
Learning and Meta-learning

• computation

– making predictions

– choosing actions

– acquiring episodes

– statistics

• algorithm

– gradient ascent (eg of the likelihood)

– correlation

– Kalman filtering

• implementation

– Hebbian synpatic plasticity

– neuromodulation
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Types of Learning

supervised v|u inputs u and desired

or target outputs v

both provided, eg

prediction→outcome

reinforce max r|u input u and scalar
evaluation r
often with temporal

credit assignment
problem

unsupervised u or self-supervised

learn structure from
statistics

These are closely related:

supervised learn P [v|u]

unsupervised learn P [v, u]
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Hebb

Famously suggested:

if cell A consistently contributes to
the activity of cell B, then the synapse
from A to B should be strengthened

• strong element of causality

• what about weakening (LTD)?

• multiple timescales – STP to protein
synthesis

• multiple biochemical mechanisms

• systems:

– hippocampus – multiple sub-areas

– neocortex – layer and area differences

– cerebellum – LTD is the norm
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Neural Rules
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Stability and Competition

Hebbian learning involves positive feedback.

Control by:

LTD usually not enough – covariance versus

correlation

saturation prevent synaptic weights from
getting too big (or too small) – triviality
beckons

competition spike-time dependent learning
rules

normalization over pre-synaptic or
post-synaptic arbors

• subtractive: decrease all synapses by
the same amount whether large or
small

• multiplicative: decrease large synapses
by more than small synapses
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Preamble

Linear firing rate model

τr
dv

dt
= −v + w · u = −v +

Nu
∑

b=1

wbub

assume that τr is small compared with the
rate of change of the weights, then

v = w · u
during plasticity

Then have

τw
dw

dt
= f(v, u,w)

Supervised rules use targets to specify v –
neural basis in ACh?
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The Basic Hebb Rule

τw
dw

dt
= uv

averaged 〈〉 over input statistics gives

τw
dw

dt
= 〈uv〉 = 〈uu · w〉 = Q · w

where Q is the input correlation matrix.

Positive feedback instability

τw
d

dt
|w|2 = 2τww · dw

dt
= 2v2

Also have discretised version

w → w +
T

τw

Q · w .

integrating over time, presenting patterns for
T seconds.
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Covariance Rule

Since LTD really exists, contra Hebb:

τw
dw

dt
= u (v − θv)

or

τw
dw

dt
= (u − θθθu) v

If θv = 〈v〉 or θθθu = 〈u〉 then

τw
dw

dt
= C · w

where C = 〈(u − 〈u〉)(u − 〈u〉)〉 is the input
covariance matrix.

Still unstable

τw
d

dt
|w|2 = 2v(v − 〈v〉)

which averages to the (positive) covariance of
v.
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BCM Rule

Odd to have LTD with v = 0 or u = 000.

Evidence for

τw
dw

dt
= vu (v − θv) .

0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

v

w
ei

gh
t c

ha
ng

e/
u

If θv slides to match a high power of v

τθ
dθv

dt
= v2 − θv

with a fast τθ, then get competition between
synapses – intrinsic stabilization.
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Subtractive Normalisation

Could normalise |w|2 or
∑

wb = n · w n = (1,1 . . . ,1)

For subtractive normalisation of n · w:

τw
dw

dt
= vu − v(n · u)

Nu

n

with dynamic subtraction, since

τw
dn · w

dt
= vn · u

(

1 − n · n
Nu

)

= 0 .

as n · n = Nu.

Strongly competitive – typically all the
weights bar one go to 0. Therefore use upper
saturating limit.
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The Oja Rule

A multiplicative way to ensure |w|2 is constant

τw
dw

dt
= vu − αv2w

gives

τw
d|w|2

dt
= 2v2(1 − α|w|2) .

so |w|2 → 1/α.

Dynamic normalisation – could also enforce
normalisation all the time.
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Timing-Based Rules
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slice cortical pyramidal cells; Xenopus retinotectal system

• window of 50ms

• gets Hebbian causality right

• rate-description

τw
dw

dt
=

∫ ∞

0

dτ (H(τ)v(t)u(t − τ) + H(−τ)v(t − τ)u(t)) .

• spike-based description necessary if an
input spike can have a measurable impact
on an output spike.

• critical factor is the overall integral – net
LTD with ‘local’ LTP.

