
Inferring input nonlinearities in neural encoding models

Misha B. Ahrens1, Liam Paninski2 and Maneesh Sahani1

1Gatsby Computational Neuroscience Unit, University College London, London, UK
2Dept. of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, USA

29 October 2007

To appear in Network: Computation in Neural Systems.

Abstract. We describe a class of models that predict how the instantaneous firing rate
of a neuron depends on a dynamic stimulus. The models utilize a learnt pointwise nonlinear
transform of the stimulus, followed by a linear filter that acts on the sequence of transformed
inputs. In one case, the nonlinear transform is the same at all filter lag-times. Thus, this
“input nonlinearity” converts the initial numerical representation of stimulus value to a new
representation which provides optimal input to the subsequent linear model. We describe
algorithms that estimate both the input nonlinearity and the linear weights simultaneously;
and present techniques to regularise and quantify uncertainty in the estimates. In a second
approach, the model is generalised to allow a different nonlinear transform of the stimulus
value at each lag-time. Although more general, this model is algorithmically more straight-
forward to fit. However, it has many more degrees of freedom than the first approach, thus
requiring more data for accurate estimation. We test the feasibility of these methods on syn-
thetic data, and on responses from a neuron in rodent barrel cortex. The models are shown to
predict responses to novel data accurately, and to recover several important neuronal response
properties.

1 Introduction

Neural encoding models predict how the instantaneous firing rate of a neuron varies in re-
sponse to a dynamic input, such as a jittering bar in the visual field, a time-varying sound,
the activity of a group of upstream neurons, or a combination of such an input and the spike
history of the neuron itself. One major reason for interest in such models is that, once fitted
to neural data, their parameters can be used to investigate the encoding properties of the
modelled neuron; this may, in turn, shed light on the function of the corresponding brain
area. In one of the simplest and most widely-used models, the predicted firing rate is a
weighted linear combination of preceding stimulus values. In many cases, such linear models
do not predict the firing rate of a neuron well (Sahani & Linden, 2003b; Machens et al.,
2004). Thus, while their parameters may sometimes be broadly indicative of the encoding
properties of the neuron, the picture they yield is at best incomplete, and may occasionally
be radically inaccurate (e.g. Christianson et al., 2007). This suggests that nonlinear encoding

1

models may be needed to provide an accurate description of the neuron’s functional response
(e.g. Marmarelis & Naka, 1973; de Ruyter van Steveninck & Bialek, 1988; Schwarz et al.,
2002).

Considerable effort has recently been directed towards Linear-Nonlinear-Poisson (LNP)
models, where a linear temporal filter acting on a time-varying stimulus signal is followed
by a static nonlinearity (Brenner et al., 2000; Schwarz et al., 2002; Paninski, 2003, 2004;
Simoncelli et al., 2004; Sharpee et al., 2004; Pillow & Simoncelli, 2006). One motivation for
such models is to capture the particular nonlinearity inherent in neuronal spike generation,
although some other nonlinearities may also be described this way. By contrast, here we
focus on nonlinear transforms that precede a temporal linear filtering stage. Such transforms
may model nonlinear synaptic or dendritic responses in the neuron being described, but may
also capture nonlinearities at earlier stages of processing or in receptor transduction (where,
for example, stimulus strength may be encoded logarithmically, or with power-law scaling).
Input nonlinearities such as these can, in principle, lead to significant failures of the linear
model. To take an elementary example, suppose that a neuron combined filtered inputs from
two populations of half-wave rectifying sensors, the populations being sensitive to stimulus
deflections in opposite directions, as in Fig. 1. If the influence of both populations were
roughly equal, the neuron would effectively respond to the absolute value of the sensory
inputs. In this case, a linear model fitted to a stimulus that contained equal deflections in
both directions, could do no better than predict a constant firing rate.

in

ou
t

in

ou
t

in

ou
t in

ou
t+ +

+−
in out =

Figure 1: Schematic network with a symmetric input-output relation. −: inhibitory connec-
tion. +: excitatory connection. All “neurons” are half-wave rectifiers. The output will be
insensitive to the sign of the input; hence a linear fit to the I-O function (dashed line) is
constant.

We describe two models designed to capture such input nonlinearities, inspired by tech-
niques that generalise linear regression to the nonlinear setting (e.g. Suits et al., 1978). The
first is a bilinear model, in which, prior to a linear combination, a single estimated nonlinear
transform is applied to all the stimulus values. In the second model this constraint is relaxed,
and a separate nonlinearity is estimated for each input to the linear combination stage. For
reasons that will become apparent, we will refer to this as the “full-rank” model. It is related
to the generalised additive model (Breiman & Friedman, 1985; Hastie & Tibshirani, 1999).
Despite the larger number of parameters involved, the full-rank model is algorithmically more
straightforward to fit than the bilinear one. However, the many additional degrees of freedom
mean that, in comparison to the bilinear model, many more data are needed to achieve a
given level of reliability in the estimated parameters. Furthermore, the resulting description
is considerably less compact than the bilinear model, potentially leading to difficulties in
interpretation.

2

Algorithms to estimate the parameters of both models are described in sections 2.1 and
2.2. The bilinear model, and implicitly the full-rank model, have appeared before in the con-
text of Hammerstein cascades or NL cascade models (e.g. Narendra & Gallman, 1966; Hunter
& Korenberg, 1986; Juusola et al., 1995; Bai, 1998; Westwick & Kearney, 2001). Here, we
give these models a probabilistic basis, which allows us to develop principled techniques for
regularisation (section 2.5) and estimation of error bars (section 2.6); we draw connections
between the full-rank model and the bilinear model (section 2.3); and we extend the formu-
lation of the bilinear model to the framework of predicting point-process spike trains (section
2.9), leading to the Generalised Bilinear Model or the “NLNP model”. We also evaluate the
models on simulated and real neural data in sections 3 and 4.

2 The models

2.1 The bilinear model

The model. Consider a one dimensional time-varying stimulus s(t), which evokes a neuronal
response r(t). The linear predictive model is given by r̂(t) = c +

∑τmax

τ=0 wτs(t− τ), where c is
a background firing rate, w is a (τmax + 1)-dimensional vector of weights — sometimes called
the linear receptive field of the neuron — and r̂(t) is the predicted firing rate of the cell at
time t. The model parameters are set so that r̂(t) matches the real firing rate r(t) as closely as
possible. In the following, r(t) will usually represent a peri-stimulus-time histogram (PSTH),
i.e., the number of spikes in a time bin around t, averaged over multiple trials in which the
same stimulus is presented. In this case, a natural measure of closeness is the average squared
difference between r̂(t) and r(t), corresponding to the Gaussian likelihood. In section 2.9
we will consider the case in which r(t) is a single-trial spike train with 1 (spike) or 0 (no
spike) in each time bin. Here, the negative log likelihood (or deviance) of a point-process
model will be a more suitable distance metric. Generalisation to higher dimensional stimuli
is straightforward: in this case the index τ ranges over time and space, for example, instead
of just time.

In this section we introduce an unknown pointwise transformation f(·) of s(t) into the
model, and derive an algorithm to estimate the corresponding parameters. This transforma-
tion will be referred to as the “input nonlinearity”. The model has the form

r̂(t) = c +
τmax
∑

τ=0

wτf(s(t− τ)). (1)

In many cases the appropriate f is not known and must be estimated from the data, at
the same time as the linear parameters. Once f has been estimated, the resulting model is
conceptually almost as simple as the linear model, but can be considerably more powerful.
We call this the “bilinear” model for reasons that will become clear below. Fig. 2 shows the
decomposition of the transformation between the stimulus and the predicted neural response.
The constant c (not shown in the figure) is important because it allows the other terms of
the model to describe fluctuations around the baseline firing rate, rather than the firing rate
itself, thus reducing the chances of predicting negative firing rates.

Estimation procedure. For fixed f , it is straightforward to estimate optimal weights
w by linear regression from the transformed stimulus. Thus, one procedure to find a suitable
input nonlinearity might be to try a variety of plausible functions, re-estimating w for each

3

s(t)

f(s(t))

r(t)

f(.)

w

Figure 2: Schematic view of the bilinear model. It consists of two stages, or neural processing
operations. First, the stimulus values are transformed by an input nonlinearity f(·), and
secondly, a temporal filter w acts on the transformed stimulus values to form a predicted spike
rate. w and f(·) are both unknown and to be learnt from the data. An output nonlinearity
(section 2.8) is optional and not shown in the figure. If the input nonlinearity stage is removed,
or, equivalently, f(·) set to the identity, then the model reduces to the linear model. The free
parameters of the model are surrounded by grey boxes.

one, and then select the function and weight vector that provide the best overall prediction.
However, this approach rapidly becomes impractical as the space of functions to be explored
expands, particularly given the possibility that each neuron in a population might be best fit
with a different f . An alternative is to parametrise f , as a linear combination, with weights
bi, of a fixed set of basis functions {fi}:

f(·) =
∑

i

bifi(·). (2)

A similar parametrisation is often used in the context of standard regression, and a general
discussion of basis set selection may be found in the relevant literature (e.g. Hastie et al., 2001).
Basis functions should to be chosen to span as well as possible the space of anticipated input
nonlinearities; a suitable choice might be based on background knowledge of the physiology
and responses of the brain area, on the particular stimulus used, on computational resources
(more basis functions require more memory and time), and possibly some initial exploration.
In this paper we use 16 piecewise linear basis functions; see Appendix A for the definition.
Inserting equation 2 into the model (equation 1) gives: r̂(t) = c +

∑

τi wτbifi(s(t − τ)).
Making the abbreviation Mtτi = fi(s(t − τ)), the model can be re-expressed in a compact
way: r̂(t) = c +

∑

τi wτbiMtτi. This expression is further simplified by redefining M. Let us
rewrite the three-dimensional object M as a family of matrices, one for each time point t, so
that for all (t, τ, i), the (τ, i)th element of the matrix M(t) is Mtτi — that is, [M(t)]τi = Mtτi.

4

We then augment each M(t) by one row and one column; in block notation,

M(t)←

(

1 0
0 M(t)

)

, (3)

and then reform these augmented matrices into a (now augmented) data array M. Similarly,
we augment w← [wc w] and b← [bc b]. If we now write, using the augmented objects,

r̂(t) =
∑

τi

wτbiMtτi.

then we see that the constant term c has been replaced by the product wcbc. In this form,
the model has two parameter vectors w and b, with w describing the response to time, and b

describing the input nonlinearity. M is the augmented data array and is fixed. Note that it is
convenient here to use the same symbols for both the original and augmented objects. In the
following, the exact meanings of w, b and M will vary — how they are defined will be clear
from context. Using the same symbols leaves the structure of the model, and the associated
algorithms, invariant.

