
Dimensionality Reduction

Maneesh Sahani
maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, UCL

Apr/May 2016

High dimensional data

Example data: Gene Expression

Example data: Web Pages

Google Search: Unsupervised Learning http://www.google.com/search?q=Unsupervised+Learning&sourceid=fir...

1 of 2 06/10/04 15:44

Web Images Groups News Froogle more »

 Search Advanced Search
 Preferences

 Web Results 1 - 10 of about 150,000 for Unsupervised Learning. (0.27 seconds)

Mixture modelling, Clustering, Intrinsic classification ...
Mixture Modelling page. Welcome to David Dowe’s clustering, mixture modelling
and unsupervised learning page. Mixture modelling (or ...
www.csse.monash.edu.au/~dld/mixture.modelling.page.html - 26k - 4 Oct 2004 - Cached - Similar pages

ACL’99 Workshop -- Unsupervised Learning in Natural Language ...
PROGRAM. ACL’99 Workshop Unsupervised Learning in Natural Language Processing.
University of Maryland June 21, 1999. Endorsed by SIGNLL ...
www.ai.sri.com/~kehler/unsup-acl-99.html - 5k - Cached - Similar pages

Unsupervised learning and Clustering
cgm.cs.mcgill.ca/~soss/cs644/projects/wijhe/ - 1k - Cached - Similar pages

NIPS*98 Workshop - Integrating Supervised and Unsupervised ...
NIPS*98 Workshop ‘‘Integrating Supervised and Unsupervised Learning’’ Friday, December
4, 1998. ... 4:45-5:30, Theories of Unsupervised Learning and Missing Values. ...
www-2.cs.cmu.edu/~mccallum/supunsup/ - 7k - Cached - Similar pages

NIPS Tutorial 1999
Probabilistic Models for Unsupervised Learning Tutorial presented at the
1999 NIPS Conference by Zoubin Ghahramani and Sam Roweis. ...
www.gatsby.ucl.ac.uk/~zoubin/NIPStutorial.html - 4k - Cached - Similar pages

Gatsby Course: Unsupervised Learning : Homepage
Unsupervised Learning (Fall 2000). ... Syllabus (resources page): 10/10 1 -
Introduction to Unsupervised Learning Geoff project: (ps, pdf). ...
www.gatsby.ucl.ac.uk/~quaid/course/ - 15k - Cached - Similar pages
[More results from www.gatsby.ucl.ac.uk]

[PDF] Unsupervised Learning of the Morphology of a Natural Language
File Format: PDF/Adobe Acrobat - View as HTML
Page 1. Page 2. Page 3. Page 4. Page 5. Page 6. Page 7. Page 8. Page 9. Page 10.
Page 11. Page 12. Page 13. Page 14. Page 15. Page 16. Page 17. Page 18. Page 19 ...
acl.ldc.upenn.edu/J/J01/J01-2001.pdf - Similar pages

Unsupervised Learning - The MIT Press
... From Bradford Books: Unsupervised Learning Foundations of Neural Computation Edited
by Geoffrey Hinton and Terrence J. Sejnowski Since its founding in 1989 by ...
mitpress.mit.edu/book-home.tcl?isbn=026258168X - 13k - Cached - Similar pages

[PS] Unsupervised Learning of Disambiguation Rules for Part of
File Format: Adobe PostScript - View as Text
Unsupervised Learning of Disambiguation Rules for Part of. Speech Tagging. Eric
Brill. 1. ... It is possible to use unsupervised learning to train stochastic. ...
www.cs.jhu.edu/~brill/acl-wkshp.ps - Similar pages

The Unsupervised Learning Group (ULG) at UT Austin
The Unsupervised Learning Group (ULG). What ? The Unsupervised Learning Group
(ULG) is a group of graduate students from the Computer ...
www.lans.ece.utexas.edu/ulg/ - 14k - Cached - Similar pages

Result Page: 1 2 3 4 5 6 7 8 9 10 Next

Unsupervised Learning

Tabulate word-frequency
vectors

Example data: Images

Example data: Images

High-dimensional data

These are all vectors (xi ∈ Rn, i = 1 . . .m) in a high-dimensional space.
But not all possible vectors appear in the data set.

0

1

2

3

4

5

6

0

0.5

1

1.5

2

2.5

3
0

1

2

3

4

spikes/bin (n
euron 1)

spikes/bin (neuron 2)

sp
ik

es
/b

in
 (

ne
ur

on
 3

)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y

x

Data live on a low-dimensional manifold

• subset of possible values

• smoothly varying and dense

•may be parametrised by “latent variables.”

Dimensionality reduction

Goal: Find the manifold.

More precisely, find yi ∈ Rk, (k < n) so that yi parametrises the
location of xi on the manifold.

0

1

2

3

4

5

6

0

0.5

1

1.5

2

2.5

3
0

1

2

3

4

spikes/bin (n
euron 1)

spikes/bin (neuron 2)

sp
ik

es
/b

in
 (

ne
ur

on
 3

)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y

x

The term embedding is used loosely for both y→ x and x→ y.

Uses of dimensionality reduction

• Structure discovery

• Visualisation

• Pre-processing

Order of business

•Mathematical preliminaries — low rank factorisations

– singular-value- and eigen-decompositions.

• Classical linear methods — just factorisation

– PCA
– MDS

• Nonlinear methods — pre-processing, then factorisation

– Isomap
– LLE
– MVU
– SNE (not actually a factorisation)

Some preliminaries

Some preliminaries

Data: xi =

x1i
x2i
...
xni

 ∈ Rn can be collected into a matrix:

X =

 x1 x2 · · · xm

︸ ︷︷ ︸

m

n

We will assume the data are centred: x = 〈x〉 =

m∑
i=0

xi = 0.

Two matrices of interest

The data covariance or scatter matrix:

S =
〈

(xi − x)(xi − x)T
〉

=
1

m

∑
i

xix
T
i =

1

m
XXT ∈ Rn×n.

The inner product or Gram matrix:

G =

xT1 x1 xT1 x2 · · · xT1 xm
xT2 x1 xT2 x2 · · · xT2 xm...
xTmx1 xTmx2 · · · xTmxm

 = XTX ∈ Rm×m.

Both are real, symmetric and positive semi-definite.

Two matrices of interest

The data covariance or scatter matrix:

S =
〈

(xi − x)(xi − x)T
〉

=
1

m

∑
i

xix
T
i =

1

m
XXT ∈ Rn×n.

The inner product or Gram matrix:

G =

xT1 x1 xT1 x2 · · · xT1 xm
xT2 x1 xT2 x2 · · · xT2 xm...
xTmx1 xTmx2 · · · xTmxm

 = XTX ∈ Rm×m.

Both are real, symmetric and positive semi-definite.

Two matrices of interest

The data covariance or scatter matrix:

S =
〈

(xi − x)(xi − x)T
〉

=
1

m

∑
i

xix
T
i =

1

m
XXT ∈ Rn×n.

The inner product or Gram matrix:

G =

xT1 x1 xT1 x2 · · · xT1 xm
xT2 x1 xT2 x2 · · · xT2 xm...
xTmx1 xTmx2 · · · xTmxm

 = XTX ∈ Rm×m.

