This
leads you to consider a doubly stochastic Poisson process model instead, with an intensity

λ(t) = Θ(t)ρe−t/T

which depends on a random variable ρ ∼ Gamma(α, β).
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(e) Use moment matching to estimate values of the parameters α and β. [Hint: find an expression
for the variance of a Poisson distribution with random mean parameter.]

(f) Repeat the calculation for the expected number of (5,50) ms patterns. [Hint: you’ll need the third
moment of the Gamma distribution]. Is the experimental result surprising now?

2. The expected autocorrelation function of a renewal process.

In class, we analysed the autocorrelation function of a point process in terms of its intensity function
λ(t, . . .). For a self-exciting point process, λ depends on the past history of spiking, and so computing
the expected value of the correlation in this way can be quite difficult. Fortunately, for the special case
of a renewal process (i.e. a point process with iid inter-event intervals), there is an alternative way to
compute the autocorrelation function.

Consider a neuron whose firing can be described by a renewal process with inter-spike interval proba-
bility density function p(τ).

(a) Given an event at time t, the probability that the next spike arrives in the interval Iτ = [t+ τ, t+
τ + dτ) is p(τ)dτ . What is the probability that the second spike after the one at t arrives in Iτ

instead? The third spike?

(b) What is the probability that, given a spike at t, there is a spike in Iτ , regardless of the number
of intervening spikes?

(c) Your answer to the previous question has given you the positive half of the autocorrelation func-
tion. What does the negative half look like? What happens at τ = 0?

(d) Show that for a Gamma process with ISI density

p(τ) = β2τe−βτ ,

the Laplace transform of (the right half of) the expected autocorrelation function is

L[Q(τ)](s) =
β2

(β + s)2 − β2
.

[Hint: Recall that L[f ](s) =
∫∞
0

dx f(x)e−sx. Apply the Laplace convolution theorem, after
setting p(τ) = 0 for τ < 0. Finally, use the fact that for |x| < 1, (1− x)−1 = 1 + x + x2 + x3 + ...]

Find the expected power spectrum (i.e. the Fourier transform of the expected autocorrelation
function) for this process.

3. Encoding Models

(a) Prove Bussgang’s Theorem. That is, show that if we have samples {xi, yi}, where yi is a random
variable whose expectation is given by E[yi|xi] = f(w · xi), then the cross-correlation

∑
i yixi (i.e.

the “spike-triggered average” if yi is binary) provides an unbiased estimate of αw (i.e. w times
an unknown constant α) if:

i. P (x) is spherically symmetric, where we define spherical symmetry to mean that,

∀ x1, x2 ∈ Rn, ‖x1‖ = ‖x2‖ ⇒ P (x1) = P (x2).

ii. E[yx] 6= 0 (i.e. the expected spike-triggered average is not zero).

2



(b) Simulate the response of an LNP (Linear-Nonlinear-Poisson) model to a temporal stimulus. Let
w be a 20-tap filter (sampled in 10-msec bins) with biphasic temporal structure (i.e. a short,
large-amplitude peak and a longer, smaller-amplitude trough). Choose the nonlinear response
function f to be a sigmoid that saturates at 200 spikes/sec. Recall that the instantaneous rate
for an LNP neuron is given by

ri = f(w · xi)

and that Poisson spikes can be generated by flipping a biased coin in each (suitably small) time
bin with the probability of “heads” equal to (∆t)ri.

i. Simulate the neuron with a 1-sec Gaussian white noise stimulus sampled at a framerate of
100-Hz. Generate 200 responses of the neuron to this stimulus. Compute the PSTH of these
responses, and show that it matches the rate prediction given by convolving the stimulus with
w and passing the output through f .

ii. Simulate the response to a long Gaussian white noise stimulus, and compute the STA (spike-
triggered average). Plot the STA rescaled as a unit vector, and show that it provides a
reasonable match to w/‖w‖.

iii. Reconstruct the nonlinearity of the cell: begin by filtering the raw stimulus with the STA.
Make a histogram of the filtered stimulus values, and make another histogram of the spike-
triggered filtered stimulus values, using in the same binning. Divide the latter histogram by
the former and multiply by the inverse of the bin size. Plot this estimate of the nonlinearity
against the true f .

iv. Stimulate the model cell with correlated Gaussian white noise: take the original (Gaussian
white noise) stimulus and filter it with a Gaussian whose standard deviation is 20ms). Rescale
if necessary to ensure that the standard deviation of the new stimulus is the same as the old.
Now simulate the neuron and compute the STA, and compare it to w. Compute the de-
correlated STA (obtained by “whitening” with the inverse of the stimulus covariance matrix),
and compare with w. If necessary, regularize by adding a small constant to the diagonal of
the stimulus covariance matrix (this corresponds to doing “ridge regression”), and examine
how this affects the estimate.

v. Change f to be a symmetric function, such as f(ξ) = αξ2. Simulate the new model neuron
with Gaussian white noise, and compute the STA and largest eigenvector of the spike-triggered
covariance (STC) matrix. Compare with w. Reconstruct the nonlinearity using both filters,
and compare with the true f .
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