The parameter vectors w and b are estimated by minimising the squared distance between
the observed and the predicted spike rates, E =

∑

t(r(t)− r̂(t))2 = ||r − r̂||2. (An alternative
is to maximise a point-process likelihood; this will be described in section 2.9.) One way
to carry out this minimisation is through a sequence of alternating updates. We first group
terms in the model to obtain:

r̂(t) =
∑

τi

wτbiMtτi =
∑

τ

wτ

(

∑

i

biMtτi

)

=
∑

τ

wτBtτ

or r = Bw, where the matrix B is defined by Btτ =
∑

i biMtτi. In other words, if b is held
fixed it can be combined with the other fixed components of the model, which are collected
in the data array M, to produce a pseudo-data matrix B. As the resulting expression is linear
in w, it can easily be inverted to obtain the estimate w = (BTB)−1BTr. This is the unique
best estimate of w under the squared-error objective function E given fixed b, provided BTB

is of full rank (if BTB is of reduced rank, the inverse in the definition of w is interpreted as a
pseudoinverse, uniquely selecting one of the many optimal estimates).

Alternatively, if w is held fixed, the model can be written

r̂(t) =
∑

τi

wτbiMtτi =
∑

i

bi

(

∑

τ

wτMtτi

)

=
∑

i

biWti,

with Wti =
∑

τ wτMtτi. Now the conditional estimate for b is (WTW)−1WTr, which is again
optimal in the sense described above.

Thus, each individual update for w or b, reduces the squared error in the prediction.
By repeating the updates in alternation, starting from an arbitrary initial value for one of
the parameter vectors, we obtain an algorithm that is guaranteed to converge to a (local)
minimum in the objective function. The values of w and b at convergence then yield both
the baseline firing rate in their first elements c = wc · bc, and an optimal temporal filter
and input nonlinearity in their remaining elements. The procedure described here has the
structure of alternating least squares (ALS) (e.g. Young et al., 1976). Although the matrices

5

B and W were introduced above for clarity, in practice, if the length of the stimulus is large
compared to the size of w and b, there is a faster and more economical implementation of
the algorithm. This is described in Appendix B. Fig. 3 shows an example of a model fitted
to artificial data themselves generated by a fixed bilinear model with a threshold-linear input
nonlinearity. The underlying firing rate was determined according to r(t) =

∑

τ wτf(s(t−τ)),
with s(t) a Gaussian distributed stimulus, w the temporal filter shown and f(x) = x if x > 0
and f(x) = 0 if x ≤ 0. The observed firing rate was taken to be the average of five spike
trains drawn from this underlying firing rate, rectified so that negative values were set to zero
(i.e. [r(t)]+ is the probability of having a spike in the bin around t).

0 0.2 0.4

−5

0

5

10

15

20
w

ei
gh

t (
sp

ik
es

/s
ec

)
temporal filter

time (sec)

original
inferred

min 0 max
0

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 w

ei
gh

t

input nonlinearity

stimulus value

tr
ia

ls

0 0.5 1 1.5 2 2.5 3
0

20
40

time (sec)

ra
te

 (
H

z)

generated predictedD

C

A B

Figure 3: Example of a bilinear model fit. A known bilinear model was used to generate an
underlying firing rate, from which five spike trains were drawn according to P (spike at t) =
[r(t)]+. The resulting PSTH was then used to infer new bilinear parameters by minimising
the squared error. A: temporal filter and B: input nonlinearity of the original (dashed) and
inferred (black) bilinear models. Error bars are shown in grey (see section 2.6). The inferred
value of the spontaneous rate c, set to zero in the original model, was indistinguishable from
zero. C: simulated spike trains. D: Generated PSTH (grey) and the firing rate predicted by
the inferred model (black). With the bin size defined to be 15 ms, we used 15 seconds of the
observed firing rate per trial (i.e. 75 seconds of data in all) to infer the bilinear model. With
this bin size, the average firing rate is 16 Hz.

Note that, once the input nonlinearity has been determined for a particular cell, it may be
fixed and used to derive extended versions of the linear model such as the generalised linear
model (which may include an output nonlinearity) or models with spike history terms (Pillow
et al., 2005; Truccolo et al., 2005). If the input nonlinearity is consistent across a subset of
a population of cells, it may also be fixed (or approximated by a simpler function) so that
estimation in the remainder of the population can be carried out more directly. It is also
possible to estimate spike history terms simultaneously with the input nonlinearity and the
temporal filter (see section 2.9).

As discussed above, the squared-error objective function for a linear model is guaranteed
to have a unique optimum. Unfortunately there is no similar guarantee of uniqueness for the

6

bilinear model. The alternating least squares algorithm is guaranteed to converge, and, at
each step there is a unique optimum for each of the parameter vectors w and b conditioned
on the other; however, as the other vector also changes during the optimisation, the point
of convergence may lie at only a local minimum of E . This issue will be discussed further in
the next section, where it will be seen to arise from a non-convexity of the parameter space.
However, although we were able to find a few such local minima in numerical simulations
using random data arrays M and r; in practice, these have not caused difficulty when working
with real neural data. For example, at most two different local minima were ever observed in
the neuronal data discussed in section 4, and they were almost identical in shape. However,
it is possible that in larger models careful initialisation of the parameters might be important
(e.g. see section 2.3). Another important property of the model is the fact that different
parameter values may imply identical models (e.g. if w is scaled up, but b scaled down by
the same factor, the model does not change); this will be discussed in section 2.7. Because of
this invariance, we scale the input nonlinearity to have a maximum value of 1 in all the given
examples, so that the scale of the full model is carried by the temporal filter.

2.2 The full-rank model

The bilinear model is directly linked to the concept of a “separable” receptive field (DeAngelis
et al., 1995; Depireux et al., 2001; Linden et al., 2003). Consider, for example, a visual
spatiotemporal receptive field. Taking only one spatial dimension for simplicity, this can
be described by a matrix W, with elements Wτx, such that the corresponding linear spike
rate prediction model would be r̂(t) =

∑τmax

τ=0

∑

x WτxS(t − τ, x), where S(t, x) is the (one
dimensional) time-varying movie that is played on the retina. Such a receptive field would
be called separable if the matrix W was of rank 1; that is, it could be written as the outer
product of two separate vectors, u in time and v in space: Wτx = uτvx. Even if W were not
strictly of rank 1, provided its singular value spectrum were dominated by just one value,
it might still be useful to approximate the receptive field in a separable form. A separable
model is described by only dim(u)+dim(v) parameters, instead of the, typically much larger,
dim(u) × dim(v) for the full-rank matrix W. Thus, fewer data are needed to estimate the
separable model well. On the other hand, the class of separable receptive fields is strictly less
flexible than the general class of full-rank receptive fields; for instance, a separable receptive
field cannot model direction selectivity in a visual cell.

The parameters of the bilinear model appear as the products wτbi. Thus, this model may
be thought of as embodying a separable receptive field in time (τ) and in stimulus value (i),
with the data tensor Mtτi, a two dimensional dynamic stimulus that varies in the τ and i
dimensions. This view then suggests a generalisation of the bilinear model, in which the rank-
1 matrix of elements wτbi, is replaced by a general matrix Cτi to form the full-rank model.
As a generalisation of the bilinear model, the full-rank model has the potential to capture
more intricate structure in the stimulus response function; but as it has more parameters
(dim(w)×dim(b) instead of dim(w)+dim(b)), the data requirements and risks of overfitting
will be higher.

The full-rank model uses the same data array M as the bilinear model, but is linear in the
parameters Cτi and c,

r̂(t) = c +
∑

τi

CτiMtτi = c +
∑

τi

Cτifi(s(t− τ)). (4)

7

Thus, the minimum-squared-error (MSE) parameters can be found in a single step, using
standard linear regression methods. This implies that the full-rank model has a unique global
optimum in the sense discussed above. In particular, both the squared-error objective function
E (defined as for the bilinear model), and the parameter space (the space of all matrices Cτi

and constant offsets c) are convex: E is convex because it is quadratic, and the parameter space
is convex because adding any two general matrices together produces another valid matrix.
This joint convexity guarantees the uniqueness of the optimum. This view also suggests
why the bilinear model may have multiple squared-error minima. If we regard the bilinear
model as a restriction of the full-rank model to rank-1 parameter matrices, the objective
function remains convex, but the space of parameters is no longer so. In particular, a convex
combination of two rank-1 matrices is generally of rank 2. This constraint on the parameters
then leads to the possibility of multiple optima.

2.3 Rank-k models

The bilinear model may be viewed as a rank-1 special case of the full-rank model. In a similar
vein, one may also consider rank-k sub-models for higher values of k. Such models may be
able to capture more detailed response properties of a neuron than can the rank-1 bilinear
model, while needing fewer data for accurate estimation than would the full-rank model. One
common method for finding low rank approximations to a matrix is to use the singular value
decomposition (SVD, Strang, 1988). Thus, taking the leading outer product term in the SVD
of the full-rank parameter matrix would yield a rank-1 approximation with the form of the
bilinear input nonlinearity model (Bai, 1998). However, the parameters (w,b) found in this
way minimise the squared Euclidean distance between C and wbT, rather than the squared
error between the observed and the predicted firing rates. Thus, while the SVD method may
provide a good initial guess for w and b, the alternating least squares procedure of section
2.1 is still needed to minimise the objective function E .

If the weight matrix C is of rank k, it can be written as the sum of k outer product terms,
Cτi = w1

τb
1
i + w2

τ b2
i + ... + wk

τ bk
i . Thus, the rank-k model is equivalent to a sum of k bilinear

models, and the firing rate prediction is given by r̂(t) = c+
∑

k

∑

τ wk
τ fk(s(t−τ)). Again, the

parameters w1..k and b1..k may by initialised using SVD, but using SVD alone would minimise
an inappropriate objective function (the Euclidean distance to the full-rank matrix C). Thus,
the alternating least squares procedure is needed to minimise the squared error. This requires
that the data array M be redefined once again. For example, if k = 3, the matrix M(t) would
be augmented thus

M(t)←

1 0 0 0
0 M(t) 0 0
0 0 M(t) 0
0 0 0 M(t)

,

(with “0” indicating blocks of 0’s) and these matrices then reformed into the data array
as before. Similarly the vectors w and b are redefined as w ← [wc w1 w2 w3] and b ←
[bc b1 b2 b3]. With these redefinitions, the rank-3 model assumes the same form as the simple
bilinear model: r̂(t) =

∑

τi wτ biMtτi. Thus, the parameters can be found with the ALS
procedure, and the three bilinear models (as well as the constant c = wcbc) recovered.

8

2.4 Models with multiple stimulus features

The framework discussed above allows for arbitrary transformations of the instantaneous
stimulus value, once the stimulus has been expressed as a time-varying quantity s(t). But
there may be multiple many ways to translate a physical stimulus into s(t) — for instance, in
the context of analysis of whisker barrel data, s(t) might correspond to the feature “position”,
or to the feature “velocity”, of whisker motion. These features lead to different bilinear models
with potentially different performances1 (Pinto et al., 2000).