Both are real, symmetric and positive semi-definite.

Eigenvectors and Eigenvalues

Recall: v is an eigenvector, with scalar eigenvalue λ, of a matrix A if

Av = λv

v can have any norm, but we will define it to be unity (i.e., vTv = 1).
For S (n× n real, symmetric, positive semi-definite):

• In general there are n eigenvector-eigenvalue pairs (v(i), λ(i)).

• The n eigenvectors are orthogonal, forming an orthonormal basis.∑
i

v(i)v(i)
T = I.

• Any vector u can be written as

u =
(∑

i

v(i)v(i)
T
)
u =

∑
i

(v(i)
Tu)v(i) =

∑
i

u(i)v(i)

Eigenvectors and Eigenvalues

Recall: v is an eigenvector, with scalar eigenvalue λ, of a matrix A if

Av = λv

v can have any norm, but we will define it to be unity (i.e., vTv = 1).
For S (n× n real, symmetric, positive semi-definite):

• In general there are n eigenvector-eigenvalue pairs (v(i), λ(i)).

• The n eigenvectors are orthogonal, forming an orthonormal basis.∑
i

v(i)v(i)
T = I.

• Any vector u can be written as

u =
(∑

i

v(i)v(i)
T
)
u =

∑
i

(v(i)
Tu)v(i) =

∑
i

u(i)v(i)

Eigenvectors and Eigenvalues

Recall: v is an eigenvector, with scalar eigenvalue λ, of a matrix A if

Av = λv

v can have any norm, but we will define it to be unity (i.e., vTv = 1).
For S (n× n real, symmetric, positive semi-definite):

• In general there are n eigenvector-eigenvalue pairs (v(i), λ(i)).

• The n eigenvectors are orthogonal, forming an orthonormal basis.∑
i

v(i)v(i)
T = I.

• Any vector u can be written as

u =
(∑

i

v(i)v(i)
T
)
u =

∑
i

(v(i)
Tu)v(i) =

∑
i

u(i)v(i)

Eigenvectors and Eigenvalues

Recall: v is an eigenvector, with scalar eigenvalue λ, of a matrix A if

Av = λv

v can have any norm, but we will define it to be unity (i.e., vTv = 1).
For S (n× n real, symmetric, positive semi-definite):

• In general there are n eigenvector-eigenvalue pairs (v(i), λ(i)).

• The n eigenvectors are orthogonal, forming an orthonormal basis.∑
i

v(i)v(i)
T = I.

• Any vector u can be written as

u =
(∑

i

v(i)v(i)
T
)
u =

∑
i

(v(i)
Tu)v(i) =

∑
i

u(i)v(i)

Eigenvectors and Eigenvalues

Recall: v is an eigenvector, with scalar eigenvalue λ, of a matrix A if

Av = λv

v can have any norm, but we will define it to be unity (i.e., vTv = 1).
For S (n× n real, symmetric, positive semi-definite):

• In general there are n eigenvector-eigenvalue pairs (v(i), λ(i)).

• The n eigenvectors are orthogonal, forming an orthonormal basis.∑
i

v(i)v(i)
T = I.

• Any vector u can be written as

u =
(∑

i

v(i)v(i)
T
)
u =

∑
i

(v(i)
Tu)v(i) =

∑
i

u(i)v(i)

Eigenvectors and Eigenvalues

Recall: v is an eigenvector, with scalar eigenvalue λ, of a matrix A if

Av = λv

v can have any norm, but we will define it to be unity (i.e., vTv = 1).
For S (n× n real, symmetric, positive semi-definite):

• In general there are n eigenvector-eigenvalue pairs (v(i), λ(i)).

• The n eigenvectors are orthogonal, forming an orthonormal basis.∑
i

v(i)v(i)
T = I.

• Any vector u can be written as

u =
(∑

i

v(i)v(i)
T
)
u =

∑
i

(v(i)
Tu)v(i) =

∑
i

u(i)v(i)

Eigendecomposition

Define matrices

V =

 v(1) v(2) · · · v(n)

 Λ =

λ(1)

λ(2)
. . .

λ(n)

Then we can write the eigenvector definition as:

SV = V Λ

For symmetric S (i.e. orthonormal V):

S = SV V T = V ΛV T=
∑
i

λ(i)v(i)v(i)
T

This is called the eigendecomposition of the matrix.

Eigendecomposition

Define matrices

V =

 v(1) v(2) · · · v(n)

 Λ =

λ(1)

λ(2)
. . .

λ(n)

Then we can write the eigenvector definition as:

SV = V Λ

For symmetric S (i.e. orthonormal V):

S = SV V T = V ΛV T=
∑
i

λ(i)v(i)v(i)
T

This is called the eigendecomposition of the matrix.

Eigendecomposition

Define matrices

V =

 v(1) v(2) · · · v(n)

 Λ =

λ(1)

λ(2)
. . .

λ(n)

Then we can write the eigenvector definition as:

SV = V Λ

For symmetric S (i.e. orthonormal V):

S = SV V T = V ΛV T=
∑
i

λ(i)v(i)v(i)
T

This is called the eigendecomposition of the matrix.

Eigendecomposition

Define matrices

V =

 v(1) v(2) · · · v(n)

 Λ =

λ(1)

λ(2)
. . .

λ(n)

Then we can write the eigenvector definition as:

SV = V Λ

For symmetric S (i.e. orthonormal V):

S = SV V T = V ΛV T=
∑
i

λ(i)v(i)v(i)
T

This is called the eigendecomposition of the matrix.

Eigendecomposition

Define matrices

V =

 v(1) v(2) · · · v(n)

 Λ =

λ(1)

λ(2)
. . .

λ(n)

Then we can write the eigenvector definition as:

SV = V Λ

For symmetric S (i.e. orthonormal V):

S = SV V T = V ΛV T=
∑
i

λ(i)v(i)v(i)
T

This is called the eigendecomposition of the matrix.

Eigendecomposition

Define matrices

V =

 v(1) v(2) · · · v(n)

 Λ =

λ(1)

λ(2)
. . .

λ(n)

Then we can write the eigenvector definition as:

SV = V Λ

For symmetric S (i.e. orthonormal V):

S = SV V T = V ΛV T=
∑
i

λ(i)v(i)v(i)
T

This is called the eigendecomposition of the matrix.

Finding eigenvectors and eigenvalues

In theory

Just algebra.

Sv = λv ⇒ (S − λI)v = 0

Solve:

|S − λI| = 0

(polynomial in λ) to find eigvals.

Solve:

(S − λ(i)I)v = 0

(linear system) to find eigvecs.

In practice

Use a linear algebra package.
In MATLAB

[V, L] = eig(S)

returns the matrices V (V) and
Λ (L) defined before.

eig usually returns eigvals in
increasing order, but don’t count
on it.

eigs can find largest or small-
est k eigvals (and corresponding
eigvecs).

