Learning and Meta-learning

e computation

— making predictions
— choosing actions
— acquiring episodes
— statistics

e algorithm
— gradient ascent (eg of the likelihood)
— correlation
— Kalman filtering
e implementation
— Hebbian synpatic plasticity

— neuromodulation



Types of Learning

supervised viu inputs u and desired
or target outputs v
both provided, eg
prediction—outcome

reinforce maxr|u input u and scalar
evaluation r
often with temporal
credit assignment
problem

unsupervised u or self-supervised
learn structure from
statistics

These are closely related:

supervised learn P[v|u]

unsupervised learn P[v, u]



Hebb

Famously suggested:

if cell A consistently contributes to
the activity of cell B, then the synapse
from A to B should be strengthened

e Sstrong element of causality
e what about weakening (LTD)?

e Multiple timescales — STP to protein
synthesis

e Multiple biochemical mechanisms

e systems:

— hippocampus — multiple sub-areas
— neocortex — layer and area differences

— cerebellum — LTD is the norm



Neural Rules
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Stability and Competition
Hebbian learning involves positive feedback.

Control by:

LTD usually not enough — covariance versus
correlation

saturation prevent synaptic weights from
getting too big (or too small) — triviality
beckons

competition spike-time dependent learning
rules

normalization over pre-synaptic or
post-synaptic arbors

e subtractive: decrease all synapses by
the same amount whether large or
small

e Mmultiplicative: decrease large synapses
by more than small synapses



Preamble

Linear firing rate model

dv Ny
Tr—=—v—|—w-u=—v—|—2wbub
dt i—1

assume that 7. is small compared with the
rate of change of the weights, then

V=W-1u
during plasticity
Then have
dw
w— — J(v,u,w
Tw = [ (0,0, W)

Supervised rules use targets to specify v —
neural basis in ACh?



T he Basic Hebb Rule

dw

Tw—

dt

averaged () over input statistics gives

= uv

dw

Tw—

dt

where Q is the input correlation matrix.

= () ={(uu-w) =Q  -w

Positive feedback instability

d d
dt dt

AlsOo have discretised version

T
w—-ow+—Q- -w.
Tw
integrating over time, presenting patterns for

T'" seconds.



Covariance Rule

Since LTD really exists, contra Hebb:

dw
wT . — u - Qv
7 (v =6.)
or
dw
w,. . — — eu
T, pn (u ) v

If 6, = (v) or 8, = (u) then

where C = ((u — (u))(u — (u))) is the input
covariance matrix.

Still unstable

d 2
Tw— |W|* = 2v(v — (v
“w]? = 20(v - (v))
which averages to the (positive) covariance of
V.



BCM Rule
Odd to have LTD with v =0 or u=20.

Evidence for
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If 6, slides to match a high power of v

do,

dt

with a fast 7y, then get competition between
synapses — intrinsic stabilization.
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Subtractive Normalisation

Could normalise |w|? or

Y wy=n-w n=(1,1...,1)

For subtractive normalisation of n - w:

dw v(n-u)
Tw— = vUu — ——1
with dynamic subtraction, since
dn - w n-n
Tw =fun-u<1— >=O.
dt
asn-n—=»N,.

Strongly competitive — typically all the
weights bar one go to 0. Therefore use upper
saturating limit.
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The Oja Rule

A multiplicative way to ensure |w|? is constant

dw 5
Tw—— = VU — QU°W
dt

gives
d|w|?
dt
so |[w|? — 1/a.

= 20%(1 — a|w|?).

Tw

Dynamic normalisation — could also enforce
normalisation all the time.

11



Timing-Based Rules
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slice cortical pyramidal cells; Xenopus retinotectal system

window of 50ms

gets Hebbian causality right

rate-description

o = /0 ar (HPu@u(t — 1) + H(—m)olt — mud)) .

spike-based description necessary if an
input spike can have a measurable impact
on an output spike.

critical factor is the overall integral — net
LTD with ‘local’ LTP.

partially self-stabilizing
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Timing-Based Rules

Gutig et al; van Rossum et al:
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FP Analysis

How can we predict the weight distribution?