• partially self-stabilizing
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Timing-Based Rules

Gutig et al; van Rossum et al:

∆wi =

{

−λf−(wi)K(∆t) if ∆t ≤ 0
λf+(wi)K(∆t) if ∆t > 0

K(∆t) = e−|∆t|/τ

f+(w) = (1 − w)µ f−(w) = αwµ
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FP Analysis

How can we predict the weight distribution?

1

ρin

∂P(w, t)

∂t
= − ppP(w, t) − pdP(w, t)+

ppP(w − wp, t) + pdP(w + wd, t)

Taylor-expand about
P(w, t) leads to a
Fokker-Planck equation.
Need to work out pd and
pp; assume steady firing

Depression: pd = twindow/tisi
Potentiation: I affects O: pp =

∫ tw
0 P(δt)dδt
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Single Postsynaptic Neuron

Basic Hebb rule:

τw
dw

dt
= Q · w

analyse using an eigendecomposition of Q:

Q · eµ = λµeµ λ1 ≥ λ2 . . .

Since Q is symmetric and positive
(semi-)definite

• complete set of real orthonormal evecs

• with non-negative eigenvalues

• whose growth is decoupled

Write

w(t) =
Nu
∑

µ=1

cµ(t)eµ

then

cµ(t) = cµ(0) exp

(

λµ
t

τw

)

and w(t) → α(t)e1 as t → ∞
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Constraints

α(t) = exp(λµt/τw) → ∞.

• Oja makes w(t) → e1/
√

α

• saturation can disturb outcome
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• subtractive constraint
τwẇ = Q · w − (w·Q·n)n

Nu
.

Sometimes e1 ∝ n – so its growth is
stunted; and eµ · n = 0 for µ 6= 1 so

w(t) =(w(0) · e1) e1+

Nu
∑

µ=2

exp

(

λµt

τw

)

(w(0) · eµ) eµ
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Translation Invariance

Particularly important case for development
has

〈ub〉 = 〈u〉 Qbb′ = Q(b − b′)

Write n = (1, . . . ,1) and J = nnT , then

Q′ = Q − N〈u〉2J
1. eµ · n = 0, AC modes are unaffected

2. eµ · n 6= 0, DC modes are affected

3. Q has discrete sines and cosines as
eigenvectors

4. fourier spectrum of Q are the eigenvalues
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PCA

What is the significance of e1?
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• optimal linear reconstruction: minimise

E(w, g) =
〈

|u − gv|2
〉

• information maximisation:

I[v,u] = H[v] −H[v|x]
under a linear model

• assume 〈u〉 = 000 or use C instead of Q.
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Linear Reconstruction

E(w,g) =
〈

|u − gv|2
〉

= K− 2w · Q · g + ‖g‖2w · Q · w
quadratic in w with minimum at

w∗ =
g

‖g‖2

making

E(w∗, g) = K − g · Q · g
‖g‖2

.

look for soln with g=
∑

k(ek · g)ek and ‖g‖2=1:

E(w∗, g) = K−
N
∑

k=1

(ek · g)2 λk

clearly has e1 ·g = 1 and e2 ·g = e3 ·g = . . . = 000

Therefore g and w both point along principal
component
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Infomax (Linsker)

argmaxwI[v,u] = H[v] −H[v|u]

Very general unsupervised learning
suggestion:

• H[v|u] is not quite well defined unless
v = w · u + η where η is arbitrarily
deterministic

• H[v] = 1
2
log 2πeσ2 for a Gaussian.

If P [u] ∼ N [000,Q] then

v ∼ N [0,w · Q · w + υ2]

maximise wQwT subject to ‖w‖2 = 1

Same problem as above: implies that

w ∝ e1.

note the normalisation

If non-Gaussian, only maximising an upper

bound on I[v,u].
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Ocular Dominance

interaction
competitive

left thalamus right

cortex WL(a; b)A(a; b) WR(a; b)A(a; b)uL(b) uR(b)
v(a)

• retina-thalamus-cortex

• OD develops around eye-opening

• interaction with refinement of topography

• interaction with orientation

• interaction with ipsi/contra-innervation

• effect of manipulations to input

a b b b b b
L R L RA W ocularityW�   

L R
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Start Simple

Consider one input from each eye

v = wRuR + wLuL .