The Singular Value Decomposition (SVD)

The SVD resembles an eigendecomposition, but is defined for rectan-
gular matrices as well.

x X

n×m

= v V

n× n

σ1 u u u u
σn

Σ

n× n

uT

UT

n×m
with

• V V T = V TV = I an orthonormal basis {vi} for the columns of X

• UTU = I an orthonormal basis {ui} for the rows of X

• Σ diagonal, and containing the singular values in decreasing order
(σ1 > σ2 > · · · > σn)

SVD and Eigendecompositions

We have:

S =
1

m
XXT =

1

m
(V ΣUT)(UΣV T) = V

(
1

m
Σ2
)
V T

Comparing to the (unique, up to permutation) eigendecomposition of S

⇒ The eigenvectors of S are the left singular vectors of X .

⇒ The eigenvalues of S are given by λ(i) = σ2
i /m.

Similarly

G = XTX = (UΣV T)(V ΣUT) = U Σ2UT

⇒ The eigenvectors of G are the right singular vectors of X .

⇒ The eigenvalues of G are given by λ(i) = σ2
i .

(And the SVD of S or G equals the corresponding eigendecomposition.)

Approximating matrices

The SVD has an important property:

X̃ =
∑k
i=1 σiviu

T
i is the best rank-k least-squares-approximation to X .

x X

n×m

≈ V

n× k

Σ

k × k
UT

k ×m

That is, if we seek Ṽ ∈ Rn×k and Ũ ∈ Rm×k such that k < min(m,n)
and
E =

∑
ij

(xij − [Ṽ ŨT]ij)
2 is minimised,

then the answer is “proportional” to:

Ṽ = [V]1:n,1:k [Σ1/2]1:k,1:k; Ũ = [U]1:m,1:k [Σ1/2]1:k,1:k.

[“Proportional” means we can right-multiply Ṽ by any non-singular A ∈
Rk×k if we also right-multiply Ũ by (A−1)T.]

Approximating matrices

The SVD has an important property:

X̃ =
∑k
i=1 σiviu

T
i is the best rank-k least-squares-approximation to X .

A corollary:

E =
∑
ij

(Sij − [PPT]ij)
2

is minimised for P ∈ Rn×k if

P = [V]1:n,1:k[Λ1/2]1:k,1:k

Back to business

Dimensionality Reduction

Goal: Find the manifold.

More precisely, find yi ∈ Rk, (k < n) so that yi parameterises the
location of xi on the manifold.

0

1

2

3

4

5

6

0

0.5

1

1.5

2

2.5

3
0

1

2

3

4

spikes/bin (n
euron 1)

spikes/bin (neuron 2)

sp
ik

es
/b

in
 (

ne
ur

on
 3

)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y

x

Core ideas:

• preserve “local” structure

• preserve “information”

Dimensionality Reduction

Goal: Find the manifold.

More precisely, find yi ∈ Rk, (k < n) so that yi parameterises the
location of xi on the manifold.

0

1

2

3

4

5

6

0

0.5

1

1.5

2

2.5

3
0

1

2

3

4

spikes/bin (n
euron 1)

spikes/bin (neuron 2)

sp
ik

es
/b

in
 (

ne
ur

on
 3

)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y

x

Core ideas:

• preserve “local” structure

• preserve “information”

Linear (old) methods

A Linear Approach

Let yi = PTxi for a projection matrix PT.

P ∈ Rn×k defines a linear mapping from data to manifold, and vice
versa.

Linearity

• preserves local structure

• preserves global structure

Idea: look for projection that keeps data as spread out as possible ⇒
most variance.

• preserves “information”

Principal Components Analysis (PCA)

Idea: look for projection that keeps data as spread out as possible ⇒
most variance:

• Find direction of greatest variance – ρ(1).

ρ(1) = argmax
‖u‖=1

∑
i

(xTi u)2

• Find direction orthogonal to ρ(1) with greatest variance – ρ(2)
...

• Find direction orthogonal to {ρ(1),ρ(2), . . . ,ρ(j−1)} with greatest vari-
ance – ρ(j).

• Terminate when remaining variance drops below a threshold.

PCA and Eigenvectors

• The variance in eigendirection v(i) is〈
(xTv(i))

2
〉

=
〈
v(i)

TxxTv(i)

〉
= v(i)

TSv(i)= v(i)
Tλ(i)v(i) = λ(i)

• The variance in an arbitrary direction u is〈
(xTu)2

〉
=
〈(

xT
(∑

i

u(i)v(i)

))2〉
=
∑
ij

u(i)v(i)
TSv(j)u(j)

=
∑
ij

u(i)λ(j)u(j)v(i)
Tv(j)=

∑
i

u2
(i)λ(i)

• If uTu = 1, then
∑
i u

2
(i)

= 1 and so argmax‖u‖=1

〈
(xTu)2

〉
= v(max)

• In general, the PCs are exactly the eigenvectors of the empirical co-
variance matrix, ordered by decreasing eigenvalue.

PCA and Eigenvectors

• The variance in eigendirection v(i) is〈
(xTv(i))

2
〉

=
〈
v(i)

TxxTv(i)

〉
= v(i)

TSv(i)= v(i)
Tλ(i)v(i) = λ(i)

• The variance in an arbitrary direction u is〈
(xTu)2

〉
=
〈(

xT
(∑

i

u(i)v(i)

))2〉
=
∑
ij

u(i)v(i)
TSv(j)u(j)

=
∑
ij

u(i)λ(j)u(j)v(i)
Tv(j)=

∑
i

u2
(i)λ(i)

• If uTu = 1, then
∑
i u

2
(i)

= 1 and so argmax‖u‖=1

〈
(xTu)2

〉
= v(max)

• In general, the PCs are exactly the eigenvectors of the empirical co-
variance matrix, ordered by decreasing eigenvalue.

PCA and Eigenvectors

• The variance in eigendirection v(i) is〈
(xTv(i))

2
〉

=
〈
v(i)

TxxTv(i)

〉
= v(i)

TSv(i)= v(i)
Tλ(i)v(i) = λ(i)

• The variance in an arbitrary direction u is〈
(xTu)2

〉
=
〈(

xT
(∑

i

u(i)v(i)

))2〉
=
∑
ij

u(i)v(i)
TSv(j)u(j)

=
∑
ij

u(i)λ(j)u(j)v(i)
Tv(j)=

∑
i

u2
(i)λ(i)

• If uTu = 1, then
∑
i u

2
(i)

= 1 and so argmax‖u‖=1

〈
(xTu)2

〉
= v(max)

• In general, the PCs are exactly the eigenvectors of the empirical co-
variance matrix, ordered by decreasing eigenvalue.

PCA and Eigenvectors

• The variance in eigendirection v(i) is〈
(xTv(i))

2
〉

=
〈
v(i)

TxxTv(i)

〉
= v(i)

TSv(i)= v(i)
Tλ(i)v(i) = λ(i)

• The variance in an arbitrary direction u is〈
(xTu)2

〉
=
〈(

xT
(∑

i

u(i)v(i)

))2〉
=
∑
ij

u(i)v(i)
TSv(j)u(j)

=
∑
ij

u(i)λ(j)u(j)v(i)
Tv(j)=

∑
i

u2
(i)λ(i)

• If uTu = 1, then
∑
i u

2
(i)

= 1 and so argmax‖u‖=1

〈
(xTu)2

〉
= v(max)

• In general, the PCs are exactly the eigenvectors of the empirical co-
variance matrix, ordered by decreasing eigenvalue.