One way to choose the most appropriate stimulus or stimulus feature would be to train
sequentially a model for each stimulus, and then find the most predictive of the resulting
models. However, it might be that the stimuli features interact or jointly influence the fir-
ing rate, or there might be two distinct inputs that might affect the neuronal firing with
potentially different input nonlinearities and temporal properties, e.g. the light intensity and
sound volume of an audiovisual stimulus. In this case, it would be desirable to have a model
that uses all relevant stimuli to construct the predicted firing rate. It is common practice
to formulate the design matrices of linear models such that they include multiple stimuli
(e.g. Luczak et al., 2004); a similar formulation can be applied to the data tensor M of the
bilinear and full-rank models. As an example, consider the following model that assumes an
additive combined effect of three stimuli on the firing rate:

r̂(t) = c +
∑

τ

(

w1
τf

1(s1(t− τ)) + w2
τf

2(s2(t− τ)) + w3
τf

3(s3(t− τ))
)

,

where s1,2,3(t) are three different stimuli or stimulus features, each with their own temporal
filter (e.g. w1) and input nonlinearity (e.g. f1, determined by b1). We define tensors M1,2,3

for each stimulus as before, e.g. M1
tτi = f1

i (s1(t − τ)) (the different stimuli may be assigned
the same, or different, basis functions). In tensor notation, the model is

r̂(t) = c +
∑

τi

(

w1
τb

1
i M

1
tτi + w2

τb
2
i M

2
tτi + w3

τb
3
i M

3
tτi

)

.

Training such a model is similar to training a rank-k model. Again, we define a new
stimulus tensor by collecting each of the inputs in a diagonal block at every time:

M(t) =

1 0 0 0
0 M1(t) 0 0
0 0 M2(t) 0
0 0 0 M3(t)

,

where e.g. [M1(t)]τi = M1
tτi. (Each block of M(t) is now associated with a different

stimulus feature or stimulus, whereas in section 2.3 each block was associated with the same
input.) If we also concatenate the w1,2,3 and the b1,2,3 vectors to form w = [wc w1 w2 w3]
and b = [bc b1 b2 b3], then the model again takes on the form of the simple bilinear model:
r̂(t) =

∑

τi wτbiMtτi. Thus, the parameters b and w can be estimated as before, using the
ALS procedure. Again, the optimal b may be uniquely defined given w, and vice versa: all
of our convexity discussion carries through unmodified to this more general setting. Once

1This is not true in a linear model if the stimulus features are linear transformations of one another. Here,

however, that equivalence is broken by the input nonlinearity.

9

converged, the individual temporal filters and input nonlinearities, and the constant offset,
may be extracted from these concatenated vectors.

The full-rank analogue of the above uses the same stimulus array. The model is

r̂(t) = c +
∑

τi

(

C1
τiM

1
tτi + C2

τiM
2
tτi + C3

τiM
3
tτi

)

=
∑

τi

CτiMtτi.

This is again the standard linear form of a full-rank model. After estimating the matrix C

with the usual method the individual receptive fields are obtained as follows:

C =

c 0 0 0
0 C1 0 0
0 0 C2 0
0 0 0 C3

.

The 0’s of this matrix indicate blocks of entries that do not participate in the regression due
to the block-diagonal form of M, because in the model, these entries are multiplied by zeroes.

2.5 Regularisation

A concern when fitting models to limited or noisy data, is that the parameters of the model be
overfit to the particulars of the data set, thereby increasing the error in the parameter values,
and in firing rates predictions for novel stimuli. Such concerns may be partially addressed by
regularisation.

In minimising the squared error E = ‖r − r̂‖2, we have implicitly been looking for the
maximum likelihood (ML) solution for the parameters (wML and bML) under a noise model

r(t) = r̂(t) + ση(t),

where η(t) is a zero mean and unit variance Gaussian random variable, and σ is the (unknown)
noise scale. Gaussian noise is a reasonable assumption because the PSTH is the average of
multiple spike trains, so that by the central limit theorem, the noise around the “true” rate
is approximately Gaussian. The likelihood of the observed spike rate under this model is
(2πσ2)−T/2 exp(−||r − r̂||2/2σ2) and therefore minimising E maximises the likelihood. This
probabilistic formulation permits both principled regularisation techniques, and estimation
of the uncertainty in the parameter values. Given an observation of r, the noise term induces
a probability distribution over the parameters of the model. If we specify prior probability
distributions on those parameters that describe our expectations, such as a degree of smooth-
ness in w, we can obtain regularised estimates of the parameters of the model. A convenient
(technically, conjugate) choice is a Gaussian prior; e.g. P prior(w) ∼ N (0,Sw) with Sw the
prior covariance matrix describing the expected smoothness, size, etc. of w. If the following,
the prior will often be specified by the inverse covariance Dw so that Sw = [Dw]−1.

Bilinear model. As described in section 2.1, the update for w, when b is fixed, is just the
solution to a linear regression problem with design matrix Btτ =

∑

i biMtτi. Incorporating a
Gaussian prior distribution into a linear regression problem with Gaussian noise is quite well
understood in the neural encoding setting (Sahani & Linden, 2003a; Machens et al., 2004): we
simply maximise the log-posterior distribution on w instead of the log-likelihood. This log-
posterior may be written as log(P (w,b|M, r)) = − 1

2σ2 r̂
Tr̂+ 1

σ2 r
Tr̂− 1

2w
TDww− 1

2b
TDbb+const,

where the constant does not depend on w or b, while r̂ is given in terms of w and b by the

10

model; this expression can be maximised analytically with respect to w to obtain the usual
regularised least squares solution:

w = (BT
B + σ̂2

D
w)−1

B
Tr.

Here, σ̂2 is an estimate of the noise scale σ2, which is often absorbed into the definition of Dw

or made part of an automatic regularisation method, to be discussed shortly. For example,
in a technique known as ridge regression, the matrix Dw is a multiple of the identity, so that
the values of w are encouraged to be small. Another common choice for Dw is a matrix with
2’s on the diagonal and −1’s on the neighbouring positions, all scaled by a parameter λw

which sets the “strength” of the regularisation (equivalently, 1/λw sets the reliability of the
data). Such a Dw will penalise high derivatives of w; as can be seen from the corresponding
Gaussian log-prior on w, which is proportional to −wTDww = −

∑

i[w(i + 1) − w(i)]2. The
regularised final estimate of w, after the ALS iterations, is now the Maximum A Posteriori
(MAP) estimate, wMAP.

The case of b is more complicated, because our prior expectations may be relevant to the
input nonlinearity f(x) =

∑

i bifi(x) rather than to b itself: smoothness in b is not exactly
the same as smoothness in f . In Appendix C we derive expressions for Db that control
the first and second derivatives of f . Db is defined there in quadratic form, so that e.g. to

penalise the first derivative of f we find Db such that bTDbb = λb ·
∫

(

∂f(x)
∂x

)2
dx. (This

is the continuous analogue of Dw defined above.) Again there is a multiplier λb which sets
the strength of the regularisation. Once the prior has been set, the update for b becomes
b = (WTW + σ̂2Db)−1WTr, with Wti =

∑

τ wτMtτi. The regularised final estimate is now
bMAP.

The priors described above depend on simple scaling parameters λw and λb, which deter-
mine the strength of regularisation. Further parameters may be used to control other aspects
of the priors, such as the extent of smoothing (e.g. Sahani & Linden, 2003a). That is, the
priors are formulated to depend on one or more parameters θw,b; these parameters may be
determined entirely by prior expectations, of may be chosen by a cross-validation procedure;
good values may depend on the size, amount of noise, etc, of the dataset. A more principled
way of setting the θ’s is through an automatic adaptive regularisation method described in
Appendix F. This method is similar to Evidence Optimisation techniques that have been
applied to linear models (Sahani & Linden, 2003a). After implementation, these automatic
techniques can produce good results with no time spent on manual intervention.

Full-rank model. Regularising the full-rank model is not straightforward, because in
the time direction it uses a discrete basis, whereas in the stimulus value direction it uses
a piecewise linear (i.e. continuous) basis. In Appendix D we adopt the somewhat unusual
strategy of penalising the first derivative in the time direction (this is the standard thing to do)
but the second derivative in the stimulus value direction (this still promotes smoothness but
allows functions to have steep slopes). Again, the regularisation is done through a Gaussian
prior on the model parameters C, specified as a regularisation matrix DC - the analogue of
Dw or Db for the bilinear model parameters. In Appendix D, we derive expressions for DC

so that rough receptive fields are penalised. Linear Evidence Optimisation techniques can be
readily applied here (e.g. using an adaptive prior λDC and learning an optimal value for λ, or
by using other forms of prior covariance matrices; see Sahani & Linden, 2003a).

11

2.6 Error bars through Gibbs sampling

Error bars for the parameters of a linear model with Gaussian noise are easy to find. A linear
model is defined by a design matrix X (the stimulus), a set of weights v (the receptive field),
an observation vector y (the spike rate) and a noise scale σ, so that y = Xv + ση, with η
independent Gaussian noise with zero mean and unit variance. If D were the inverse prior
covariance, then the error bars on v would be estimated by the square root of the diagonal
elements of the posterior covariance matrix σ̂2(XTX+ σ̂2D)−1, as these diagonal elements give
the marginal variances of the parameters. In the bilinear case, the error bars are determined
by the spread of the posterior distribution of the parameters, P (w,b|r,M,Dw,Db, σ̂2), around
the estimated parameters, wMAP and bMAP. Unlike the linear case, there is no simply ana-
lytical estimate for this distribution, or for the corresponding marginal variances, due to the
dependencies between w and b. Fortunately, however, it is quite easy to sample from this
distribution by a procedure known as Gibbs sampling (e.g. MacKay, 2004). This sampling
approach, detailed in Appendix E, produces a set of samples {wn,bn}, which can be used to
derive estimates for the error bars empirically, by finding the pointwise standard deviations
of these samples around wMAP and bMAP. Some precautions are needed, described in the
next section, to ensure that these estimates are correct. Also note that the estimated error
bars for b are not the error bars on the input nonlinearity f(·) = Fb =

∑

i bifi(·), where F

is the matrix or operator containing the basis elements fi(·): if Σ is the sample covariance
matrix of the Gibbs samples {[bn]i} around [bMAP]i, then the error bar on f(x) at position x

is given by the formula (FΣFT)
1/2
x,x .

The error bars for the parameters of the full-rank model can be estimated in the same way
as for a linear model, but once again they must be converted to error bars on the receptive
field. The posterior covariance matrix is Σ = σ̂2(MTM + σ̂2DC)−1 (see section 2.5; M is here
the data array and DC the regularisation array, both with (τ, i) vectorised so that they become
matrices). Defining an appropriate basis matrix F similar to the above, the error bars are

now (FΣFT)
1/2
xτ,xτ .