Then

Q = 〈uu〉 =

(

qS qD
qD qS

)

has

e1 = (1,1)/
√

2 λ1 = qS + qD

e2 = (1,−1)/
√

2 λ2 = qS − qD

so if w+ = wR + wL, w− = wR − wL then

τw
dw+

dt
= (qS + qD)w+ τw

dw−
dt

= (qS − qD)w− .

Since qD ≥ 0, w+ dominates – so use subtractive
normalisation

τw
dw+

dt
= 0 τw

dw−
dt

= (qS − qD)w− .

so w− → ±ω and one eye dominates.
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Orientation Selectivity

Model is exactly the same – input correlations
come from ON/OFF cells:
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Now dominant mode of Q− has spatial
structure:

centre-surround version also possible, but is
usually dominated because of non-linear
effects.
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Temporal Hebbian Rules

Look at rate-based temporal model as

w =
1

τw

∫ T

0
dt v(t)

∫ ∞

−∞
dτ H(τ)u(t − τ)

ignoring some edge effects.

Correlate

• output v(t) with

• filtered version of the input
∫ ∞

−∞
dτ H(τ)u(t − τ)

ie look for structure at the scale of the
temporal filter
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Multiple Output Neurons

output v

input u

W

M

u1 u2 u3 uNu

Fixed recurrent connections

τr
dv

dt
= −v + W · u + M · v

leads to

v = W · u + M · v
= K · W · u

where K=(I − M)
−1.

Thus with Hebbian learning

τw
dW

dt
= 〈vu〉 = K · W · Q

and we can analyse the eigeneffect of K.
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Ocular Dominance Revisited

A

uL uR

B

Write w+ = wR + wL,w− = wR − wL, for the
projective weights, then

τw
dw+

dt
= (qS + qD)K ·w+ τw

dw−
dt

= (qS − qD)K ·w−

Since w+ is clamped by subtractive
normalisation, just interested in the pattern
of ± in w−.

Since K is Töplitz – eigenvectors are waves;
eigenvalues come from the Fourier transform.
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Comp Hebbian Learning

Use a competitive non-linearity

za =
(
∑

b Wabub)
δ

∑

a′ (
∑

b Wa′bub)
δ

in conjunction with a postive interaction term

va =
∑

a′
Maa′za′ .

and standard Hebbian learning:

left input b right input b input b L       R

ou
tp

ut
 a

ou
tp

ut
 a

ou
tp

ut
 a

A B CWL WR WR �WL

Features:

ocularity
∑

b W−

topography ‘
∑

b W+~xb’
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Feature-Based Models

Reduced descriptions (x, y, z, r cos(θ), r sin(θ))

x, y topographic location

z ocularity (∈ [−1,1])

r orientation strength

θ orientation

matching replace [W · u]a by

exp

(

−
∑

b

(ub − Wab)
2/2σ2

b

)

plus softmax competition and cortical
interaction

learning self organizing map

τw
dWab

dt
= 〈va(ub − Wab)〉 .

or elastic net – only competition and

τw
dWab

dt
= 〈va(ub−Wab)〉+β

∑

a′∈N (a)
(Wa′b−Wab)
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Large-Scale Results

meshing of the patterns of OD and OR:

boundaries
pinwheels ocular dominancelinear zones

overall pattern of OD stripes vs elastic net
simulation
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Redundancy

Multiple units → redundancy:

• Hebbian learning – all units the same

• fixed output connections – inadequate

One possibility is decorrelation:

〈vv〉 = I .

If Gaussian, then complete factorisation.

Three approaches:

Atick & Redlich force n → n mapping and
decorrelate using anti-Hebbian learning.

Földiák use Hebbian and anti-Hebbian
learning to learn feedforward and lateral
weights.

Sanger explicitly subtract off first
component from subsequent ones.

Williams subtract off predicted portion of u
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Goodall

v = W · u + M · v
Anti-Hebbian learning is ideal for lateral
weights:

• if va and vb are correlated

• make Mab = Mba negative

• which reduces the correlation

Goodall n → n with W = I so:

v = (I − M)−1 · x = K · x.

Then

τMṀ = −uv + I − M

At Ṁ = 000

〈uu · K〉 = K−1 K · Q · K = I.

So

〈uu〉 = 〈K · uu · K〉 = I

as required.