PCA and Eigenvectors

• The variance in eigendirection v(i) is〈
(xTv(i))

2
〉

=
〈
v(i)

TxxTv(i)

〉
= v(i)

TSv(i)= v(i)
Tλ(i)v(i) = λ(i)

• The variance in an arbitrary direction u is〈
(xTu)2

〉
=
〈(

xT
(∑

i

u(i)v(i)

))2〉
=
∑
ij

u(i)v(i)
TSv(j)u(j)

=
∑
ij

u(i)λ(j)u(j)v(i)
Tv(j)=

∑
i

u2
(i)λ(i)

• If uTu = 1, then
∑
i u

2
(i)

= 1 and so argmax‖u‖=1

〈
(xTu)2

〉
= v(max)

• In general, the PCs are exactly the eigenvectors of the empirical co-
variance matrix, ordered by decreasing eigenvalue.

PCA and Eigenvectors

• The variance in eigendirection v(i) is〈
(xTv(i))

2
〉

=
〈
v(i)

TxxTv(i)

〉
= v(i)

TSv(i)= v(i)
Tλ(i)v(i) = λ(i)

• The variance in an arbitrary direction u is〈
(xTu)2

〉
=
〈(

xT
(∑

i

u(i)v(i)

))2〉
=
∑
ij

u(i)v(i)
TSv(j)u(j)

=
∑
ij

u(i)λ(j)u(j)v(i)
Tv(j)=

∑
i

u2
(i)λ(i)

• If uTu = 1, then
∑
i u

2
(i)

= 1 and so argmax‖u‖=1

〈
(xTu)2

〉
= v(max)

• In general, the PCs are exactly the eigenvectors of the empirical co-
variance matrix, ordered by decreasing eigenvalue.

PCA and Eigenvectors

• The variance in eigendirection v(i) is〈
(xTv(i))

2
〉

=
〈
v(i)

TxxTv(i)

〉
= v(i)

TSv(i)= v(i)
Tλ(i)v(i) = λ(i)

• The variance in an arbitrary direction u is〈
(xTu)2

〉
=
〈(

xT
(∑

i

u(i)v(i)

))2〉
=
∑
ij

u(i)v(i)
TSv(j)u(j)

=
∑
ij

u(i)λ(j)u(j)v(i)
Tv(j)=

∑
i

u2
(i)λ(i)

• If uTu = 1, then
∑
i u

2
(i)

= 1 and so argmax‖u‖=1

〈
(xTu)2

〉
= v(max)

• In general, the PCs are exactly the eigenvectors of the empirical co-
variance matrix, ordered by decreasing eigenvalue.

PCA and Eigenvectors

• The variance in eigendirection v(i) is〈
(xTv(i))

2
〉

=
〈
v(i)

TxxTv(i)

〉
= v(i)

TSv(i)= v(i)
Tλ(i)v(i) = λ(i)

• The variance in an arbitrary direction u is〈
(xTu)2

〉
=
〈(

xT
(∑

i

u(i)v(i)

))2〉
=
∑
ij

u(i)v(i)
TSv(j)u(j)

=
∑
ij

u(i)λ(j)u(j)v(i)
Tv(j)=

∑
i

u2
(i)λ(i)

• If uTu = 1, then
∑
i u

2
(i)

= 1 and so argmax‖u‖=1

〈
(xTu)2

〉
= v(max)

• In general, the PCs are exactly the eigenvectors of the empirical co-
variance matrix, ordered by decreasing eigenvalue.

PCA and Eigenvectors

• The variance in eigendirection v(i) is〈
(xTv(i))

2
〉

=
〈
v(i)

TxxTv(i)

〉
= v(i)

TSv(i)= v(i)
Tλ(i)v(i) = λ(i)

• The variance in an arbitrary direction u is〈
(xTu)2

〉
=
〈(

xT
(∑

i

u(i)v(i)

))2〉
=
∑
ij

u(i)v(i)
TSv(j)u(j)

=
∑
ij

u(i)λ(j)u(j)v(i)
Tv(j)=

∑
i

u2
(i)λ(i)

• If uTu = 1, then
∑
i u

2
(i)

= 1 and so argmax‖u‖=1

〈
(xTu)2

〉
= v(max)

• In general, the PCs are exactly the eigenvectors of the empirical co-
variance matrix, ordered by decreasing eigenvalue.

PCA and Eigenvectors

• The variance in eigendirection v(i) is〈
(xTv(i))

2
〉

=
〈
v(i)

TxxTv(i)

〉
= v(i)

TSv(i)= v(i)
Tλ(i)v(i) = λ(i)

• The variance in an arbitrary direction u is〈
(xTu)2

〉
=
〈(

xT
(∑

i

u(i)v(i)

))2〉
=
∑
ij

u(i)v(i)
TSv(j)u(j)

=
∑
ij

u(i)λ(j)u(j)v(i)
Tv(j)=

∑
i

u2
(i)λ(i)

• If uTu = 1, then
∑
i u

2
(i)

= 1 and so argmax‖u‖=1

〈
(xTu)2

〉
= v(max)

• In general, the PCs are exactly the eigenvectors of the empirical co-
variance matrix, ordered by decreasing eigenvalue.

PCA and Eigenvectors

• The variance in eigendirection v(i) is〈
(xTv(i))

2
〉

=
〈
v(i)

TxxTv(i)

〉
= v(i)

TSv(i)= v(i)
Tλ(i)v(i) = λ(i)

• The variance in an arbitrary direction u is〈
(xTu)2

〉
=
〈(

xT
(∑

i

u(i)v(i)

))2〉
=
∑
ij

u(i)v(i)
TSv(j)u(j)

=
∑
ij

u(i)λ(j)u(j)v(i)
Tv(j)=

∑
i

u2
(i)λ(i)

• If uTu = 1, then
∑
i u

2
(i)

= 1 and so argmax‖u‖=1

〈
(xTu)2

〉
= v(max)

• In general, the PCs are exactly the eigenvectors of the empirical co-
variance matrix, ordered by decreasing eigenvalue.

PCA and Eigenvectors

• The variance in eigendirection v(i) is〈
(xTv(i))

2
〉

=
〈
v(i)

TxxTv(i)

〉
= v(i)

TSv(i)= v(i)
Tλ(i)v(i) = λ(i)

• The variance in an arbitrary direction u is〈
(xTu)2

〉
=
〈(

xT
(∑

i

u(i)v(i)

))2〉
=
∑
ij

u(i)v(i)
TSv(j)u(j)

=
∑
ij

u(i)λ(j)u(j)v(i)
Tv(j)=

∑
i

u2
(i)λ(i)

• If uTu = 1, then
∑
i u

2
(i)

= 1 and so argmax‖u‖=1

〈
(xTu)2

〉
= v(max)

• In general, the PCs are exactly the eigenvectors of the empirical co-
variance matrix, ordered by decreasing eigenvalue.