2.7 Degeneracies

Bilinear model. It is possible for multiple settings of the parameters in a model to be
degenerate; that is, for models with those different parameters to produce predictions that
are identical in all respects. If such degenerate sets of parameters exist, the model is said to be
nonidentifiable: even if infinite data were available, the parameters of the model could not be
identified uniquely. The bilinear model contains such degeneracies: the model does not change
if w → λ ·w and b→ 1

λ ·b, because the parameters appear only in the product wbT. As we are
generally interested in the shape, but not absolute scale, of w and b, this nonidentifiability
need not pose a serious problem to interpretation of the estimated parameters. However, it
may lead to overestimation of the error bars. Error bars indicate the range of values for which
the firing rate predictions of the model are consistent with the observed data; if any change
in a parameter can be countered by changes in other parameters so that r̂ is left unchanged,
the error bars may potentially be infinitely large (if there is no prior information to constrain
the parameter estimates). Probabilistically, such degeneracies induce directions in parameter
space for which the likelihood does not change. The Gibbs sampling procedure will draw
samples along these directions, and thus the empirical estimates of parameter variance will
be overestimated. Fig. 4 illustrates this issue by showing four equivalent configurations of the

12

bilinear model.

0

time τ
w

0

stimulus value s

f(
s)

Figure 4: Degeneracies of the bilinear model. Different line styles represent different models,
which are all equivalent. The crosses on the left represent the constant terms c = w1 · b1.

The bilinear model has a second degeneracy: a constant (say d) added to each element of
b is interchangeable with a change in the constant c:

c +
∑

τi

wτ (bi + d)Mtτi = c +
∑

τi

wτbiMtτi + d ·
∑

τi

wτMtτi.

With the last term a constant with respect to b:

∑

τi

wτMtτi =
∑

τ

wτ

∑

i

fi(s(t− τ)) =
∑

τ

wτ · 1, (5)

because the piecewise linear basis functions sum to 1 at every point,
∑

i fi(x) = 1.2 Thus,
an addition of d to each element of b can be countered by subtracting d ·

∑

τ wτ from c. The
equivalence of the models thus obtained may again lead to misleadingly large error bars on b

and c. This additive degeneracy is also illustrated in Fig. 4.
One way to remove the additive degeneracy and restore the identifiability of the model,

is to remove one function fj from the basis set {fi(·)} before constructing the data array
M: this forces f(·) =

∑

i6=j bifi(·) to be zero at a specific point (it is zero at the jth node,
f(xj) = 0; see Appendix A); equation 5 does not then hold because

∑

i6=j fi(·) 6= 1. Thus
the additive degeneracy disappears and the Gibbs samples cannot vary in offset. (Another
approach to removing the additive degeneracy in the case of the bilinear model would be to
remove the constant offset c from the model entirely, absorbing the offset into b. However, this
would not remove a similar degeneracy of the full-rank model; see below.) The multiplicative
degeneracy can be fixed after convergence, by rescaling the Gibbs samples to minimise the
squared distance between the samples and bMAP. The inverse rescaling is then applied to the
corresponding w samples.

Full-rank model. The full-rank model is also non-identifiable for basis vectors that
sum to 1 each point: changing Cτi to Cτi + dτ , for any vector d whose elements sum to
zero, gives r̂(t) → r̂(t) +

∑

τ dτ
∑

i(fi(s(t − τ))) = r̂(t) +
∑

τ dτ · 1 = r̂(t). That is, there

2A number of commonly used bases share this property, e.g. the piecewise linear, discrete, and spline bases.

If the basis functions do not sum to 1, the degeneracy will persist in general, but the requisite transformation

of b will be more complicated than a constant offset as in this case.

13

is no change in the input-output relation of the model, but the receptive field does change:
a(τ, x) =

∑

i Cτifi(x)→ a(τ, x)+ dτ . Once again, this can lead to overestimation of the error
bars. Fortunately, this problem can be tackled in the same way as the additive degeneracy
in the bilinear model: remove one of the basis functions fj from the basis set {fi}, so that
∑

i6=j fi(·) 6= 1 and the degeneracy disappears.
Rank-k models. In the specific instance of a rank-k model, a further degeneracy arises

from the model invariance under a permutation of the k parameter vectors. In the example
of section 2.3, any permutation of the indices 1,2,3 of w1,2,3 and b1,2,3 leads to the same
model. This degeneracy generally poses no problem for error bar evaluation, because the
Gibbs sampler will rarely jump between such equivalent parameter arrangements, these being
separated by regions of parameter space with very low probability.

2.8 Output nonlinearity

It may be helpful at times to extend the input nonlinearity model to also include an output
nonlinearity; one clear example might be if the input nonlinearity model by itself predicted
negative rates at many times. One approach, although suboptimal, is to first fit a bilinear or
full-rank model to give an estimated firing rate r̂(t), and then find a pointwise function g(·)
so that g(r̂(t)) is a better estimate of r(t) than was r̂(t) alone. One strategy for identifying
g, described by Chichilnisky (2001), is to find the average number of spikes that are elicited
when r̂ falls within a certain interval; g(·) is then defined to take this average value on that
interval. This strategy is equivalent to the basis function expansion used for in the input
nonlinearity, expressing the function g in a discrete basis g(·) =

∑

j djgj(·), and fitting to the
data (r̂(t), r(t)). The vector of weights d is fit by linear regression, just as was b in the bilinear
model. In place of a discrete set of basis functions, one can choose any set; in section 3 we use
piecewise linear basis functions with the same type of regularising prior as was used for the
input nonlinearity. The fitting of the output nonlinearity is just one-dimensional nonlinear
regression (Suits et al., 1978), and may be applied easily to either the bilinear or full-rank
models.

As described, the bilinear model parameters are fit before the output nonlinearity is found,
and will generally not be optimal. The optimisation could be extended by minimising the
squared error E =

∑

t |r(t)−
∑

j djgj(
∑

τi wτbiMtτi)|
2 with respect to (d,w,b), using e.g. gra-

dient descent techniques. On one model data set, using a sigmoid g, we found that although
this further optimisation did indeed decrease the squared error, most of the benefit had al-
ready been achieved by fitting g after the other parameters had been fixed (data not shown).
Another option is to fix g instead of inferring it, and optimise w and b. This leads to a gen-
eralised bilinear model, which is discussed in the following section in the context of models
for single spike trains, rather than of models for average rates. The developments of that
section can be applied to PSTH models as well; with the negative squared error −E (and
its corresponding derivatives) taking the place of the log-likelihood (and its corresponding
derivatives) defined below.

2.9 Fitting spike trains: Generalised Bilinear or NLNP Models

The discussion thus far has dealt with the use of input nonlinearity models to fit spike rates,
by minimising the squared-error objective function between the predicted rate and the average
time-binned spike counts over multiple repetitions of the same stimulus. Similar models can

14

also be used to fit the probability of spiking in a single trial. This requires two extensions.
First, a cost function more appropriate to spike-time data must be adopted, and second, the
predictions of the models must be constrained to be probabilistically meaningful. This section
thus develops the theory of the input nonlinearity models in the context of (a) a point-process
likelihood and (b) a fixed output nonlinearity. As mentioned in the preceding section, the
introduction of the fixed output nonlinearity may also be relevant in the context of mean-rate
prediction models.

A cost function appropriate to spike-time data is suggested by the theory of point pro-
cesses, although the continuous-time form must be discretised in practice. Consider a spike
train in which the individual spikes occur at times {tk}. Let the value of the model predic-
tion, r̂(t), give the expected number of events in the time bin centred at time t; that is, the
instantaneous spike rate in a bin of width dt is predicted to be r̂(t)/dt. Then, if we write
r̂(tk) for the predicted count in the bin in which the kth actual spike falls, the point-process
log-likelihood can be approximated (neglecting constant terms) Berman & Turner (1992):

L =
∑

k

log r̂(tk)−
∑

t

r̂(t)

In this expression, r̂(t) must be positive at the spike times tk, and more generally — for
instance, if the likelihood of model is to be evaluated on cross-validation data — everywhere.
Thus, we consider here models that include an output nonlinearity, taking the form r̂(t) =
g(
∑

τ wτf(s(t− τ))) = g(
∑

τi Mtτiwτ bi) (bilinear) or r̂(t) = g(
∑

τi MtτiCτi) (full-rank), with
g a fixed function (the link function, or output nonlinearity), and the constant offset c is
incorporated into M as usual. We do not attempt to estimate g as in the previous section.
The argument of g is thus either bilinear or linear. Commonly, a linear model with output
nonlinearity, and exponential family likelihood, is called a Generalised Linear Model (GLM;
McCullagh & Nelder, 1989) or Linear-Nonlinear-Poisson model (LNP; Simoncelli et al., 2004);
thus the bilinear version is a Generalised Bilinear Model or NLNP model (the first N standing
for nonlinear) as depicted in Fig. 5, while the full-rank version is a GLM.

output nonlinearity

s τ
input nonlinearity

stimulus

linear filter

f(s) g(.)w

Poisson spiking

spike−response current

z

Figure 5: Schematic view of the bilinear model with output nonlinearity. The parameters
in the grey boxes are learnt from the data. The model may be used with or without the
spike-response term.

The parameters of these models are as before, i.e. w and b, or C, and must be found by
maximising L. In this case, there is no analytical solution that maximises L even for the
full-rank model, and so the optimal parameters must be found by iterative methods such

15

as gradient ascent. For the full-rank model, general results for GLMs apply, and a unique
optimum of L is guaranteed if g is convex and log-concave (Paninski, 2003, 2004). For the
bilinear model, defining for brevity y(t) =

∑

τi Mtτiwτ bi so that r̂(t) = g(y(t)), the gradient
with respect to b is given by

∂L

∂bj
=
∑

k

g′(y(tk))

g(y(tk))

∑

τ

Mtkτjwτ −
∑

t

g′(y(t))
∑

τ

Mtτjwτ

with a similar expression for ∂L/∂wτ . Note that this gradient simplifies when g is the
exponential function as then g′(y)/g(y) = 1. The Gaussian priors over b and w, introduced
for regularisation, are still applicable. Incorporating these, the objective function becomes the
log-posterior L− 1

2w
TDww− 1

2b
TDbb, and the gradient with respect to b becomes ∂L/∂bj −

[

Dbb
]

j
(with the expression for the w gradient being similar), where Dw and Db are the

regularisation matrices described in section 2.5.
Note that if g is convex and log-concave (e.g. exp(y) or log(1 + exp(y))), the property of

the squared-error case that the objective function is concave in each parameter vector alone
(for a fixed setting of the other) is preserved — i.e. if b is fixed, then the objective is concave
in w and thus has a unique optimum (Paninski, 2004). This implies that the model can
easily be fit by alternating maximisation as before — that is, switching between maximising
L with respect to w keeping b fixed, and with respect to b keeping w fixed. In our experience,
this alternating maximisation appears to converge more rapidly than simultaneous gradient
ascent with respect to w and b jointly. In addition, it is possible to adapt the Iteratively
Reweighted Least Squares (IRLS) algorithm, conventionally used for GLMs, to an alternating
form suitable for the generalised bilinear model.

