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Studying perceptual systems

x(t) y(t)

Decoding: x̂(t)= G[y(t)] (reconstruction)

Encoding: ŷ(t)= F [x(t)] (systems identification)



Spike-triggered average

Decoding: mean of P (x | y = 1)

Encoding: predictive filter



Wiener Filtering is Linear regression

y(t) =

∫ T

0

x(t− τ )w(τ )dτ
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|X(ω)|2
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W = (X ′X)︸ ︷︷ ︸
ΣSS

−1 (X ′Y )︸ ︷︷ ︸
STA



Overfitting

• Maximum-likelihood estimates often overfit to

noise in the training data.

• Overfitting is a fundamental problem in data

modelling. It can never be completely overcome.

Even the correct model, with the correct priors

will overfit.

• One common signature of overfitting in (quasi-

)linear models is the appearance of large weights

of opposite signs: the difference has been tuned

by likelihood optimization to model the training

data.

• Such solutions are also often unstable: change the

data a little and the weights fluctuate alarmingly.

• Such overfitting is often combatted by penal-

izing large weights: called “weight decay” in

the neural-network literature, “ridge regression”

in the statistics literature, and equivalent to a

prior distribution centered on zero weight in the

Bayesian literature.
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ARD

Maximum-likelihood regression can be improved by a Bayesian analysis called Automatic Relevance De-

termination (ARD) due to MacKay and Neal.

Assume

wi ∼ N (0, 1/αi) independently

and define

L2({αi}) =

∫
· · ·
∫
dw1 . . . dwD P (Y | X ;W )︸ ︷︷ ︸

L(W )

P (W | {αi})

Optimize L2 with respect to {αi} (ML-2)

αi →∞ ⇒ wi = 0 irrelevant

αi finite ⇒ wi = argmax P (wi | X, Y, αi) relevant
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Simulated simple cell

actual filter maximum likelihood (ML)

ridge regression (MAP)

automatic relevance detection (ARD)

ML MAP ARD
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Rat auditory cortex cell
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Population predictive performance

Tested on new responses to the same stimuli.
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Parameters can still overfit to the particular stimulus used.



Population predictive performance

Tested on responses to new stimuli.
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Evaluating constrained linear models by prediction



Separating signal power from noise

• The maximum possible reduction in vari-

ance is given by the power of the stimulus-

locked signal.

• Repeated trials that use the same stimulus

allow us to separate signal from noise.

• The estimator is unbiased, and has a com-

putable variance, provided the noise distri-

bution is not pathalogical.

• This is an estimated bound, but will not be

practicably achievable because any model

(even the right one!) will overfit given lim-

ited data.

y(t) = µ(t)︸︷︷︸
signal

+ η(t)︸︷︷︸
noise

Taking powers:
(
P (y(t)) =

〈
(y(t)− 〈y〉)2〉)

P (y)︸︷︷︸
observed power

= P (µ)︸︷︷︸
signal power

+ 〈σ2〉︸︷︷︸
average noise variance

Averaging N trials

P (y) = P (µ) +
〈σ2〉
N

Thus

P̂ (µ) =
NP (y)− P (y)

N − 1

Which is an unbiased estimator.
Its variance is given by

Var
[
P̂
]

=
4

N

(
1

T 2
µ′Σµ− 2

T
µσ′µ+ µσµ

)
+

2

N(N − 1)

(
1

T 2
Tr [ΣΣ]− 2

T
σ′σ + σ2

)

where Σ, σ and σ are statistics describing the (co)variance of

the noise and must themselves be estimated from data.



Non-parametric predictability estimates

• Non-parametric prediction can provide an

estimated lower bound on predictable

power.

• The cell response function is not modelled

explicitly. Instead, responses are predicted

based on observations made on similar stim-

uli.

• The simplest approach is to average the

training data over trials. However, this will

overfit to the noise severely. Also, it does

not allow prediction on new stimuli.

• An alternative is to smooth the average with

reference to the stimulus. This is some-

times known as locally-weighted regression

or Parzen-window regression.
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Nonlinearities – the Volterra Series

The usual extension to non-linear functionals involves a power series in x(t).