PCA and Eigenvectors

• The variance in eigendirection v(i) is〈
(xTv(i))

2
〉

=
〈
v(i)

TxxTv(i)

〉
= v(i)

TSv(i)= v(i)
Tλ(i)v(i) = λ(i)

• The variance in an arbitrary direction u is〈
(xTu)2

〉
=
〈(

xT
(∑

i

u(i)v(i)

))2〉
=
∑
ij

u(i)v(i)
TSv(j)u(j)

=
∑
ij

u(i)λ(j)u(j)v(i)
Tv(j)=

∑
i

u2
(i)λ(i)

• If uTu = 1, then
∑
i u

2
(i)

= 1 and so argmax‖u‖=1

〈
(xTu)2

〉
= v(max)

The direction of greatest variance is the eigenvector
corresponding to the largest eigenvalue.

• In general, the PCs are exactly the eigenvectors of the empirical co-
variance matrix, ordered by decreasing eigenvalue.

PCA and Eigenvectors

• The variance in eigendirection v(i) is〈
(xTv(i))

2
〉

=
〈
v(i)

TxxTv(i)

〉
= v(i)

TSv(i)= v(i)
Tλ(i)v(i) = λ(i)

• The variance in an arbitrary direction u is〈
(xTu)2

〉
=
〈(

xT
(∑

i

u(i)v(i)

))2〉
=
∑
ij

u(i)v(i)
TSv(j)u(j)

=
∑
ij

u(i)λ(j)u(j)v(i)
Tv(j)=

∑
i

u2
(i)λ(i)

• If uTu = 1, then
∑
i u

2
(i)

= 1 and so argmax‖u‖=1

〈
(xTu)2

〉
= v(max)

The direction of greatest variance is the eigenvector
corresponding to the largest eigenvalue.

• In general, the PCs are exactly the eigenvectors of the empirical co-
variance matrix, ordered by decreasing eigenvalue.

PCA and Eigenvectors

The eigenspectrum shows how the variance is distributed across dimen-
sions

0 10 20 30
0

20

40

60

80

100

eigenvalue number

ei
ge

nv
al

ue
 (

va
ria

nc
e)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

eigenvalue number

fr
ac

tio
na

l v
ar

ia
nc

e
re

m
ai

ni
ng

This can be used to estimate the “right” dimensionality.

PCA manifold or hyperplane

The k principal components define a k-dimensional linear manifold.

manifold coordinates: y= PTx P =
[
ρ(1)ρ(2) . . .ρ(k)

] [
y ∈ Rk

]
hyperplane projection: x̂= Py =

k∑
κ=1

yκρ(κ) = PPTx
[
x̂ ∈ Rn

]

−5

0

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

x
2

x
1

x 3

The projection can be used for lossy compression, denoising, . . .

PCA manifold or hyperplane

The k principal components define a k-dimensional linear manifold.

manifold coordinates: y= PTx P =
[
ρ(1)ρ(2) . . .ρ(k)

] [
y ∈ Rk

]
hyperplane projection: x̂= Py =

k∑
κ=1

yκρ(κ) = PPTx
[
x̂ ∈ Rn

]

−5

0

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

x
2

x
1

x 3

The projection can be used for lossy compression, denoising, . . .

PCA manifold or hyperplane

The k principal components define a k-dimensional linear manifold.

manifold coordinates: y= PTx P =
[
ρ(1)ρ(2) . . .ρ(k)

] [
y ∈ Rk

]
hyperplane projection: x̂= Py =

k∑
κ=1

yκρ(κ) = PPTx
[
x̂ ∈ Rn

]

−5

0

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

x
2

x
1

x 3

The projection can be used for lossy compression, denoising, . . .

PCA manifold or hyperplane

The k principal components define a k-dimensional linear manifold.

manifold coordinates: y= PTx P =
[
ρ(1)ρ(2) . . .ρ(k)

] [
y ∈ Rk

]
hyperplane projection: x̂= Py =

k∑
κ=1

yκρ(κ) = PPTx
[
x̂ ∈ Rn

]

−5

0

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

x
2

x
1

x 3

The projection can be used for lossy compression, denoising, . . .

Example of PCA: Eigenfaces

from www-white.media.mit.edu/vismod/demos/facerec/basic.html

Example of PCA: Latent Semantic Analysis

PCA applied to documents (word-count vectors)

x1
x2

...

xn

word-count

≈

v(1) v(2) · · · v(k)

concepts

y1
y2
...
yk

uses

Has been used to mark essays!! Also used for retrieval (called Latent
Semantic Indexing (LSI) – reportedly Google uses something like this).

Example of PCA: Genetic variation within Europe

Novembre et al. (2008) Nature 456:98-101

Example of PCA: Genetic variation within Europe

Novembre et al. (2008) Nature 456:98-101

Example of PCA: Genetic variation within Europe

Novembre et al. (2008) Nature 456:98-101

Variance partitioning

PCA can be seen to partition the data variance into an in-manifold (sig-
nal) and out-of-manifold (noise) part.

• all out-of-manifold dimensions are weighted equally

• real noise processes are more likely to be fully isotropic

Two extensions (that we won’t discuss further)

• Include isotropic Gaussian noise, and estimate its scale: probabilistic
Principal Components Analysis (pPCA).

– “Projection” displaced toward mean to compensate for noise.
– Easier to combine into hierarchical models.

• Allow independent Gaussian noise along each (measured) dimen-
sion: Factor Analysis (FA).

– Sensible when measured quantities are not in comparable units.
– Note: PCA is often applied with rescaled measurements of equal

variance ⇒ sum of signal and noise variance isotropic, but noise
variance is still unequal. Still, it’s better than nothing.

Variance partitioning

PCA can be seen to partition the data variance into an in-manifold (sig-
nal) and out-of-manifold (noise) part.

• all out-of-manifold dimensions are weighted equally

• real noise processes are more likely to be fully isotropic

Two extensions (that we won’t discuss further)

• Include isotropic Gaussian noise, and estimate its scale: probabilistic
Principal Components Analysis (pPCA).

– “Projection” displaced toward mean to compensate for noise.
– Easier to combine into hierarchical models.

• Allow independent Gaussian noise along each (measured) dimen-
sion: Factor Analysis (FA).

– Sensible when measured quantities are not in comparable units.
– Note: PCA is often applied with rescaled measurements of equal

variance ⇒ sum of signal and noise variance isotropic, but noise
variance is still unequal. Still, it’s better than nothing.

Variance partitioning

PCA can be seen to partition the data variance into an in-manifold (sig-
nal) and out-of-manifold (noise) part.

• all out-of-manifold dimensions are weighted equally

• real noise processes are more likely to be fully isotropic

Two extensions (that we won’t discuss further)

• Include isotropic Gaussian noise, and estimate its scale: probabilistic
Principal Components Analysis (pPCA).

– “Projection” displaced toward mean to compensate for noise.
– Easier to combine into hierarchical models.

• Allow independent Gaussian noise along each (measured) dimen-
sion: Factor Analysis (FA).

– Sensible when measured quantities are not in comparable units.
– Note: PCA is often applied with rescaled measurements of equal

variance ⇒ sum of signal and noise variance isotropic, but noise
variance is still unequal. Still, it’s better than nothing.

Variance partitioning

PCA can be seen to partition the data variance into an in-manifold (sig-
nal) and out-of-manifold (noise) part.

• all out-of-manifold dimensions are weighted equally

• real noise processes are more likely to be fully isotropic

Two extensions (that we won’t discuss further)

• Include isotropic Gaussian noise, and estimate its scale: probabilistic
Principal Components Analysis (pPCA).