One of the main reasons to use spike-time data rather than average spike rates is that
the spike history of the neuron can be incorporated in the model in a natural way (Paninski,
2004). Spike history effects, such as refractory periods and self-excitation, are often modelled
as an additive feed-back influence called the “spike-response current”: after each spike, a
term z, varying over a small interval of J time bins, is fed back, so that j time steps after the
last spike, the probability of spiking is changed by an amount zj . Incorporating such a term

into the bilinear model gives r̂(t) =
∑

τi wτ biMtτi +
∑J

j=1 zjρ(t − j). where ρ(t) is a binned
representation of preceding spikes; that is, ρ(t) = 1 if a spike occurred in the bin centred at
t, and is 0 otherwise. Crucially, the prediction r̂(t) depends only on value of ρ(τ) for τ < t.
When finding parameter values, or for cross-validation, ρ is set to the actual spike train
observed. When generating predicted spike trains, it may be sampled from rates predicted in
preceding time bins. The term z may be estimated together with w and b from the data, by
incorporating the observed spike train into the stimulus array M as follows. If the data array
M is initially of size T × A × B, we define Mt,A+j,B+1 = ρ(t − j) for j = 1...J . Estimation
now proceeds as before (see section 2.1). At convergence, the spike-response term is given
by zj = wA+j · bB+1. Thus, the spike history becomes part of the data array and is treated
as a “stimulus,” although it is not mapped through an input nonlinearity, unlike the true
stimulus s(t) (cf. section 2.4). Note that the log-likelihood is generalised linear (and concave,
for suitable g) in each pair (w, z) and (b, z) simultaneously, and so it is straightforward to
estimate w and z together, given b, or conversely b and z, given w.

16

3 Experiments on model data

The first set of experiments was carried out with three model data sets. Each data set was
constructed as follows. A one-dimensional stimulus s(t) was generated as Gaussian white noise
with unit variance, and transformed into a rate P (t) by three different functions, described
below. Any negative values of P (t) were set to zero. Five spike trains, corresponding to
five repeated “trials” of the experiment, were then generated from P (t). A small amount
of uniform noise was added to P (t) to reflect non-stimulus locked “internal processes”, and
the resultant signal taken to give the probability of observing a spike in each time bin. The
observed firing rate r(t) was obtained by averaging these five spike trains. Thus, the variability
of each spike train around P (t) was Poisson-like with a slightly increased variance. The first
half of the spike rate and stimulus was used to train the various input nonlinearity and
full-rank models. These were then tested on the second half, with their performance being
quantified by their predictive power (Sahani & Linden, 2003b). This is a performance measure
based on the squared error, which takes into account trial-by-trial variability of the response.
It has an expected value of 1 for a model that captures all predictable fluctuations in the firing
rate, and 0 for a model which predicts only the mean. The duration of a trial varied between
300 and 100000 time points, so as to study how overfitting in the various models depended
on the amount of data available.

The rates P (t) were generated according to the following three processes:

I. One filter. P (t) =
∑τmax

τ=0 k(τ)s(t − τ)2. That is, stimulus values were squared and then
linearly filtered by k(τ). The weights k(τ) were non-negative, so that P (t) did not need
to be rectified.

II. Two filters. P (t) =
[
∑τmax

τ=0 k1(τ)s(t − τ) +
∑τmax

τ=0 k2(τ)s(t − τ)2
]+

. That is, the firing
rate is a sum of two linear temporal filtering operations, one acting on the stimulus
values, and one acting on their squares. Both filters had non-negative weights, with
peak values at different τ . However, negative stimulus values could lead to negative
filter outputs, and so P (t) was rectified, as indicated by the brackets [·]+.

III. Nonlinear feature selective process. Here, the spike rate depended on how closely
the recent stimulus approximated a “sweep” in stimulus space. Defining a to be a vector
with evenly spaced increasing values between min(s) and max(s),

P (t) = c + d ·
∑

τ

I(|s(t− τ)− a(τ)| < e),

with c and d chosen so that 0 ≤ P ≤ 1, and e = 0.2 · (max(s) − min(s)); I is the
indicator function, equal to 1 when its argument is true and 0 otherwise.

The third process was included to investigate the behaviour of the bilinear and full-rank
models when they are fit to data they cannot entirely capture (other processes that could
generate such data include, for instance, multiplicative combinations of two different stimulus
features). With a bin size defined to be 15 ms, the average firing rate of processes I-III was
about 33 Hz. We trained and tested the following models on the following datasets, using
minimal regularisation:

1. bilin(1). A one-term bilinear model (i.e., r̂(t) = c +
∑

τ wτf(s(t− τ))) fitted through
the ALS procedure.

17

2. bilin(2). A two-term bilinear model (r̂(t) = c+
∑

τ

(

w1
τf

1(s(t− τ)) + w2
τf

2(s(t− τ))
)

,
estimated by the method described in section 2.3. This model is also combined with a
static output nonlinearity in some cases.

3. Full-rank. A full-rank model (r̂(t) = c +
∑

τ wτfτ (s(t− τ))).

4. Full-rank SVD. The leading SVD terms of a full-rank model. This has the same
structure of a multi-term input nonlinearity model, but the estimation of the terms is
suboptimal; see section 2.2. An SVD term was included when its eigenvalue was larger
than 1/4 of the leading eigenvalue.

Fig. 6 shows the singular values of the SVD of the full-rank models when trained on each
of the three spike rates I-III. The singular value spectrum is informative about the nature
and complexity of the underlying process: the single temporal filter (I) causes one eigenvalue
to dominate all others, while the nonlinear feature selection process (III) results in a gently
decreasing spectrum. The two-filter process (II) can be identified in the spectrum by the
two dominant singular values. Note that one or a few isolated values are not necessarily the
signature of a simple underlying process: there can be complex processes that do not leave
their print on the singular value spectrum of a full-rank model. In that case their presence
has to be discovered through the predictive performance of the models.

0

1

2

3

4

A. 1 filter

si
ng

ul
ar

 v
al

ue

0

1

2

3

4

5

B. 2 filters
0

0.5

1

1.5

C. sweep selective

Figure 6: Singular values of the SVD decomposition of the full-rank model trained on model
data A-C. Only the first 15 eigenvalues are shown. Note that in these examples, the number
of significant singular values are indicative of the complexity of the spike generating process
(dashed lines show the threshold for inclusion in the Full-rank SVD model).

What do the models look like? Fig. 7 shows the models learnt for process II. The bilinear
model correctly picks out (noisy versions of) the two temporal filters and input nonlinearities.
The full-rank model also identifies these terms, but the two leading terms of the SVD show
some mixing of the linear and quadratic input transforms, and the predictive power is lower
than that of the bilinear model. Fitting to process III (not shown) yields a full-rank model with
a diagonal excitatory band in the weight matrix. The bilinear model approximates “sweep
selectivity” in a similar way, by having biphasic parameter vectors whose outer product shows
some diagonal structure.

To compare the predictive performance various models, their predictive powers are shown
as a function of the length of the trial in Fig. 8. These graphs confirm our intuitions:

18

A

B

C

D

E

Figure 7: Model fits to data generated from the two-filter process (II). A: true temporal filters
w1 and w2 (left) and input nonlinearities f1 and f2 (right). B: estimated bilinear model with
two terms. The error bars of one standard error (grey) are calculated by Gibbs sampling.
C: first two SVD terms of the estimated full-rank model. D: the true full-rank model given
by C = w1b1T

+ w2b2T
, shown as a surface (left) and as a matrix (right). E: the estimated

full-rank model. Error bars of one standard error at the maximum and minimum values of
the receptive field are shown as lines on the top and bottom right of the surface plot, and the
average error in the middle right, and are obtained as in linear regression.

19

A. All of the models can capture the structure of dataset I. Thus, the performance is governed
by the degree of overfitting: the model with fewest parameters, bilin(1), does best. For
large data sets the performance of the different models converges. Note that the SVD
model performs worse than the bilin(2) model (even when two or fewer SVD terms are
used, as was always the case for trial lengths longer than 30 seconds).

B. The bilin(1) model cannot capture dataset II, as it was generated from a bilin(2) model.
The models that are able to capture the data show a similar ordering of performance as
in A. The performance of the bilin(2) model can be improved by an output nonlinearity
(oNL), as this allows it to capture the rectification in the generative process.

C. None of the models can capture the structure of data set III, but the full-rank models
come close. Here, the simpler models perform better at small data volumes, as they overfit
less, but the more complex models perform better as more data become available.

4.5 15 150 1500

0

0.5

1
A. 1 filter

trial size (sec)

pr
ed

ic
tiv

e
po

w
er

bilin(1)
bilin(2)
full rank
full rank SVD

4.5 15 150 1500

0

0.5

1
B. 2 filters

trial size (sec)

pr
ed

ic
tiv

e
po

w
er

bilin(1)
bilin(2)
full rank
full rank SVD
bilin(2) oNL

4.5 15 150 1500
−0.5

0

0.5

1
C. sweep selective process

trial size (sec)

pr
ed

ic
tiv

e
po

w
er

bilin(1)
bilin(2)
full rank
full rank SVD

Figure 8: Performance of the models on datasets I-III, averaged over 10 instantiations of
the random stimulus. The models were fitted to the firing rate over five trials; thus, the
experiment length is five times the trial size. Details and interpretations of the plots can be
found in the main text.

Finally, we fitted an NLNP model, or a Generalised Bilinear Model, to a spike train,
rather than the spike rate, using the point process likelihood, as described in section 2.9.
To generate the spikes, we used a quadratic input nonlinearity f(s) = s2 and an exponential
output nonlinearity g(·) = exp(·), so the model for the underlying spike rate was r(t) = exp(c+
∑

τ wτs(t − τ)2). With time bins of 15 ms, the duration of the spike train was 150 seconds
and the mean firing rate 0.7 Hz, with 106 spikes observed in the simulation. Performing
alternating gradient ascent on the objective function, which included regularisation terms,
resulted in the parameters shown in Fig. 9; the fit is reasonable considering little more than
100 spikes were used for it. Real data will generally be noisier, and not generated by an
NLNP system, so that 100 spikes are unlikely to suffice for fitting the model to real systems.
For comparison, this figure also shows a fit of a bilinear model (using as its objective function
the squared error between the predicted firing rate and the observed binary spike train). The
parameters of this bilinear model are similar in shape to the true parameters, though they
appear to be biased. In this example, no spike-response current was used. The next section
(4) includes an NLNP model fitted to real data.