= aP(w,t) — — ppP(w7 t) T de(w7 t)_l_
ppP(w — wp, t) + paP(w + wy, t)
Pa
/:\.;:*:.. Taylor-expand about
5 : P(w,t) leads to a
= Fokker-Planck equation.
Need to work out p; and
% pp; assume steady firing

Depression: Pd = twindow/tisi
Potentiation: I affects O: p, = [;* P(dt)ddt

0.6

Probildtl< Smz)

o 5000 10000 15000
Conductance (ps)
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Single Postsynaptic Neuron

Basic Hebb rule:

dw
w T — W
T gy = Q@

analyse using an eigendecomposition of Q:
Q- e, = e, A1 > Ao

Since Q is symmetric and positive
(semi-)definite

e complete set of real orthonormal evecs

e With non-negative eigenvalues

e wWhose growth is decoupled

Write
Ny
w(t) = ) cu(t)e,
p=1
then

cu(t) = cu(0) exp (Aui>

Tw
and w(t) — a(t)e; as t — oo

15



Constraints

a(t) = exp(Aut/Ty) — oo.
e Oja makes w(t) — e1/y/«

e sSaturation can disturb outcome

A B
1t 1t

081 0.8+

o 06 o 06
0.4} ,X 04l /

0.2¢ 0.2+

N‘T\éfé_\ ok

ot

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 o.‘s 1
Wy Wy

e Subtractive constraint
Tww pm— Q * W - w.

Sometimes e; x n — SO its growth is
stunted; and e, -n =0 for p# 1 so

w(t) =(w(0) -e1)e1+
2”: exp (2 ) (w(0) e,
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Translation Invariance

Particularly important case for development
has

(up) = (u) Quy = Q(b—b')
Write n = (1,...,1) and J = nn’, then
Q =Q— N(u)?J
1. e,-n =0, AC modes are unaffected

2. e,-n# 0, DC modes are affected

3. Q has discrete sines and cosines as
eigenvectors

4. fourier spectrum of O are the eigenvalues

17



PCA

What is the significance of e;7

e Ooptimal linear reconstruction: minimise
—_ 2
E(w,g) = (Ju—gvf?)
e information maximisation:

Tlv,u] = H[v] — H[v|x]
under a linear model

e assume (u) = 0 or use C instead of Q.

18



Linear Reconstruction

E(w,g) = (lu—gvf*)
= K-2w-Q-g+|lgl>w-Q w
quadratic in w with minimum at

x g

WS o=
gl

making
g-Q-g
1g]]?
look for soln with g=3",(ex-g)er and ||g||?=1:

N
E(w"g)=K—-Y (er-8)° X\
k=1

clearly hase;-g=1andex-g=e3-g=...=0

Therefore g and w both point along principal
component
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Infomax (Linsker)

argmaxyZ[v,u] = Hlv] — H[v|u]

Very general unsupervised learning
suggestion:

e H[v|u] is not quite well defined unless
v=w - u-+mn where n is arbitrarily
deterministic

e H[v] = Zlog2mes? for a Gaussian.

If P[u] ~ N0, Q] then
v~ N[O, W-Q- -w—+ v?]

maximise wQw?! subject to ||w||? =1

Same problem as above: implies that

W X €.

note the normalisation

If non-Gaussian, only maximising an upper
bound on Z[v,u].

20



Ocular Dominance

COreX _  competitive

v(a) . ]
interaction

W'(a,b)A(a,b)

O o000 O OO00O0O
u'(b) left thalamus right u'(b)

e retina-thalamus-cortex

e OD develops around eye-opening

e interaction with refinement of topography
e interaction with orientation

e interaction with ipsi/contra-innervation

e effect of manipulations to input

ocularity

L W R W~
b b b

L R
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Start Simple

Consider one input from each eye

V= WRUR + W U .

Then
_ _ 4s d4p
Q_<uu>_<QD qs)
has
er = (1,1)/v?2 A1 =gs + qp
ex=(1,-1)/V2 A2 = qs — qp

So if W4+ = WR —+ W, W- = WR — W|_ then

dw+ dw_
Tw? = (g5 + 9p)w+ Tw?

Since g > 0, w+ dominates — so use subtractive
normalisation

= (95 — ap)w- -

d _

. Wi _ g dew
dt dt

SO w_ — +w and one eye dominates.