– “Projection” displaced toward mean to compensate for noise.
– Easier to combine into hierarchical models.

• Allow independent Gaussian noise along each (measured) dimen-
sion: Factor Analysis (FA).

– Sensible when measured quantities are not in comparable units.
– Note: PCA is often applied with rescaled measurements of equal

variance ⇒ sum of signal and noise variance isotropic, but noise
variance is still unequal. Still, it’s better than nothing.

Variance partitioning

PCA can be seen to partition the data variance into an in-manifold (sig-
nal) and out-of-manifold (noise) part.

• all out-of-manifold dimensions are weighted equally

• real noise processes are more likely to be fully isotropic

Two extensions (that we won’t discuss further)

• Include isotropic Gaussian noise, and estimate its scale: probabilistic
Principal Components Analysis (pPCA).

– “Projection” displaced toward mean to compensate for noise.
– Easier to combine into hierarchical models.

• Allow independent Gaussian noise along each (measured) dimen-
sion: Factor Analysis (FA).

– Sensible when measured quantities are not in comparable units.
– Note: PCA is often applied with rescaled measurements of equal

variance ⇒ sum of signal and noise variance isotropic, but noise
variance is still unequal. Still, it’s better than nothing.

Variance partitioning

PCA can be seen to partition the data variance into an in-manifold (sig-
nal) and out-of-manifold (noise) part.

• all out-of-manifold dimensions are weighted equally

• real noise processes are more likely to be fully isotropic

Two extensions (that we won’t discuss further)

• Include isotropic Gaussian noise, and estimate its scale: probabilistic
Principal Components Analysis (pPCA).

– “Projection” displaced toward mean to compensate for noise.
– Easier to combine into hierarchical models.

• Allow independent Gaussian noise along each (measured) dimen-
sion: Factor Analysis (FA).

– Sensible when measured quantities are not in comparable units.
– Note: PCA is often applied with rescaled measurements of equal

variance ⇒ sum of signal and noise variance isotropic, but noise
variance is still unequal. Still, it’s better than nothing.

Variance partitioning

PCA can be seen to partition the data variance into an in-manifold (sig-
nal) and out-of-manifold (noise) part.

• all out-of-manifold dimensions are weighted equally

• real noise processes are more likely to be fully isotropic

Two extensions (that we won’t discuss further)

• Include isotropic Gaussian noise, and estimate its scale: probabilistic
Principal Components Analysis (pPCA).

– “Projection” displaced toward mean to compensate for noise.
– Easier to combine into hierarchical models.

• Allow independent Gaussian noise along each (measured) dimen-
sion: Factor Analysis (FA).

– Sensible when measured quantities are not in comparable units.
– Note: PCA is often applied with rescaled measurements of equal

variance ⇒ sum of signal and noise variance isotropic, but noise
variance is still unequal. Still, it’s better than nothing.

Variance partitioning

PCA can be seen to partition the data variance into an in-manifold (sig-
nal) and out-of-manifold (noise) part.

• all out-of-manifold dimensions are weighted equally

• real noise processes are more likely to be fully isotropic

Two extensions (that we won’t discuss further)

• Include isotropic Gaussian noise, and estimate its scale: probabilistic
Principal Components Analysis (pPCA).

– “Projection” displaced toward mean to compensate for noise.
– Easier to combine into hierarchical models.

• Allow independent Gaussian noise along each (measured) dimen-
sion: Factor Analysis (FA).

– Sensible when measured quantities are not in comparable units.
– Note: PCA is often applied with rescaled measurements of equal

variance ⇒ sum of signal and noise variance isotropic, but noise
variance is still unequal. Still, it’s better than nothing.

Variance partitioning

PCA can be seen to partition the data variance into an in-manifold (sig-
nal) and out-of-manifold (noise) part.

• all out-of-manifold dimensions are weighted equally

• real noise processes are more likely to be fully isotropic

Two extensions (that we won’t discuss further)

• Include isotropic Gaussian noise, and estimate its scale: probabilistic
Principal Components Analysis (pPCA).

– “Projection” displaced toward mean to compensate for noise.
– Easier to combine into hierarchical models.

• Allow independent Gaussian noise along each (measured) dimen-
sion: Factor Analysis (FA).

– Sensible when measured quantities are not in comparable units.
– Note: PCA is often applied with rescaled measurements of equal

variance ⇒ sum of signal and noise variance isotropic, but noise
variance is still unequal. Still, it’s better than nothing.

Another view of PCA: Minimizing Error

We can implement the “preserve information” criterion more directly.

Idea: Find P ∈ Rn×k and yi ∈ Rk so that reconstruction error

E =
∑
i

‖xi − Pyi‖2 =
∑
ij

(Xij − [PY]ij)
2

is minimised.

Our discussion of SVD approximation tells us that P must be:

• “proportional” to the first k left singular vectors of X

• that is, span the same space as the first k eigenvectors of S.

From Supervised Learning to PCA

output
units x̂1 x̂2 x̂D

hidden
units

y1 yK

input
units

x1 x2 xD

decoder

“generation”
encoder

“recognition”

A linear autoencoder neural network trained to minimise squared error
learns to perform PCA (Baldi & Hornik, 1989).

Digression: other (linear) factor or component models

Data points are reconstructed by a linear combination of “factors”:

x̂ = P (y) =

K∑
κ=1

ykρ(k)

• PCA finds both a manifold and “principal components” that are orthog-
onal, and capture successive maxima of the variance.

• Any coordinates yk and yk′ are also uncorrelated over the data set.

It may sometimes be valuable to find a different coordinate system (or
basis) in the manifold, or indeed in the original space.

Digression: Independent Components Analysis (ICA)

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

5
Mixture of Heavy Tailed Sources

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
Mixture of Light Tailed Sources

These distributions are
generated by linearly
combining (or mix-
ing) two non-Gaussian
sources.

• Not low-dimensional, but still well explained by linear factors.

• Factors not ordered in variance, and not orthogonal.

• How to find them?

Idea: coordinates along the basis vectors will be independent, sparse,
or maximally non-Gaussian.

Square, Noiseless Causal ICA

• The special case of K = D, and zero observation noise is easy.

x = Λy which implies y = Wx where W = Λ−1

W is an “unmixing” matrix.

• The likelihood can be obtained by transforming the density of y to that
of x. If F : y 7→ x is a differentiable bijection, and if dy is a small
neighbourhood around y, then

Px(x)dx = Py(y)dy = Py(F−1(x))

∣∣∣∣dydx
∣∣∣∣ dx = Py(F−1(x))

∣∣∣∇F−1
∣∣∣ dx

• This gives (for parameter W):

P (x|W) = |W |
∏
k

Py([Wx]k︸ ︷︷ ︸
yk

)

where py is marginal probability distribution of factors.

•Often called “infomax” ICA (Comon, Bell & Sejnowski)

Finding the parameters in infomax ICA

Not a spectral algorithm.

• Log likelihood of data:

logP (x) = log |W | +
∑
i

logPy(Wix)

• Learning by gradient ascent:

∆W ∝ ∇W = W−T + g(y)xT g(y) =
∂ logPy(y)

∂y

• Better approach: natural gradient

∆W ∝ ∇W (WTW) = W + g(y)yTW

(see MacKay 1996).