20

0 10 20
−0.02

0

0.02

0.04

0.06

time

no
rm

al
iz

ed
 w

ei
gh

t

real
sq loss
pp loss

min 0 max
−0.5

0

0.5

1

1.5

stimulus value

no
rm

al
iz

ed
 w

ei
gh

t

Figure 9: Point process model fits. Black: true filters. Blue: filters found through minimising
the squared error, with error bars in grey. Red: filters found by maximising the point-process
likelihood, using the exponential output nonlinearity. The normalised shapes of the filters are
similar, but the input nonlinearity under the squared error appears to be somewhat biased
towards a U-shape.

4 Demonstration on real data

We estimated the full-rank model (using the velocity signal as the stimulus) and a bilinear
model (with two terms, position and velocity) using spike-rate data from a cell in rodent barrel
cortex, stimulated by a white noise whisker displacement stimulus. These models were fitted
using a PSTH with 3000 time bins of 5 ms. We also fitted an NLNP model to the spike times,
using approximately 12000 spikes collected over about half an hour. The resulting models
are shown in Fig. 10. They recover a direction invariant response to velocity. In the bilinear
model, this can be seen from the approximately symmetric shape of the input nonlinearities
(right panel). In the full-rank model this is evident from the symmetry of the receptive field
about the zero velocity line. Also, the shapes of the temporal filters of the bilinear model
(left panel) indicate that this cell is more responsive to the velocity than to the position of
the whisker: since both input nonlinearities have been normalised, the size and shape of the
temporal filter of a certain feature (position or velocity) is an indication of how much variance
in the spike rate that feature predicts. These observations are in agreement with previous
results (Pinto et al., 2000; Arabzadeh et al., 2003, 2005). The NLNP model recovers similar
filters as the other models, and demonstrates the feasibility of estimating this model on spike
time data.

Although the models for the PSTH are structurally only a small departure from the linear
model, their predictions are far superior. The predictive power of a linear model is 0.01 on
training data and negative on cross-validation data, whereas the predictive powers of the
input nonlinearity and full-rank models are 0.6 and 0.54 respectively (on cross-validation
data). Clearly, the reason for this is the parabolic shape of the input nonlinearity. Note that,
even though the full-rank model yields a lower cross-validation predictive power, we cannot
say how much its performance suffers from over-fitting and therefore cannot be sure that the
underlying system is exactly bilinear. However, of the two sets of parameters fitted to the
limited data available, those of the bilinear model appear to be a closer match to the true
system.

21

0 50 100

0

4

8

w
ei

gh
t (

sp
ik

es
/s

)
time (ms)

position
velocity

0

0

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 w

ei
gh

t

normalized position / velocity time (ms)

ve
lo

ci
ty

0 50 100

0

fir
in

g
ra

te
 (

sp
ik

es
/s

ec
)

−5

0

5

10

0 50 100

0

0.5

1

time (ms)

no
rm

al
iz

ed
 w

ei
gh

t

min 0 max
0

0.5

1

velocity

A B

C

g(.)

Figure 10: Bilinear and full-rank models applied to responses from a rodent somatosensory
cortex neuron. A: Input nonlinearity model. Left: temporal filters for position and veloc-
ity, right: the corresponding input nonlinearities. The grey areas show one standard error,
obtained by Gibbs sampling. No output nonlinearity was used as this did not significantly
improve the predictions. B: full-rank model on velocity. The full-rank model shares most
features of the bilinear model, such as direction invariance. C: The NLNP model, with expo-
nential output nonlinearity. Only the velocity feature of the stimulus was used for this model.
The filters have similar shapes to the velocity filters of the bilinear model.

5 Discussion

The bilinear model (also called the Hammerstein or NL cascade model) and the full-rank
model provide useful non-linear approaches to describing a neuron’s time-varying response
to a stimulus. The estimation of parameters in these models is relatively straightforward;
the discussions of degeneracies and regularisation methods presented in this paper allow for
a careful analysis of the model parameters and their error bars. The small number of pa-
rameters in the bilinear and NLNP models (dim(w) + dim(b) parameters) makes the data
requirements modest, while the full-rank model requires more data for estimation (it has
dim(w) · dim(b) parameters). The feasibility of fitting, and potential utility of, the models
has been demonstrated on model data and on data from rodent barrel cortex.

Relation to other methods. A successful nonlinear model of similar flexibility to the
bilinear model is the Linear-Nonlinear-Poisson model (LNP; e.g. Simoncelli et al., 2004). The
LNP model has several variants. For example, the output nonlinearity might be fixed and the
temporal filter estimated by gradient ascent on the point-process likelihood (Paninski, 2004).
Such an LNP model is a special case of the NLNP model, in which the input nonlinearity is
the identity function. Other variants of the LNP model incorporate non-parametric output
nonlinearities, and may be estimated by Spike-Triggered Covariance analysis (de Ruyter van

22

Steveninck & Bialek, 1988; Schwarz et al., 2002), a powerful method for finding relevant
directions (w vectors) in stimulus space. This technique’s provable accuracy is limited to the
case where the stimulus is Gaussian (Paninski, 2003) (though interesting and useful results
have been obtained using non-Gaussian stimuli; Touryan et al., 2005), and not very high
dimensional (as estimating the spike-triggered covariance involves identifying order dim(w)2

parameters). STC analysis may automatically find multiple relevant stimulus representations
and can also be used to construct models with nonlinear stimulus-stimulus interactions such as
divisive normalisation. The special case of an LNP model using just one STC vector is similar
to the bilinear model, but with the ordering of linear and nonlinear operations reversed. LNP
models, bilinear models and full-rank models are likely to have regions of overlap in terms
of the types of neurons that can be successfully modelled. Although each model has its own
benefits and disadvantages in terms of data requirements, ease of estimation, etc., in the
end, the neuron under investigation determines which model provides the most appropriate
description (as measured by the predictive performance on cross-validation data).

Another useful method is Wiener-Volterra systems identification, a classical non-linear es-
timation method which has been in use in neuroscience for a long time (e.g. Marmarelis
& Naka, 1973). More recently it has found applications in, for example, characterising
subthreshold dynamics in barrel cortex (Webber & Stanley, 2004). Since in theory these
expansions span all non-linear models, the models introduced in this paper can also be
phrased as restricted Volterra-Wiener expansions (e.g. the bilinear model would become
r̂(t) = c +

∑

τj wτ bj[s(t− τ)]j , in which the input nonlinearity is expressed as a power-series

expansion, f(x) =
∑

j bjx
j). In practice this method is most suitable when an appropriate

reduction in the parameter space can be identified (e.g. Young & Calhoun, 2005); otherwise,
the number of parameters tends to be too large for such models to be practical (see also
Juusola et al., 1995 for a comparison between Volterra series and cascade models).

Several estimation methods for Hammerstein cascades and related models have been pre-
viously proposed. Narendra & Gallman (1966) use an algorithm similar to alternating least
squares, but with an approximation to a more general temporal filtering component based on
the pulse transfer function. Westwick & Kearney (2001) use a gradient based method with
a similar structure to alternating least squares. Bai (1998) estimates a suboptimal bilinear
model by taking the first SVD component of the corresponding full-rank model. Correlation-
based methods (e.g. Spekreijse & Oosting, 1970) rely on Bussgang’s theorem (Bussgang, 1952)
and only provably work if the system really is a Hammerstein system, whereas methods re-
lying on an objective function – such as the squared error – do not make such assumptions
about the system and merely try to find the best-fitting Hammerstein approximation. For
small systems, with restrictions on the form and number basis functions, there also exists a
method for finding a closed-form solution for the parameters of a bilinear model (Korenberg,
1991). The above methods generally do not incorporate regularisation techniques or proba-
bilistic interpretations of the models.

Probabilistic interpretations. The noise models that were assumed for the bilinear
and full-rank models (Gaussian or Poisson noise) gave them a probabilistic interpretation,
allowing for principled regularisation techniques and error bar estimation. Finding error bars
for the full-rank model requires a single operation (as for linear models); for the bilinear
model, error bars may be estimated through Gibbs sampling. Obtaining error bars for the
point-process model is slightly more computationally intensive (since we need to employ a

23

Metropolis-Hastings step (MacKay, 2004) to sample from the posterior distributions), but
this is still tractable (Rigat et al., 2006; Cronin et al., 2006); in addition, bootstrap tech-
niques are available, where error bars are derived from repeated estimation of the models on
datasets randomly reselected from the available data (Effron & Tibshirani, 1993).

Bilinear model, full-rank model and SVD components. In the experiments on
simulated data, the bilinear model outperformed the SVD decomposition of the full-rank
model. This was expected, as SVD minimises the distance between the SVD terms and the
parameters of the full-rank model, while the bilinear model directly minimises distance be-
tween the real and predicted firing rate. However, if it is not too computationally expensive
to estimate the full-rank model, the first SVD component can serve as a good initialisation
for the estimation procedure of the bilinear model (or the first k SVD terms can initialise the
ALS estimation of a rank-k model). The full-rank model was shown to capture more complex
dynamics when there was enough data available for its estimation.

Extensions of the bilinear model. The dimension of lag time, called τ , does not have
to range over lag time only, but can also range over other stimulus features. In audition, for
example, it might range over lag time and frequency; the input nonlinearity would then apply
to sound level (Ahrens et al., 2006). In vision, τ could be used for time and space, and the
input nonlinearity for luminance. Another extension of the bilinear model is the multilinear
model (Ahrens et al., 2006). An example of a multilinear model is a trilinear model, in which
the first two components act as a bilinear model as presented in this paper, and the third
component multiplicatively modulates the predicted firing rate as a function of the stimulus.
The extra components of multilinear models can be used to capture further nonlinear phe-
nomena such as short-term stimulus specific adaptation effects, while maintaining a small and
tractable number of parameters. Other extensions of the bilinear model involve learning the
basis functions, e.g. the position of the nodes of a spline basis, by adding a nonlinear step to
the ALS estimation procedure (Westwick & Kearney, 2001). Finally, in this paper we assumed
discrete basis functions in the τ direction. Other basis sets may also be used, in which case
the bilinear model would become r̂(t) = c+

∑

ij bidj
∑

τ hj(τ)fi(s(t− τ)), with {hj} the basis
functions in the τ direction. This model is still bilinear and therefore all previously presented
estimation techniques go through, noting that now the prior for d has the same form as the
prior for b.

Acknowledgements

We thank Rasmus Petersen for the data used in the example of Fig. 10 and for interesting
discussions, Zoubin Ghahramani for suggestions, and Quentin Huys for comments on the
manuscript. M.A. and M.S. were funded by the Gatsby Charitable Foundation and L.P. was
funded by NEI grant EY018003 and by a pilot grant from the Gatsby Charitable Foundation.

24

Appendix

A. Piecewise linear and discrete bases

The piecewise linear basis {fi(x)}Ni=1 consists of tent-shaped functions determined by a set of
nodes {xq}

N
q=1:

fi(x) =

(x− xi−1)/(xi − xi−1) if i > 1 and xi−1 ≤ x < xi

(xi+1 − x)/(xi+1 − xi) if i < N and xi ≤ x < xi+1

0 otherwise.