= (g5 — qp)w-.
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Orientation Selectivity

Model is exactly the same — input correlations
come from ON/OFF cells:

C)1 D)15
OSJL
131
g o
05

Q

T4 2 0 oz 4 e

Now dominant mode of Q~ has spatial
structure:

[ AL ITH [ L 0t 3kl

GE=UOLG BONLe

il 16 ([ [ KE] 0 LE i mie 1 'I:ll_:]_

SNUNEE XULIRe

il ai R 0.0z q.g0n

NEEEE ROEBG

centre-surround version also possible, but is
usually dominated because of non-linear
effects.
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Temporal Hebbian Rules

Look at rate-based temporal model as

1 T 00
W= —/ dtv(t)/ dr H(r)u(t — 7)
Tw Y0 —00
ignoring some edge effects.
Correlate

e output v(t) with

e filtered version of the input

/_ O;dT H(r)u(t — 7)

ie look for structure at the scale of the
temporal filter

24



Multiple Output Neurons

M

output v

W

Fixed recurrent connections

d
Trd—::—V—FW-u—FM-V

leads to
v=W-u+M-v
—K-W-u
where K= - M)

Thus with Hebbian learning

Tw%:<VU>:K'W-Q

and we can analyse the eigeneffect of K.

25



Ocular Dominance Revisited

A B

Write wy = wr +w| ,w_ = wr — w|_, for the
projective weights, then

dW_|_ dw _

s K. w—— — — K- -w_
” (95 +9p)K-wy Tw (s —qp)K-w

Tw

Since w4 is clamped by subtractive
normalisation, just interested in the pattern
of += in w_.

Since K is Toplitz — eigenvectors are waves;
eigenvalues come from the Fourier transform.
A

B
1 0.6

0.5

K, e oy

0.5} %

al 0
-06 -04 -02 0 0.2 04 06 0 20 40 60
cortical distance (mm) k (1/mm)
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Comp Hebbian Learning

Use a competitive non-linearity

_ (> Wabub)5
Y (S Wanu)’

in conjunction with a postive interaction term

<a

Vg — Z Maa’za’ .
a/

and standard Hebbian learning:
B Wi — WL C
x
5
o
5
o

left input b right input b input b L R

Features:

ocularity > We
topography ‘>, Wz}’
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Feature-Based Models

Reduced descriptions (x,vy, z,rcos(8),rsin(0))
x,y topographic location

z ocularity (e [-1,1])

r orientation strength

6 orientation
matching replace [W - u], by
exp (— Z(ub — Wab)2/205>

b

plus softmax competition and cortical
interaction

learning self organizing map

dWab
= (v, — W, .
i (Va(up b))

or elastic net — only competition and

dWab
dt

Tw

= (vo(up—Wap))+0 Za,eN(a) (Wa—Wap)

Tw

28



Large-Scale Results

meshing of the patterns of OD and OR:

pinwheels linear zones  ocular dominance

| Poundaries
‘ >

ol ) "

SIS W = o

wp=
ANE
e

7 'i'
‘\ =y
T II

overall pattern of OD stripes vs elastic net
simulation
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Redundancy

Multiple units — redundancy:

e Hebbian learning — all units the same

e fixed output connections — inadequate

One possibility is decorrelation:
(vv) =1.

If Gaussian, then complete factorisation.

Three approaches:

Atick & Redlich force n — n mapping and
decorrelate using anti-Hebbian learning.

Foldiak use Hebbian and anti-Hebbian
learning to learn feedforward and lateral
weights.

Sanger explicitly subtract off first
component from subsequent ones.

Williams subtract off predicted portion of u

30



Goodall

v=W.-u+M: v

Anti-Hebbian learning is ideal for lateral
weights:

e if v, and v, are correlated
e make M,, = M,;, negative

e which reduces the correlation

Goodall n — n with W =1 so:

v=I-M)1!1.x=K-x.

Then
M= —uv+1I-—-M
At M =0
(uu-K) =K K- Q- K=L
So

(uu) = (K-uu-K) =1

as required.
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Temporal Plasticity

Using the temporal rule:

d O
de—":: / dr (H(P)o®)u(t — 7) + H(—m)o(t — 7)u(t))
0
A B .
' g
g
S
5,
v 3 .
2
g 4
= 5
0 5 10 15
lap number
e s, = —2 is active before s, =0

e Synapse —2 — 0 gets strengthened

e s, — O extends its firing field backwards
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Supervised Learning

Consider case of learnin airs u™. v
agnp :

classification binary v™ to classify
real-valued u™.

regression real-valued mapping from u™ to

™M,

storage learn the relationships in the data

generalisation infer a functional relationship
from limited examples

error-correction mistakes drive adaptation

Hebbian plasticity:

d 1 s
o = (vu) = — 3 v
dt Nsg =1

and (multiplicative) weight decay

ToWdt = (vu) — aw ,

makes w — (vu)/a. NO positive feedback.
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Classification and the
Perceptron

Classification rule

Cover: 2N, associations in N,-d.