ŷ(t) = G[x] = g0 +

∫
dτ1 g1(τ1)x(t− τ1) +

∫∫
dτ1dτ2 g2(τ1, τ2)x(t− τ1)x(t− τ2) +

∫∫∫
. . .

G(xt) = g0 + xt g1 + xt g2 xt + · · ·

= g0 + xt g1 + xtx′t g2 + · · ·

= 1 xt xtx′t︸ ︷︷ ︸
φV (xt)

g0

g1

g2


w

G(xt) = φV (xt) ·w = yt

ΦV (X)W = Y



Thus, higher order terms can be estimated by linear regression in an augmented space.



Simulated complex cell

actual filter maximum likelihood (ML)

ridge regression (MAP)

automatic relevance determination (ARD)
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Kernel methods
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For certain embeddings φ we can find a kernel function K : X×X→ IR such that

K(x1, x2) = φ(x1) · φ(x2)

Thus linear operations in Φ can be performed without explicit embedding. Φ can be very high-dimensional

(even ∞) without intractibility.

Only certain K have an associated φ and vice versa (Mercer).



Kernel regression

Linear regression in the augmented space requires finding a weight vector γ to solve

Φ(X)′γ = Y

If γ = φ(xγ) we could write

K(xt, xγ) = yt

but this is nonlinear in xγ and the restriction γ ∈ φ(X) ⊂ Φ is too stringent.

Instead take

γ =
∑
i

wiφ(xi)

giving ∑
i

wiK(xt, xi) = yt or KW = Y

If {xi} = {xt} this representation is complete because any additional part of γ would lie in the null space

of Φ. In practice, we may choose {xi} ⊂ {xt} randomly, or by a greedy process.



Volterra space and the polynomial kernels

The Volterra augmented space has a corresponding kernel function.

Define Kp(1)(x1, x2)= x1 · x2

Kp(2)(x1, x2)= (x1 · x2)2

=
(∑

i

xi1x
i
2

)2

=
∑
ij

xi1x
i
2x

j
1x

j
2 =

∑
ij

(xi1x
j
1)(xi2x

j
2)

= (x1x′1)(:) · (x2x′2)(:)
...

then the kernel

KV (x1, x2)= Kp(1)(x1, x2) + Kp(2)(x1, x2) + . . .

corresponds to the Volterra augmentation

φV (x)=

 x(:)

xx′(:)
...


(Also useful is the kernel Kp(n)(x1, x2) = (1 + x1, x2)n )



Other kernels

Volterra expansion⇔ polynomial kernels

Other kernels can provide other non-linear expansions of the transform; some with useful intuitive inter-

pretations. For example,

Kσ(x1, x2) = e−‖x1−x2‖2/2σ2 ⇒ yt =
∑
i

wie
−‖xt−xi‖2/2σ2

ARD will identify a small number of “characteristic” vectors xi, providing a “tiled” approximation to the

nonlinearity.
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Simulated complex cell
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Input non-linearities

Σ



Hinge weights example 1

fr
eq

ue
nc

y 
(k

H
z)

time (ms)

linARD

−240 −180 −120  −60    0
 25

 50

100

 25

 50

100

fr
eq

ue
nc

y 
(k

H
z)

hinge (ARD)

−240 −180 −120  −60    0
 25

 50

100

time (ms)

fr
eq

ue
nc

y 
(k

H
z)

0

0.0823

0.1646

0.2469

linear (ML)
linear (ARD)

hinge (ARD)
0

0.4

0.8

1

R2001011802G/20010731/pen14loc2poisshical020



Hinge weights example 2
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Conclusions

• The linear regression viewpoint for both linear and nonlinear finite-impulse

systems identification permits the straightforward application of advanced re-

gression techniques.

• In particular, ARD allows us to restrict the range of the filter to the relevant

input subspace.

• The standard Volterra expansion for non-linear functions is a special case of the

general kernel regression method.

• Other kernels can provide equally, if not more, interpretable representations of

the nonlinearity, particularly when combined with ARD.
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