31



Temporal Plasticity

Using the temporal rule:

τw
dw

dt
=

∫ ∞

0

dτ (H(τ)v(t)u(t − τ) + H(−τ)v(t − τ)u(t))
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• sa = −2 is active before sa = 0

• synapse −2 → 0 gets strengthened

• sa = 0 extends its firing field backwards
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Supervised Learning

Consider case of learning pairs um, vm:

classification binary vm to classify
real-valued um.

regression real-valued mapping from um to
vm.

storage learn the relationships in the data

generalisation infer a functional relationship
from limited examples

error-correction mistakes drive adaptation

Hebbian plasticity:

τw
dw

dt
= 〈vu〉 =

1

NS

NS
∑

m=1

vmum .

and (multiplicative) weight decay

τwẇdt = 〈vu〉 − αw ,

makes w → 〈vu〉/α. No positive feedback.
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Classification and the
Perceptron

Classification rule

v =

{

1 if w · u − γ ≥ 0
0 if w · u − γ < 0

Cover: 2Nu associations in Nu-d.

Can use supervised Hebbian learning

w =
1

Nu

NS
∑

m=1

vmum .

but works quite poorly for random patterns
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The Perceptron

u, v = ±1, set γ = 0: w · un = vn + ηn

ηn =
∑

m 6=n

vmum · un/Nu

the sum of (Ns − 1)Nu terms ±1/Nu, so
Gaussian.

Correct if −1 < ηnvn < ∞:

P [
√

] = Φ

(

√

Nu/(NS − 1)

)
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Error-Correcting Rules

Hebbian plasticity is independent of the
performance of the network

Perceptron learning rule:

• if v(um) = 0 when vm = 1,

• modify w and γ to increase w · um − γ

easiest rule:

w → w + ǫw (vm − v(um))um

γ → γ − ǫw(v
m − v(um))

implies that

∆(w · um − γ) = ǫw(v
m − v(um))

(

|um|2 + 1
)

which has just the right sign. In fact,
guaranteed to converge.

note the discrete nature of the weight update
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Weight Stats (Brunel)

optimal learning for a perceptron with
positive inputs/weights:

37



Function Approximation

Basis function network

s

v(s) = w � f(s) � h(s)u = f(s)
output v(s) = w · u = w · f(s)

error E = 1
2

〈

(h(s) − w · f(s))2
〉

reaches a minimum at (normal equations)

〈f(s)f(s)〉 · w = 〈f(s)h(s)〉 .

38



Hebbian Function
Approximation

When does the Hebbian w = 〈f(s)h(s)〉/α
satisfy the normal equations

〈f(s)f(s)〉 · w = 〈f(s)h(s)〉 ?

1. input patterns are orthongonal

〈f(s)f(s)〉 = I

2. tight frame condition

f(sm) · f(sm′
) = cδmm′

as then

〈f(s)f(s)〉 · w =
〈f(s)f(s)〉 · 〈f(s)h(s)〉

α

=
1

αN2
S

∑

mm′

f(sm)f(sm) · f(sm′
)h(sm′

)

=
c

αN2
S

∑

m

f(sm)h(sm)

=
c

αNS

〈f(s)h(s)〉

V1 forms an approximate tight frame
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The Delta Rule

Defintion of the task in E(w) – how well
(poorly) do synaptic weights w perform?

Gradient descent:

w → w − ǫw∇wE(w)

since if w′=w−ǫ∇wE(w), then to first order
in ǫw:

E(w − ǫw∇wE) = E(w) − ǫw |∇wE|2

≤ E(w)
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Stochastic Gradient Descent

E(w) = 1
2

〈

(h(s) − w · f(s))2
〉

is an average

over many examples.

Use random input-output paris sm, h(sm) and
change

w → w − ǫw∇w(h(sm) − v(sm))2/2

= w + ǫw(h(sm) − v(sm))f(sm)

called stochastic gradient descent.
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Contrastive Hebbian
Learning

The delta rule

w → w + ǫw (vmum − v(um)um)

involves:

Hebbian learning vmum based on target

anti-Hebbian learning −v(um)um based on
outcome

learning stops when outcome = target

Generalize to a stochastic network

P [v|u;W] =
exp(−E(u,v))

Z(u)

Z(u) =
∑

v

exp(−E(u,v))

weights W generate a conditional distribution
eg with quadratic form E(u,v) = u · W · v
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Goal of Learning

Natural quality measure for u:

DKL(P [v|u], P [v|u;W]) =
∑

v

P [v|u] ln

(

P [v|u]

P [v|u;W]

)

= −
∑

v

P [v|u] ln (P [v|u;W]) + K ,

average over um; vm is sample of P [v|um]

〈

DKL(P [v|u], P [v|u;W])
〉

∼ − 1

NS

NS
∑

m=1

ln (P [vm|um;W])

amounts to maximum likelihood learning.