Piecewise linear basis functions have the advantage over polynomial basis functions of being
local. Polynomial basis functions are global and noise can cause large and uncontrolled
fluctuations in parts of the fitted function that are not tightly constrained by the data. A
reasonable alternative choice might have been a polynomial spline basis (Hastie et al., 2001).

The discrete basis is also defined by a set of nodes {xq}
N+1
q=1 , but now

fi(x) =

{

1 if xi ≤ x < xi+1

0 otherwise.

If the stimulus takes on discrete values, then the basis can be simply defined as: fi(x) = 1 if
x takes on the ith stimulus value, and zero otherwise.

To compute error bars on the parameters of the models, it is necessary to remove one
basis function from the basis set in order to avoid degeneracies, as explained in section 2.7.

B. Alternative alternating least squares procedure

When dim(w) and dim(b) are small or the number of time points T is big (specifically, when
T > (dim(w)2 + dim(b)2)/2) then the estimation of the bilinear model can be accelerated
through the use of different arrays. Note that at each iteration of the algorithm stated
in section 2.1, the matrix Btτ =

∑

i biMtτi is redefined and used to estimate w through
w = (BTB)−1BTr. That is, it appears as BTB and as BTr. Both of these terms include a sum
over t and this may be expensive (both in terms of computational load and memory storage)
for long experiments. Instead of performing the sum over t at every iteration, one can define
alternative data arrays Q and Y as follows: Qτiτ ′i′ =

∑

t MtτiMtτ ′i′ and Yτi =
∑

t Mtτir(t).
Then [BTB]ττ ′ =

∑

ii′ Qτiτ ′i′bibi′ and [BTr]τ =
∑

i Yτibi in the update for w, i.e. the sum over
t is now no longer required. The expressions for the b update are analogous: [WTW]ii′ =
∑

ττ ′ Qτiτ ′i′wτwτ ′ and [WTr]i =
∑

τ Yτiwτ .

C. Regularisation of b in the input nonlinearity model

Note that the regularisation techniques explained below are applicable to all models that use
basis functions. Penalising the first derivative of f(x) =

∑

i bifi(x) can be written as placing
a prior covariance on the vector b, because adding a quadratic term 1

2b
TDbb to the objective

function E is equivalent to placing a Gaussian prior with inverse covariance Db on b. Thus,
we compute Db so as to penalise the first derivative of f :

λ

∫
(

df(x)

dx

)2

dx = λ

∫
(

d
∑

i bifi(x)

dx

)2

dx =
∑

ij

bibjD
b
ij . (6)

25

This equation holds if we define Db as

Db
ij = λ

∫

dfi(x)

dx

dfj(x)

dx
dx,

where fi(·) are basis functions. Note that this is an improper prior (does not integrate to
1), since Db has a zero eigenvalue — but this penalisation is nonetheless useful because it
corresponds to familiar features of f (the steepness). Instead of the first derivative, the second
derivative of f may be a more relevant property to control. The piecewise linear basis was
used for all examples in this paper, hence we derive an expression for Db tailored to this basis
set. Note that the second derivative of a piecewise linear function is ill-defined: here we define
it (up to an arbitrary constant multiplier) to be the difference between the slopes at either
side of the nodes. The piecewise linear basis consists of triangles, which start at 0 at a node
xq−1, rise linearly to 1 at the neighbouring node xq, and descend linearly to 0 at the next
node xq+1; see Appendix A. Penalising the curvature now involves only the nodes, because
in between the nodes, f is linear and has zero curvature. Using the notation x+

q and x−
q for

values just above and below xq (e.g. x−
q = xq − δ, for δ very small), we penalise

λ

∫ (

d2f

dx2

)2

dx = λ
∑

q

(df

dx

∣

∣

∣

x−

q

−
df

dx

∣

∣

∣

x+
q

)2

=
∑

ij

bibjD
b
ij

where Db
ij = λ

∫

f ′′
i (x)f ′′

j (x)dx is, for a piecewise linear basis set,

Db
ij = λ

∑

q

f ′
i(x

−
q)f ′

j(x
−
q)− f ′

i(x
−
q)f ′

j(x
+
q)− f ′

i(x
+
q)f ′

j(x
−
q) + f ′

i(x
+
q)f ′

j(x
+
q).

Note that the only nonzero terms in this sum are those for which |q − i| ≤ 1 and |q − j| ≤ 1
because piecewise linear basis functions are nonzero only across three nodes.

Other regularising priors, for example penalising higher derivatives (or the Laplacian in
higher dimensions; see also Poggio et al., 1985), can be derived in a similar way. Replace ∂

∂x
in equation 6 by a different linear operation and find the corresponding Db.

D. Regularisation of C in the full-rank model

Again using the symbol x for the stimulus value, and writing the effective response as a(τ, x) =
∑

i Cτifi(x), the penalty term is defined to be
∑

τ

∫

x α
(

da
dτ

)2
+ β

(

d2a
dx2

)2
, penalizing high

derivatives in the τ direction and high second derivatives in the x direction. To write this

as a quadratic form in C, note that da
dτ =

∑

i (Cτi − Cτ−1,i) fi(x) and d2a
dx2 =

∑

i wτi
d2fi

dx2 . The
expression for the penalty term is then

∑

τ

∫

x
α

(

da

dτ

)2

+ β

(

d2a

dx2

)2

=
∑

ττ ′ij

CτiCτ ′jD
C
τiτ ′i′

where DC is the inverse prior covariance of C,

DC
τiτ ′i′ = αD1

τiτ ′i′ + βD2
τiτ ′i′

= α(2δτ,τ ′ − δτ+1,τ ′ − δτ,τ ′+1)

∫

x
fi(x)fi′(x) + βδτ,τ ′

∫

x
f ′′

i (x)f ′′
i′(x).

26

Finally, because we are using a small but discrete resolution δx for x, we replace the integrals
by sums:

∫

x
fi(x)fi′(x) = δx

∑

n

fi(xn)fi′(xn),

∫

x
f ′′

i (x)f ′′
i′ (x) =

1

δx

∑

q

[f ′
i(x

+
q)− f ′

i(x
−
q)][f ′

i′(x
+
q)− f ′

i′(x
−
q)].

Here xn are the points in the discretised space of stimulus value (such that xn+1 = xn + δx)
and xq are the nodes of the piecewise linear basis functions. DC is re-shaped into DC

mm′ when
using it in linear regression by vectorising (τ, i): the index m replaces (τ, i) and m′ replaces
(τ ′, i′). The resolution δx appears in the definition of the prior as α · δx and as β/δx; the prior
should not depend on the resolution, but this can be countered by absorbing δx into α and
β, i.e. ignoring δx and tuning α and β by cross validation or automatically as in Appendix F.

E. Gibbs sampling in the bilinear model

Gibbs sampling involves fixing b to b1, drawing w1 from a probability distribution dependent
on this value, and then fixing w to w1, and drawing b2 from a distribution dependent on
w1, and so on (MacKay, 2004). In this way, {wn,bn} will (as n grows) converge to a set of
samples from P (w,b|r,M,Dw,Db, σ̂2). The conditional probability distributions of w and b

are Gaussians, with means and covariances obtained from the conditionally-linear regression
problems (cf. the linear regression example in section 2.6):

P (w|b, r,M, σ̂2) = N
[

(BT
B + σ̂2

D
b)−1

B
Tr, σ̂2(BT

B + σ̂2
D

b)−1
]

and
P (b|w, r,M, σ̂2) = N

[

(WT
W + σ̂2

D
w)−1

W
Tr, σ̂2(WT

W + σ̂2
D

w)−1
]

where Btτ =
∑

i biMtτi and Wti =
∑

τ wτMtτi; since sampling from a multivariate Gaussian
distribution requires only the computation of a matrix square root, Gibbs sampling here is
quite computationally efficient. The noise parameter σ̂2 is normally set to the squared error
between the real and predicted firing rates, using the parameters wMAP and bMAP obtained
by the ALS procedure (though we may easily sample from the posterior distribution of σ2 as
well). These MAP parameters are also good as starting points for Gibbs sampling.

F. Adaptive regularisation of bilinear models

In the main text we described an alternating least squares procedure to estimate the parameter
vectors of an input-nonlinearity model. The algorithm made it easy to incorporate prior
covariance matrices for the parameter vectors. In many cases, however, it is not clear what
a good prior should be - e.g., how much smoothing is needed to get sensible results from
data with variable noise? Ideally, one should incorporate some flexibility by making the prior
matrices depend on one or more hyperparameters θ (e.g. λ, α and β in Appendices C and
D). Whilst these parameters may be set by intuitive expectation, or by cross-validation, we
have also developed an empirical Bayesian approach that employs a Variational Bayes EM
algorithm (Dempster et al., 1977; Beal, 2003) to fit this hierarchical model, treating λ, α and

27

β as hyperparameters and approximately integrates over the parameters b and w. While the
ALS procedure only keeps track of the mean of the parameter vectors, the Bayesian approach
also keeps track of their covariances; while previously, a new estimate of one parameter was
dependent only on the previous estimate of the other parameters, it now also depends on the
uncertainty about the other parameters. Here we only present the resulting algorithm. The
derivations and variations will be discussed elsewhere.

The algorithm contains several variables which are updated inside a loop. The terms uw,b

and Σw,b represent estimates of the posterior means and covariance matrices of the parameter
vectors w and b, respectively. Sw(θw) and Sb(θb) are the prior covariance matrices that
are responsible for regularising the estimates, and depend on (possibly multidimensional)
parameters θw,b, which must be learnt. The parameter σ̂2 is an estimate of the scale of
the Gaussian noise of the spike rate; this estimate is also updated at every iteration of the
algorithm. Finally, the function F is the portion of the free energy, a lower bound on the
log-likelihood, that depends on the θs.

The algorithm is initialised with guesses for uw and ub (e.g. wMAP and bMAP); the posterior
covariance matrices Σw,b can be initialised as a multiple of the identity matrix. The variance
σ̂2 can be initialised by e.g. the squared error coming from the ALS procedure, or by the
variance of r(t).

The algorithm is then:

1. Define

• Cw ← Σw + uw[uw]T

• Qw
ij ←

∑

tkl C
w
klMtikMtjl

• [vw]i ←
∑

tk[u
b]kMtikr(t).

2. Update Σw and uw according to

Σw ← S
w

[

QwSw

σ̂2
+ I

]−1

uw ← Σw vw

σ̂2

3. Perform the analogous operations of steps 1 and 2 for Σb and ub.

4. Update σ̂2 according to

σ̂2 ←
1

T

rtr− 2
∑

tik

[uw]i[u
b]kr(t)Mtik +

∑

tijkl

Cw
ijC

b
klMtikMtjl

where T = length(r), Cw = uw[uw]T + Σw and Cb = ub[ub]T + Σb.