Can use supervised Hebbian learning

1 Ds
W= — v""u"™.
N, 2,
but works quite poorly for random patterns

34



T he Perceptron

u,v =x1, set y=0: w-u"=v"+n"

nn — Z ,Umum . un/Nu
m¥#£En
the sum of (N; — 1)N, terms £1/N,, so
Gaussian.

Correct if —1 < n™" < o0

Ply]=¢ (W\@/(NS - 1))

B
it
S 0ol
- -
- -
8
2 o8t
=
S o7t
o
o
-
G 06
0.5 , .
0 o 4 6 85 10
Ny
N; -1
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Error-Correcting Rules

Hebbian plasticity is independent of the
performance of the network

Perceptron learning rule:
o if v(u™) =0 when v™ =1,

e Mmodify w and « to increase w - u"” — v

easiest rule:
W — W+ €, (v —v(u™))u™
Y=y = (@™ = v(u™)
implies that
A (w-u™ =) = e, —v(@™) (Ju™ + 1)

which has just the right sign. In fact,
guaranteed to converge.

note the discrete nature of the weight update
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Weight Stats (Brunel)

optimal learning for a perceptron with
positive inputs/weights:

Space of synaptic

Distribution of synaptic

weights weights
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Function Approximation

Basis function network

v(s) =w-f(s) ~ h(s)

output v(s) =w-u=w-f(s)

error E =1 ((h(s) —w-f(s))?)

reaches a minimum at (normal equations)

((s)f(s)) - w = (£(s)h(s)) .
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Hebbian Function
Approximation

When does the Hebbian w = (f(s)h(s))/«
satisfy the normal equations

(£(s)f(s)) - w = (f(s)h(s)) 7
1. input patterns are orthongonal
(f(s)f(s)) =1
2. tight frame condition
£(s™) - £(s™) = cOmm
as then

(E(s)E(s)) - w = L)) - (E()R(s))

s TR £ R(™)

S mm/’

= —— Y £(s™)h(s™)

2
aNS

C

N RUOLO)

V1 forms an approximate tight frame
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T he Delta Rule

Defintion of the task in E(w) — how well
(poorly) do synaptic weights w perform?

Gradient descent:

W — W — €, VwE (W)

since if w=w—eVwE(w), then to first order
iN €y

E(W — €, VwE) = E(W) — €, |VwE|*
< E(w)

E(w)

40



Stochastic Gradient Descent

E(w) = %<(h(s) — W - f(s))2> iS an average
over many examples.

Use random input-output paris s™, h(s™) and
change

w — W — €, Vw(h(s™) —v(s™))?/2
=w + ew(h(s™) —v(s™))(s™)
called stochastic gradient descent.

A B C
1.5 1.5 1.5
1 . 1 1
B 4
A)
0.5\,
\
0 o}\

0.5 0.5

0 0

051 0.5 0.5

-1 -1 -1

-1.5 -1.5 -1.5
-10 0 10 -10 0 10 -10 0 10
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Contrastive Hebbian
Learning

T he delta rule
W — W =+ €, ("u” —v(u™)u™)
involves:

Hebbian learning v»™u™ based on target

anti-Hebbian learning —v(u™)u™ based on
outcome

learning stops when outcome = target

Generalize to a stochastic network

exp(—FE(u,v))
Z(u)

Z(u) =) exp(—E(u,v))

Plv|u; W] =

weights W generate a conditional distribution
eg with quadratic form E(u,v) =u-W v
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Goal of Learning

Natural quality measure for u:

Dy (Plvlu], Plvju; W]) = ZP[V|U] In ( Plvu] )

Plv|u; W]

= —) Pv[u]in(Plvl;; W) + K,

average over u™; v is sample of P[v|u™]

Ns
(DL (PIvIal, PIviu; WI)) ~ —Nis S In (Plv™u™; W)
m=1

amounts to maximum likelihood learning.

dIn P[v™|u™; W] _ 0 —FE@,v™) —InZ(u™)
OW.i OWap |

= vjuy' — Y Plviu™; Wluvuy'.
A%

is also Hebb — (anti-Hebb)
positive — (negative)

use Gibbs sampling for v— ~ P[v|u™; W]

unsupervised version is just the same
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Representational Schemes

e invariance
e discriminativity

e generalizability

e compactness
e coding efficiency
e independence

e uniformity
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Grid and Place Cells