Kurtosis
(Excess) kurtosis measures how “peaky” or “heavy-tailed” a distribution:

K =
E((x− µ)4)

E((x− µ)2)2
− 3, where µ = E(x) is the mean of x.

Gaussian distributions have zero kurtosis.

Heavy tailed: K > 0 (leptokurtic). Light tailed: K < 0 (platykurtic).

• Some ICA algorithms are essentially kurtosis pursuit approaches. Pos-
sibly fewer assumptions about generating distributions.

• Can find fewer (“undercomplete”) or more (“overcomplete”) factors
than observed dimensions.

• Related to “sparse coding” or “sparse dictionary learning”.

Blind Source Separation

?

• ICA solution to blind source separation assumes no dependence across
time; still works fine much of the time.

•Many other algorithms: DCA, SOBI, JADE, . . .

ICA or sparse coding of natural images

Φ

W

a

a

filters

basis functions
causes

image patch, I
image
ensemble

Olshausen & Field (1996)
Bell & Sejnowski (1997)

Yet another view of PCA: matching inner products

We have viewed PCA as an approximation to the scatter matrix S or to
X . We obtain similar results if we approximate the Gram matrix:

minimise E =
∑
ij

(Gij − yi · yj)2

for y ∈ Rk.

That is, look for a k-dimensional embedding in which dot products (which
depend on lengths, and angles) are preserved as well as possible.

We will see that this is also equivalent to preserving distances between
points.

Yet another view of PCA: matching inner products

Consider the eigendecomposition of G:

G = UΛUT arranged so λ1 ≥ · · · ≥ λm ≥ 0

The best rank-k approximation G ≈ Y TY is given by:

Y T = [U]1:m,1:k[Λ1/2]1:k,1:k;

= [UΛ1/2]1:m,1:k

Y = [Λ1/2UT]1:k,1:m

√
λ1 u

T
1√

λ2 u
T
2

...√
λk u

T
k

...

√
λm uTm

Yet another view of PCA: matching inner products

Consider the eigendecomposition of G:

G = UΛUT arranged so λ1 ≥ · · · ≥ λm ≥ 0

The best rank-k approximation G ≈ Y TY is given by:

Y T = [U]1:m,1:k[Λ1/2]1:k,1:k;

= [UΛ1/2]1:m,1:k

Y = [Λ1/2UT]1:k,1:m

y1 y2 · · · ym

√
λ1 u

T
1√

λ2 u
T
2

...√
λk u

T
k

...

√
λm uTm

Multidimensional Scaling

Suppose all we were given were distances or symmetric “dissimilarities”
∆ij.

∆ =

0 ∆12 ∆13 ∆14

∆12 0 ∆23 ∆24
∆13 ∆23 0 ∆34
∆14 ∆24 ∆34 0

Goal: Find vectors yi such that ‖yi − yj‖ ≈ ∆ij.

This is called Multidimensional Scaling (MDS).

Metric MDS

Assume the dissimilarities represent Euclidean distances between points
in some high-D space.

∆ij = ‖xi − xj‖ with
∑
i

xi = 0.

We have:
∆2
ij = ‖xi‖2 + ‖xj‖2 − 2xi · xj∑

k

∆2
ik = m‖xi‖2 +

∑
k

‖xk‖2 − 0∑
k

∆2
kj =

∑
k

‖xk‖2 + m‖xj‖2 − 0∑
kl

∆2
kl = 2m

∑
k

‖xk‖2

⇒ Gij = xi · xj =
1

2

 1

m

∑
k

(∆2
ik + ∆2

kj)−
1

m2

∑
kl

∆2
kl −∆2

ij

Metric MDS and eigenvalues

We will actually minimize the error in the dot products:

E =
∑
ij

(Gij − yi · yj)2

As in PCA, this is given by the top slice of the eigenvector matrix.

y1 y2 · · · ym

√
λ1 u

T
1√

λ2 u
T
2

...√
λk u

T
k

...

√
λm uTm

Interpreting MDS

G =
1

2

(
1

m
(∆21 + 1∆2)−∆2 − 1

m2
1T∆21

)
G = UΛUT; Y = [Λ1/2UT]1:k,1:m

(1 is a matrix of ones.)

• Eigenvectors. Ordered, scaled and truncated to yield low-dimensional
embedded points yi.

• Eigenvalues. Measure how much each dimension contributes to dot
products.

• Estimated dimensionality. Number of significant (nonnegative –
negative possible if ∆ij are not metric) eigenvalues.

MDS for Scotch Whisky

From: Multidimensional Scaling, 2nd Ed, TF Cox, MAA Cox

Features:

MDS for Scotch Whisky

Speyside

Highlands

Lowlands

Islay

Islands

N Ireland

MDS and PCA

Dual matrices:

S =
1

m
XXT scatter matrix (n× n)

G = XTX Gram matrix (m×m)

• Same eigenvalues up to a constant factor.

• Equivalent on metric data, but MDS can run on non-metric dissimi-
larities.

• Computational cost is different.

– PCA: O((m + k)n2)

– MDS: O((n + k)m2)

Non-linear extensions to PCA and MDS

• Non-linear autoencoder (e.g. multilayer neural network)

•Gaussian Process Latent Variable Models (beyond our scope today)

• Kernel methods (replace inner products by kernel evaluations)

• Distance rescaling ∆ij → g(∆ij) (even if this violates metric rules).

But

Rank ordering of Euclidean distances is

NOT preserved in “manifold learning”.

B

A

C

ABC

d(A,C) < d(A,B) d(A,C) > d(A,B)

Nonlinear (newer) methods

Isomap

Idea: try to trace distance along the manifold. Use geodesic instead of
(transformed) Euclidean distances in MDS.

• preserves local structure

• estimates “global” structure

• preserves information (MDS)

Stages of Isomap

1. Identify neighbourhoods around each point (local points, assumed to
be local on the manifold). Euclidean distances are preserved within a
neighbourhood.

2. For points outside the neighbourhood, estimate distances by hopping
between points within neighbourhoods.

3. Embed using MDS.

Step 1: Neighbourhood graph

First we construct a graph linking each point to its neighbours.

• vertices represent input points

• undirected edges connect neighbours (weight = Euclidean distance)

Forms a discretised approximation to the submanifold, assuming:

•Graph has single connected component.

•Graph neighborhoods reflect manifold neighborhoods. No “short cuts”.

Defining the neighbourhood is critical: k-nearest neighbours, inputs within
a ball of radius r, prior knowledge.

Step 2: Geodesics

Estimate distances by shortest path in graph.

∆ij = min
path(xi,xj)

{ ∑
ei∈path(xi,xj)

δi

}

• Standard graph problem. Solved by Dijkstra’s algorithm (and others).

• Better estimates for denser sampling.

• Short cuts very dangerous (“average” path distance?) .

Step 3: Embed

Embed using metric MDS (path distances obey the triangle inequality)

• Eigenvectors of Gram matrix yield low-dimensional embedding.

• Number of significant eigenvalues estimates dimensionality.