5. Do gradient ascent on the function

F =−
1

2
log |Sw| −

1

2
log |Sb| −

1

2
trace

(

C
w[Sw]−1 + C

b[Sb]−1
)

28

with respect to θw and θb (which may be multidimensional). The gradients are (written
both in terms of the prior covariance Sw and the inverse prior covariance Dw = [Sw]−1,
so that the algorithm can be implemented using either form of regularisation),

∂

∂θw
F =

1

2
trace

[

(

C
w[Sw]−1 − I

) ∂Sw

∂θw
[Sw]−1

]

=
1

2
trace

[

(I− Cw
D

w) [Dw]−1 ∂Dw

∂θw

]

with an analogous expression for the gradient in the θb direction. One can either take
one or a few gradient steps, or continue the gradient ascent until convergence.

6. Continue this loop, i.e. go to step 1, until uw,ub and the Σ’s converge.

Note that step 1 of this algorithm reduces to a step in the ALS procedure if the Σ’s are
set to zero.

The prior for the full-rank model can also be adaptively tuned, e.g. by using Evidence
Optimisation techniques described in MacKay (1994) and Sahani & Linden (2003a). The
latter paper also presents further formulations for tunable prior covariance matrices S(θ).

References

Ahrens, M. B., Linden, J. F., & Sahani, M. 2006. Multilinear spectrotemporal models for
predicting auditory cortical responses. Association for Research in Otolaryngology abstract.

Arabzadeh, E., Petersen, R. S., & Diamond, M. E. 2003. Encoding of whisker vibration by rat
barrel cortex neurons: implications for texture discrimination. J Neurosci 23, 9146–9154.

Arabzadeh, E., Zorzin, E., & Diamond, M. E. 2005. Neuronal Encoding of Texture in the
Whisker Sensory Pathway. PLoS Biol 3, 155–165.

Bai, E. W. 1998. An optimal two-stage identification algorithm for Hammerstein-Wiener
nonlinear systems. Automatica 34, 333–338.

Beal, M. J. 2003. Variational Algorithms for Approximate Bayesian Inference. PhD Thesis,
Gatsby Computational Neuroscience Unit, University College London.

Berman, M. & Turner, T. R. 1992. Approximating Point Process Likelihoods with GLIM.
Applied Statistics 41, 31–38.

Breiman, L. & Friedman, J. H. 1985. Estimating optimal transformations for multiple regres-
sion and correlation. Journal of the American Statistical Association 80 (391), 580–598.

Brenner, N., Bialek, W., & de Ruyter van Steveninck, R. 2000. Adaptive Rescaling Maximizes
Information Transmission. Neuron 26, 695–702.

Bussgang, J. J. 1952. Crosscorrelation functions of amplitude-distorted Gaussian signals.
Technical Report No. 216, Research Laboratory of Electronics, MIT.

29

Chichilnisky, E. J. 2001. A simple white noise analysis of neuronal light responses. Network:
Computation in Neural Systems 12, 199–213.

Christianson, G. B., Sahani, M., & Linden, J. F. 2007. The Consequences of Response
Nonlinearities for Interpretation of Spectrotemporal Receptive Fields. J Neurosci . in
review.

Cronin, B., Schummers, J., Koerding, K., & Sur, M. 2006. Bayesian sampling methods for
the analysis of reverse correlation data. SfN abstract 545.3/T5.

de Ruyter van Steveninck, R. & Bialek, W. 1988. Real-time performance of a movement-
sensitive neuron in the blowfly visual system: Coding and information transmission in
short spike sequences. Proceedings of the Royal Society of London. Series B 234, 379–414.

DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. 1995. Receptive-field dynamics in the central
visual pathways. Trends Neurosci 18, 451–458.

Dempster, A. P., Laird, N. M., & Rubin, D. B. 1977. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society B 39, 1–38.

Depireux, D. A., Simon, J. Z., Klein, D. J., & Shamma, S. A. 2001. Spectro-Temporal Re-
sponse Field Characterization With Dynamic Ripples in Ferret Primary Auditory Cortex.
J Neurophysiol 85, 1220–1234.

Effron, B. & Tibshirani, R. J. 1993. An Introduction to the Bootstrap. New York: Chapman
& Hall.

Hastie, T., Tibshirani, R., & Friedman, J. 2001. The Elements of Statistical Learning: Data
Mining, Inference and Prediction. New York: Springer-Verlag.

Hastie, T. J. & Tibshirani, R. J. 1999. Generalized additive models. Monographs on Statistics
and Applied Probability 43, Chapman & Hall/CRC.

Hunter, I. W. & Korenberg, M. J. 1986. The Identification of Nonlinear Biological Systems:
Wiener and Hammerstein Cascade Models. Biological Cybernetics 55, 135–144.

Juusola, M., Weckström, M., Uusitalo, R. O., Korenberg, M. J., & French, A. S. 1995.
Nonlinear Models of the First Synapse in the Light-Adapted Fly Retina. J Neurophysiol 74,
2538–2547.

Korenberg, M. J. 1991. Recent advances in the identification of nonlinear systems: minimum-
variance approximation by Hammerstein models. Ann Int Conf IEEE Eng in Med and Biol
Soc 13, 2258–2259.

Linden, J. F., Liu, R. C., Sahani, M., Schreiner, C. E., & Merzenich, M. M. 2003. Spec-
trotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. J
Neurophysiol 90, 2660–2675.

Luczak, A., Hackett, T. A., Kajikawa, Y., & Laubach, M. 2004. Multivariate receptive field
mapping in marmoset auditory cortex. Journal of Neuroscience Methods 136, 77–85.

Machens, C. K., Wehr, M. S., & Zador, A. M. 2004. Linearity of cortical receptive fields
measured with natural sounds. J Neurosci 24, 1089–1100.

30

MacKay, D. J. C. 1994. Bayesian non-linear modelling for the prediction competition. In
ASHRAE Transactions, V.100, Pt.2, Atlanta Georgia, pp. 1053–1062. ASHRAE.

MacKay, D. J. C. 2004. Information Theory, Inference, and Learning Algorithms. Cambridge
University Press.

Marmarelis, P. Z. & Naka, K. I. 1973. Nonlinear analysis and synthesis of receptive-field
responses in the catfish retina. I. Horizontal cell leads to ganglion cell chain. J Neurophys-
iol 36, 605–618.

McCullagh, P. & Nelder, J. 1989. Generalized Linear Models. Chapman and Hall.

Narendra, K. S. & Gallman, P. G. 1966. An Iterative Method for the Identification of Non-
linear Systems Using a Hammerstein Model. IEEE Trans on Automatic Control AC-11,
546–550.

Paninski, L. 2003. Convergence properties of three spike-triggered analysis techniques. Net-
work: Computation in Neural Systems 14, 877–883.

Paninski, L. 2004. Maximum likelihood estimation of cascade point-process neural encoding
models. Network: Computation in Neural Systems 15, 243–262.

Pillow, J. W., Paninski, J., Uzzell, V. J., Simoncelli, E. P., & Chichilnisky, E. J. 2005.
Prediction and Decoding of Retinal Ganglion Cell Responses with a Probabilistic Spiking
Model. J Neurosci 25, 11003–11013.

Pillow, J. W. & Simoncelli, E. P. 2006. Dimensionality reduction in neural models: an
information-theoretic generalization of spike-triggered average and covariance analysis.
Journal of Vision 6, 414–428.

Pinto, D. J., Brumberg, J. C., & Simons, D. J. 2000. Circuit Dynamics and Coding Strategies
in Rodent Somatosensory Cortex. J Neurophysiol 83, 1158–1166.

Poggio, T., Torre, V., & Koch, C. 1985. Computational Vision and Regularization Theory.
Nature 317, 314–319.

Rigat, F., de Gunst, M., & van Pelt, J. 2006. Bayesian modelling and analysis of spatio-
temporal neuronal networks. (in press).

Sahani, M. & Linden, J. F. 2003a. Evidence optimization techniques for estimating stimulus-
response functions. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in Neural
Information Processing Systems 15, Volume 15, pp. 109–116. Cambridge, MA: MIT Press.
Available online via http://www.nips.cc.Proceedings/.

Sahani, M. & Linden, J. F. 2003b. How linear are auditory cortical responses? In
S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in Neural Information Pro-
cessing Systems 15, pp. 109–116. Cambridge, MA: MIT Press. Available online via
http://www.nips.cc.Proceedings/.

Schwarz, O., Chichilnisky, E. J., & Simoncelli, E. P. 2002. Characterizing neural gain control
using spike-triggered covariance. In T. G. Dietterich, S. Becker, & Z. Gharamani (Eds.),
Adv Neural Information Processing Systems, Volume 14, pp. 269–276. Cambridge, MA:
MIT Press. Available online via http://www.nips.cc.Proceedings/.

31

Sharpee, T., Rust, N. C., & Bialek, W. 2004. Analyzing Neural Responses to Natural Signals:
Maximally Informative Dimensions. Neural Computation 16, 223–250.

Simoncelli, E. P., Pillow, J., Paninski, L., & Schwartz, O. 2004. Characterization of neural
responses with stochastic stimuli. In M. Gazzaniga (Ed.), The Cognitive Neurosciences (3
ed.)., pp. 327–338. Cambridge, MA: MIT Press.

Spekreijse, H. & Oosting, H. 1970. A method for analysing and synthesizing nonlinear systems.
Kybernetik 7, 23–31.

Strang, G. 1988. Linear Algebra and its Applications (3 ed.). Brooks Cole.

Suits, D. B., Mason, A., & Chan, L. 1978. Spline Functions Fitted by Standard Regression
Methods. The Review of Economics and Statistics 60, 132–139.

Touryan, J., Felsen, G., & Dan, Y. 2005. Spatial Structure of Complex Cell Receptive Fields
Measured with Natural Images. Neuron 45, 781–791.

Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. 2005. A
Point Process Framework for Relating Neural Spiking Activity to Spiking History, Neural
Ensemble, and Extrinsic Covariate Effects. J Neurophysiol 93, 1074–1089.

Webber, R. M. & Stanley, G. B. 2004. Nonlinear Encoding of Tactile Patterns in the Barrel
Cortex. J Neurophysiol 91, 2010–2022.

Westwick, W. T. & Kearney, R. E. 2001. Separable Least Squares Identification of Nonlinear
Hammerstein Models: Application to Stretch Reflex Dynamics. Annals of Biomedical
Engineering 29, 707–718.

Young, E. D. & Calhoun, B. M. 2005. Nonlinear Modeling of Auditory-Nerve Rate Responses
to Wideband Stimuli. J Neurophysiol 94, 4441–4454.

Young, F. W., de Leeuw, J., & Takane, Y. 1976. Regression with qualitative and quantitative
variables: An alternating least squares method with optimal scaling features. Psychome-
trika 41, 505–529.

32

