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Motivation
Extract from recorded spike-trains the low-dimensional nonlinear
dynamical rules that drive single-trial network activity.

Framework
•Network activity is organised around the (relatively) low-dimensional

evolution of a set of latent order parameters or computational state.
•The trajectory taken through this computational state space may

differ on each trial.
•Both the dynamics in the computational state, and its relationship to

neural firing, may be nonlinear.

We attempt to recover noisy low-dimensional dynamics reflected in the
recorded data.

Task

Delayed reach in 7 directions: 0–315◦; 2 distances: 60 and 100 mm;
various delays: 200–900 ms; 52 trials per direction.

Recordings made with a 96-channel silicon electrode array.

Smoothed latent trajectories
Gaussian Process Factor Analysis (GPFA) [Yu et al., J Neurophysiol,
2009] visualises low-dimensional trajectories that capture network
evolution. Assumes:

• linear evolution of state (and linear embedding)
•non-Markov dynamics (so GPFA state 6= phase state)
• independent latent dimensions

Dynamical model
A Hidden Switching Linear Dynamical Systems (HSLDS) model
provides nonlinear, Markov, coupled dynamics in the latent space.

Transition dynamics: p-dimensional state xt ∈ Rp×1 evolves
according to one of S linear dynamical laws with Gaussian
innovations:

xt = Astxt−1 + ηx ηx ∼ N (0, Qst)

with both drift Ast and innovations covariance matrix Qst indexed by
st ∈ {1, ..., S}.

Switching dynamics: st is Markov with transition matrix T that is
learned from the data:

st ∼ Discrete(T·,st−1) .

This drives switching between the different dynamical laws.

The trial is thus divided into segments, with latent dynamics in each
segment following a different linear dynamical law. Switching between
the available linear systems provides a piecewise approximation to
nonlinear network dynamics, as well as capturing changes in the
dynamics.

Observation process. As in GPFA, the neural state xt is related to
the recorded spikes yt ∈ Rq×1 (q > p) through a linear-Gaussian
relationship:

yt = Cxt + ηy ηy ∼ N (d,R)

with observation matrix C and a bias term d independent of st.
R is diagonal, compelling shared variability between neurons to be
modelled by the latent process.

Inference and learning. Inference in the HSLDS is intractable and
can be approximated with a forward and a backward pass using
Assumed Density Filtering and Expectation Correction [Barber, JMLR,
2006]. This leads to an approximate EM algorithm for learning.

Modelling details. Spikes were binned at 10 ms. The total number of
recorded neurons was q = 105. HSLDS models were fit to subsets of
trials; only neurons that fired at least once during the trials in question
were modelled. The linear dynamics most likely to be active was
computed using the Viterbi algorithm.

Results
Detection of Behavioral Epochs. The HSLDS models nonlinear
dynamics by identifying multiple different regimes within each trial.
Some of the switches between linear regimes correlate well with the
timing of behavioural events on the corresponding trial.
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First latent dimension x̃1,: of the orthonormalised neural trajectories found by
HSLDS (one movement direction, p = 7, S = 7), trials sorted by reaction time and
aligned to behavioural events. Switches follow the target onset (left) and precede
the movement onset (right) reliably. Each colour represents the use of a different
linear dynamical system.

Modelling multiple directions. Sufficiently different movement
directions are associated with different dynamics.
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Same as above, for movements in two different directions (full vs dotted line).
Note that the first (pre-delay) state is the same for both movement types.

Validation of the Model. Latent models capture shared variance.
Thus, the firing rate of one neuron can be predicted using
measurements of the rest. HSLDS models capture shared structure
better than GPFA or a single hidden LDS.

2 4 6 8 10
5.26

5.28

5.3

5.32

5.34

5.36

5.38

5.4

5.42
x 10

4

Latent state dimensionality p

P
re

di
ct

io
n 

er
ro

r

 

 

GPFA
LDS
SLDS (s = 3)

0 2 4 6 8 10
5.27

5.275

5.28

5.285

5.29

5.295
x 10

4

Switching state dimensionality S

P
re

di
ct

io
n 

er
ro

r

 

 

GPFA
LDS
SLDS (p = 7)

The HSLDS model outperforms GPFA and a single LDS at all latent dimensions.
More linear laws appear to be better.

Relationship between HSLDS switches and behavioural events.
The time of first switch following the go cue depends on reaction
time, and interpolates between the sensory go-signal and the onset
of movement.
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HSLDS switches correlate both with time of preceding go-signal, and time of
subsequent movement.

Discussion
HSLDS models successfully capture the neural dynamics in
populations of recorded neurons and do so within single trials.
We show that HSLDS models: (1) detect behavioural-related
changes and nonlinearities in the neural dynamics, (2) attribute
different dynamics to movements in different directions and
(3) perform better than other dimensionality reduction and
denoising methods.
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