Isomap example 1

Isomap example 2

Locally Linear Embedding (LLE)

MDS and isomap preserve local and global (estimated, for isomap) dis-
tances. PCA preserves local and global structure.

Idea: estimate local (linear) structure of manifold. Preserve this as well
as possible.

• preserves local structure (not just distance)

• not explicitly global

• preserves only local information

Stages of LLE

Step 1: Neighbourhoods

Just as in isomap, we first define neighbouring points for each input.
Equivalent to the isomap graph, but we won’t need the graph structure.

Forms a discretised approximation to the submanifold, assuming:

•Graph has single connected component — although will “work” if not.

• Neighborhoods reflect manifold neighborhoods. No “short cuts”.

Defining the neighbourhood is critical: k-nearest neighbours, inputs within
a ball of radius r, prior knowledge.

Step 2: Local weights

Estimate local weights to minimize error

Φ(W) =
∑
i

∥∥∥∥∥xi − ∑
j∈Ne(i)

Wijxj

∥∥∥∥∥
2

∑
j∈Ne(i)

Wij = 1

• Linear regression – under- or over-constrained depending on |Ne(i)|.
• Local structure – optimal weights are invariant to rotation, translation

and scaling.

• Short cuts less dangerous (one in many).

Step 3: Embed

Minimise reconstruction errors in y-space under the same weights:

ψ(Y) =
∑
i

∥∥∥∥∥yi − ∑
j∈Ne(i)

Wijyj

∥∥∥∥∥
2

subject to:∑
i

yi = 0;
∑
i

yiy
T
i = mI

We can re-write the cost function in quadratic form:

ψ(Y) =
∑
ij

Ψij[Y
TY]ij with Ψ = (I −W)T(I −W)

Minimise by setting Y to equal the bottom 2 . . . k + 1 eigenvectors of Ψ.
(Bottom eigenvector always 1 – discard due to centering constraint)

LLE example 1

Surfaces

N=1000
inputs

k=8
nearest
neighbors

D=3
d=2

dimensions

LLE example 2

LLE example 3

LLE and Isomap

Many similarities

•Graph-based, spectral methods

• No local optima

Essential differences

• LLE does not estimate dimensionality

• Isomap can be shown to be consistent; no theoretical guarantees for
LLE.

• LLE diagonalises a sparse matrix – more efficient than isomap.

• Local weights vs. local & global distances.

Maximum Variance Unfolding

Unfold neighbourhood graph preserving local structure.

Maximum Variance Unfolding

Unfold neighbourhood graph preserving local structure.

1. Build the neighbourhood graph.

2. Find {yi} ⊂ Rn (points in high-D space) with maximum variance,
preserving local distances. Let Kij = yTi yj. Then:

Maximise Tr [K] subject to:∑
ijKij = 0 (centered)

K � 0 (positive definite)

Kii − 2Kij + Kjj︸ ︷︷ ︸
‖yi−yj‖2

= ‖xi − xj‖2 for j ∈ Ne(i) (locally metric)

This is a semi-definite program: convex optimisation with unique
solution.

3. Embed yi in Rk using linear methods (PCA/MDS).

Stochastic Neighbour Embedding

Softer “probabilistic” notions of neighbourhood and consistency.
High-D “transition” probabilities:

pj|i =
e−

1
2‖xi−xj‖

2/σ2∑
k 6=i e

−1
2‖xi−xk‖2/σ2

for j 6= i, pi|i = 0

Find {yi} ⊂ Rk to:

minimise
∑
ij

pj|i log
pj|i
qj|i

with qj|i =
e−

1
2‖yi−yj‖

2∑
k 6=i e

−1
2‖yi−yk‖2

.

Nonconvex optimisation is initialisation dependent.
Scale σ plays a similar role to neighbourhood definition:

• Fixed σ: resembles a fixed-radius ball.

• Choose σi to maintain consistent entropy in pj|i of log2 k: similar to
k-nearest neighbours.

SNE variants

• Symmetrise probabilities (pij = pji)

pij =
e−

1
2‖xi−xj‖

2/σ2∑
k 6=l e

−1
2‖xl−xk‖2/σ2

for j 6= i

Define qij analagously, optimise joint KL.

• Heavy-tailed embedding distributions allow embedding to lower di-
mensions than true manifold:

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

Student-t distribution defines “t-SNE”.

Focus is on visualisation, rather than manifold discovery.

Further reading

• Isomap. Tenenbaum, de Silva & Langford, Science, 290(5500):2319–
23 (2000).

• LLE. Roweis & Saul, Science, 290(5500):2323–6 (2000).

• Laplacian Eigenmaps. Belkin & Niyogi, Neural Comput 23(6):1373–
96 (2003).

• Hessian LLE. Donoho & Grimes, PNAS 100(10): 5591–6 (2003).

•Maximum variance unfolding. Weinberger & Saul, Int J Comput Vis
70(1):77–90 (2006).

• Conformal eigenmaps. Sha & Saul ICML 22:785–92 (2005).

• SNE Hinton & Roweis, NIPS, 2002; t-SNE van der Maaten & Hinton,
JMLR, 9:2579–2605, 2008.

More at:
http://www.gatsby.ucl.ac.uk/~maneesh/dimred/

See also:
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html

	
	Example data: Gene Expression
	Example data: Web Pages
	Example data: Images
	Example data: Images
	High-dimensional data
	Dimensionality reduction
	Uses of dimensionality reduction
	Order of business
	
	Some preliminaries
	Two matrices of interest
	Eigenvectors and Eigenvalues
	Eigendecomposition
	Finding eigenvectors and eigenvalues
	The Singular Value Decomposition (SVD)
	SVD and Eigendecompositions
	Approximating matrices
	
	Dimensionality Reduction
	
	A Linear Approach
	Principal Components Analysis (PCA)
	PCA and Eigenvectors
	PCA and Eigenvectors
	PCA manifold or hyperplane
	Example of PCA: Eigenfaces
	Example of PCA: Latent Semantic Analysis
	Example of PCA: Genetic variation within Europe
	Variance partitioning
	Another view of PCA: Minimizing Error
	From Supervised Learning to PCA
	Digression: other (linear) factor or component models
	Digression: Independent Components Analysis (ICA)
	Square, Noiseless Causal ICA
	Finding the parameters in infomax ICA
	Kurtosis
	Blind Source Separation
	ICA or sparse coding of natural images
	Yet another view of PCA: matching inner products
	Multidimensional Scaling
	Metric MDS
	Metric MDS and eigenvalues
	Interpreting MDS
	MDS for Scotch Whisky
	MDS for Scotch Whisky
	MDS and PCA
	Non-linear extensions to PCA and MDS
	But
	
	Isomap
	Stages of Isomap
	Step 1: Neighbourhood graph
	Step 2: Geodesics
	Step 3: Embed
	Isomap example 1
	Isomap example 2
	Locally Linear Embedding (LLE)
	Stages of LLE
	Step 1: Neighbourhoods
	Step 2: Local weights
	Step 3: Embed
	LLE example 1
	LLE example 2
	LLE example 3
	LLE and Isomap
	Maximum Variance Unfolding
	Stochastic Neighbour Embedding
	SNE variants
	Further reading

