Assignment 9 Theoretical Neuroscience

Mandana Ahmadi (mandana@gatsby.ucl.ac.uk)

due 19 December, 2008

1. Linear analysis

Consider an equation of the form

$$\frac{d\mathbf{z}}{dt} = \mathbf{A} \cdot \mathbf{z} \tag{1}$$

which in component form looks like $dz_i/dt = \sum_j A_{ij}z_j$. (The "." notation, favored by physicists worldwide, can be used for multiplying both matrices with vectors and vectors with vectors. For the former, the *i*th component of $\mathbf{A} \cdot \mathbf{z}$ is $\sum_j A_{ij}z_j$, and for the latter $\mathbf{x} \cdot \mathbf{y} = \sum_i x_i y_i$.)

Define \mathbf{v}_k , \mathbf{v}_k^{\dagger} , and λ_k via the equations

$$\mathbf{A} \cdot \mathbf{v}_k = \lambda_k \mathbf{v}_k \tag{2a}$$

$$\mathbf{v}_{k}^{\dagger} \cdot \mathbf{A} = \lambda_{k} \mathbf{v}_{k}^{\dagger} .$$
(2a)
$$\mathbf{v}_{k}^{\dagger} \cdot \mathbf{A} = \lambda_{k} \mathbf{v}_{k}^{\dagger} .$$
(2b)

The \mathbf{v}_k and \mathbf{v}_k^{\dagger} are eigenvectors and adjoint eigenvectors, respectively (the latter sometimes called left eigenvectors), and the λ_k are the associated eigenvalues. If **A** is an $n \times n$ matrix (which would mean that z has n components), there are n eigenvectors. Assume a normalization such that $\mathbf{v}_k \cdot \mathbf{v}_l^{\dagger} = \delta_{kl}$.

Show that if z evolves according to Eq. (1) and $z(t = 0) = z_0$, then

$$\mathbf{z}(t) = \sum_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{\dagger} \cdot \mathbf{z}_{0} e^{\lambda_{k} t} \,. \tag{3}$$

Remember this! If you stay in computational neuroscience, you will use it over and over and over.

2. Stability analysis

Consider two dynamical variables, x and y, that evolve according to

$$dx/dt = ax + by \tag{4a}$$

$$\frac{dy}{dt} = cx + dy \tag{4b}$$

As usual, the trace (T) and determinant (D) are given by T = a + d and D = ad - bc.

2a. Consider the following four cases:

1) T < 0, D > 0,

- 2) T < 0, D < 0,
- 3) T > 0, D > 0,

4) T > 0, D < 0.

Choose values of a, b, c and d that are consistent with each case, and sketch the nullclines and trajectories in x-y space. To make life easier for the person grading this, draw the x-nullcline in blue and the y-nullcline in red. To make contact with what we did in class, you may want to make a and c positive and b and d negative, but this is not necessary.

2b. Show that when $T^2 < 4D$, x(t) and y(t) are given by

$$x(t) = x_0 e^{\lambda_r t} \cos(\lambda_i t + \phi_x)$$
(5a)

$$y(t) = y_0 e^{\lambda_r t} \cos(\lambda_i t + \phi_y)$$
(5b)

where λ_r and λ_i are the real and imaginary parts of the eigenvalues (see problem 1) and x_0, y_0, ϕ_x and ϕ_y are constants.

At some point in your lives you should compute x_0, y_0, ϕ_x and ϕ_y in terms of a, b, c, d and the initial conditions, but this is *not* part of the homework assignment. Merry Christmas.

3. Mean field analysis

Consider firing rate equations of the form

$$\tau \frac{d\nu_i}{dt} = \phi \left(\gamma \overline{\nu} + \frac{\beta}{Nf(1-f)} \sum_{j=1}^N \eta_i (\eta_j - f) \nu_j \right) - \nu_i \tag{6}$$

where N is the number of neurons, γ and β are constants, γ is negative, $\overline{\nu}$ is, as usual, the firing rate averaged over neurons,

$$\overline{\nu} = \frac{1}{N} \sum_{i} \nu_i \,, \tag{7}$$

 η is a random binary vector,

$$\eta_i = \begin{cases} 1 & \text{probability } f \\ 0 & \text{probability } (1 - f) , \end{cases}$$
(8)

and ϕ is monotonically increasing.

Let

$$m = \frac{1}{Nf(1-f)} \sum_{i} (\eta_i - f) \nu_i \,. \tag{9}$$

Note that *m* is the firing rate of the "memory" neurons relative to the mean firing rate, with an extra factor of 1/(1 - f) thrown in to simplify the equations that you will derive.

3a. Derive dynamical mean field equations for $\overline{\nu}$ and m in the large N limit. By "dynamical," I mean derive equations for $d\overline{\nu}/dt$ and dm/dt.

3b. Sketch the nullclines for $\overline{\nu}$ and m assuming ϕ is approximately sigmoidal.

4. Hopfield networks reduce energy

Consider a Hopfield network that evolves asynchronously according to

$$S_i(t+1) = \operatorname{sign}\left[\sum_i J_{ij} S_j(t)\right]$$
(10)

where J_{ij} is symmetric and has no diagonal elements,

$$J_{ij} = J_{ji} \tag{11a}$$

$$J_{ii} = 0.$$
 (11b)

Define the energy,

$$H(t) = -\frac{1}{2} \sum_{i} S_i(t) J_{ij} S_j(t) .$$
(12)

Show that if the S_i obey the dynamics given in Eq. (10), then the energy never increases; i.e., $H(t+1) \le H(t)$.

This is an important result: since the energy is bounded from below, it implies that the dynamics eventually reaches a fixed point.