∂ lnP [vm|um;W]

∂Wab

=
∂

∂Wab

(

−E(um,vm) − lnZ(um)

)

= vm
a um

b −
∑

v

P [v|um;W]vau
m
b .

is also Hebb − 〈anti-Hebb〉
positive − 〈negative〉

use Gibbs sampling for v− ∼ P [v|um;W]

unsupervised version is just the same
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Representational Schemes

• invariance

• discriminativity

• generalizability

• compactness

• coding efficiency

• independence

• uniformity
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Grid and Place Cells

1.5m 1.0m

A B17Hz 40Hz

• size: ↑dorsal→ventral

• invariance (dark)

• smooth mapping

• uniform

Whitlock, Sutherland, Witter, Moser & Moser, 2008
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Multiresolution V1

A B

A CB

• invariance (Gabor compactness)

• interdependence; overcompleteness

• uniformity

Simoncelli & Adelson, 1990; Simoncelli & Schwartz, 1999
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Ventral Vision

A B

• invariance

• discriminativity

• coding irrelevance

Kobatake & Tanaka, 1994
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Statistics and Development

activity-dependent wiring

boundaries
pinwheels ocular dominancelinear zones
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Barrel Cortex
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Modeling Development

Two strategies:

mathematical understand the selectivities
and the patterns of selectivities from the
perspective of pattern formation:

• reaction diffusion equations

• symmetry breaking

based on underlying mechanisms of
plasticity such as Hebbian learning

computational understand the selectivities

and their adaptation from basic principles
of processing:

• extraction

• representation

of statistical structure.

Understand patterns using other
principles, eg minimal wiring volume
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Statistical Structure

misty eyed: natural inputs

PI[x] = 1
M

∑M
µ=1 δ(x − xµ) are structured to lie

on low dimensional ‘manifolds’ in high

dimensional spaces:
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Statistical Structure

misty eyed: natural inputs

PI[x] = 1
M

∑M
µ=1 δ(x − xµ) are structured to lie

on low dimensional ‘manifolds’ in high

dimensional spaces:

• find the manifolds

• parameterize them by coordinate systems
(cortical neurons)

• report the coordinates for particular
stimuli (activities)

• hope that structure carves stimuli at
natural joints for actions/decisions
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Statistical Structure

misty eyed: natural inputs

PI[x] = 1
M

∑M
µ=1 δ(x − xµ) are structured to lie

on low dimensional ‘manifolds’ in high

dimensional spaces:

• find the manifolds

• parameterize them by coordinate systems
(cortical neurons)

• report the coordinates for particular
stimuli (activities)

• hope that structure carves stimuli at
natural joints for actions/decisions

surrogates for prior information:

• good reconstruction

• cheapness/brevity (but population
codes?)

• independence

• sparsity

maybe no general answer?
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Two Classes of Method

density estimation attempt to fit PI[x] using
a model with hidden structure or causes:

P [x|y;G]

leading to:

PI[x] ∼ P [x;G] =
∑

y

P [xµ, y;G].

too:
stringent texture

lax lookup table

FA; MoG; sparse coding; ICA; Helmholtz
machine; HMM; Kalman filter; directed
graphical models

(energy-based models Boltzmann
machine, undirected graphical models)

structure search look for unusual structure
(projection pursuit); particular regularities
(stereo)

too unsystematic.
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ML Density Estimation

Make:

PI[x] = P [x;G] =
∑

y

P [x, y;G]

to model how x might have been generated

or caused. Synthetic model: vision =
graphics−1

Key quantity is the analytical model:

P [y|x;G] =
P [x, y;G]

∑

y′ P [x, y′;G]

learning G on the basis of examples captures
the overall statistical structure in the
collection of patterns (the manifold)

representing x using P [y|x;G] indicates the
possible generators of x (activities
parameterize distribution over coordinates

strong assumption
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Last Caveats

• mid-level issues (figure/ground)

• complex, hierarchical models

• population codes

• multilinearity

• invariance

• computational uniformity
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