A 17Hz B A0Hz

1.5m 1.0m

e Size: Tdorsal—ventral
e invariance (dark)
e Smooth mapping

e uniform

Whitlock, Sutherland, Witter, Moser & Moser, 2008
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Multiresolution V1

e invariance (Gabor compactness)
e interdependence; overcompleteness

e uniformity

Simoncelli & Adelson, 1990; Simoncelli & Schwartz, 1999
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Ventral Vision

1) 4 -
@ | 1]
o= PRl &=
| - t'\r
5 &
I_ o ~
a i
F ol I
v fg,_,’\: - - 1
s N [

e invariance
e discriminativity
e coding irrelevance

Kobatake & Tanaka, 1994

posterior IT

0 X
® 13
&
S
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Statistics and Development

activity-dependent wiring

st

b S -
Fig. 1. {a) Three-eyed Pl
was implanted at Shumway stage

externaily normal dimensions, but lacks a pupillery response. (b} Autoradiographic distribu-
tions of grain densities in the optic tectum of a 3-month postmetamorphic three-eyed frog after
injection of 10 uCi of ["H]proline into the vitreous body of the normal eve. {Inset) Dark-field
enlargment showing the pronounced segregation of labeled and unlabeled regions of the tectat

neuropil.

pinwheels linear zones

& & g
&

ens 8 montls after metamorphosis. The central eye primordinm

{8 -
17 from a similarly staged donoe. The supernumerary eye has

ocular dominance
boundaries
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Barrel Cortex




Modeling Development

Two strategies:

Mmathematical understand the selectivities
and the patterns of selectivities from the
perspective of pattern formation:

e reaction diffusion equations

e symmetry breaking

based on underlying mechanisms of
plasticity such as Hebbian learning

computational understand the selectivities
and their adaptation from basic principles
of processing:

e cextraction

e representation
of statistical structure.

Understand patterns using other
principles, eg minimal wiring volume
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Statistical Structure

misty eyed: natural inputs

Pr[x] = & >0L, 6(x —x*) are structured to lie
on low dimensional ‘manifolds’ in high
dimensional spaces:
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Statistical Structure

misty eyed: natural inputs

Pr[x] = & >0L, 6(x —x*) are structured to lie
on low dimensional ‘manifolds’ in high
dimensional spaces:

e find the manifolds

e parameterize them by coordinate systems
(cortical neurons)

e report the coordinates for particular
stimuli (activities)

e hope that structure carves stimuli at
natural joints for actions/decisions
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Statistical Structure

misty eyed: natural inputs

Pr[x] = & 301, 6(x —xM) are structured to lie
on low dimensional ‘manifolds’ in high
dimensional spaces:

e find the manifolds

e parameterize them by coordinate systems
(cortical neurons)

e report the coordinates for particular
stimuli (activities)

e hope that structure carves stimuli at
natural joints for actions/decisions

surrogates for prior information:

e good reconstruction

e cheapness/brevity (but population
codes?)

e independence
e Sparsity

maybe no general answer?
53



Two Classes of Method

density estimation attempt to fit P;[x] using
a model with hidden structure or causes:

Plx|y; ]
leading to:

Pi[x] ~ P[x; G] =) P[x",y;Gl].

too:
stringent texture

lax lookup table

FA: MoG; sparse coding; ICA; Helmholtz
machine; HMM: Kalman filter; directed
graphical models

(energy-based models Boltzmann
machine, undirected graphical models)

structure search look for unusual structure
(projection pursuit); particular regularities
(stereo)

too unsystematic.
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ML Density Estimation
Make:
Pr[x] = P[x;G] =) P[x,y; ]

to model how x might have been generated
or caused. Synthetic model: vision =
graphics™!

Key quantity is the analytical model:
Plx,y;d]

P ; =
[y|x; G] 5, Plx,y": Gl

learning G on the basis of examples captures
the overall statistical structure in the
collection of patterns (the manifold)

representing x using Ply|x; G] indicates the
possible generators of x (activities
parameterize distribution over coordinates

strong assumption
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Last Caveats

scenes behaviors
racking
dat iati
HIGH-LEVEL objects ata association
VISION

object
recognition

depth map

s.f. contour

s.f.

stereo s.f.

motion
edges disparity optical flow regions

edge hing
detection
LOW-LEVEL features

VISION .
filters \

image sequence

s.f.
shading

segmentat

e mid-level issues (figure/ground)
e complex, hierarchical models

e population codes

e Mmultilinearity

e invariance

e computational uniformity
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