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Abstract

Many perceptual processes and neural computations, such asspeech recognition,
motor control and learning, depend on the ability to measureand mark the passage
of time. However, the processes that make such temporal judgements possible are
unknown. A number of different hypothetical mechanisms have been advanced,
all of which depend on the known, temporally predictable evolution of a neu-
ral or psychological state, possibly through oscillationsor the gradual decay of a
memory trace. Alternatively, judgements of elapsed time might be based on ob-
servations of temporally structured, butstochastic processes. Such processes need
not be specific to the sense of time; typical neural and sensory processes contain at
least some statistical structure across a range of time scales. Here, we investigate
the statistical properties of an estimator of elapsed time which is based on a simple
family of stochastic process.

1 Introduction

The experience of the passage of time, as well as the timing ofevents and intervals, has long been
of interest in psychology, and has more recently attracted attention in neuroscience as well. Timing
information is crucial for the correct functioning of a large number of processes, such as accurate
limb movement, speech and the perception of speech (for example, the difference between “ba” and
“pa” lies only in the relative timing of voice onsets), and causal learning.

Neuroscientific evidence that points to a specialized neural substrate for timing is very sparse, par-
ticularly when compared to the divergent set of specific mechanisms which have been theorized.
One of the most influential proposals, the scalar expectancytheory (SET) of timing [1], suggests
that interval timing is based on the accumulation of activity from an internal oscillatory process.
Other proposals have included banks of oscillators which, when fine-tuned, produce an alignment
of phases at a specified point in time that can be used to generate a neuronal spike [2]; models in
which timing occurs via the characteristic and monotonic decay of memory traces [3] or reverberant
activity [4]; and randomly-connected deterministic networks, which, given neuronal processes of
appropriate timescales, can be shown to encode elapsed timeimplicitly [5].

Although this multitude of theories shows that there is little consensus on the mechanisms respon-
sible for timing, it does point out an important fact: that timing information is present in a range
of different processes, from oscillations to decaying memories and the dynamics of randomly con-
nected neural networks. All of the theories above choose onespecific such process, and suggest that
observers rely on that one alone to judge time. An alternative, which we explore here, is to phrase
time estimation as a statistical problem, in which the elapsed time∆t is extracted from a collec-
tion of stochastic processes whose statistics are known. This is loosely analagous to accounts have
appeared in the psychological literature in the form of number-of-events models [6], which suggest
that the number of events in an interval influence the perception of its duration. Such models have
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been related to recent psychological findings the show that the nature of the stimulus being timed
affects judgments of duration [7].

Here, by contrast, we consider the properties of duration estimators that are based on more general
stochastic processes. The particular stochastic processes we analyze are abstract. However, they
may be seen as models both for internally-generated neural processes, such as (spontaneous) net-
work activity and local field potentials, and for sensory processes, in the form of externally-driven
neural activity, or (taking a functional view) in the form ofthe stimuli themselves. Both neural activ-
ity and sensory input from the environment follow well-defined temporal statistical patterns, but the
exploitation of these statistics has thus far not been studied as a potential substrate for timing judge-
ments, despite being potentially attractive. Such a basis for timing is consistent with recent studies
that show that the statistics of external stimuli affect timing estimates [8, 7], a behavior not captured
by the existing mechanistic models. In addition, there is evidence that timing mechanisms are dis-
tributed [9] but subject to local (e.g. retinotopic or spatiotopic) biases [10]. Using the distributed
time-varying processes which are already present in the brain is implementationally efficient, and
lends itself straightforwardly to a distributed implementation. At the same time, it suggests a possi-
ble origin for the modality-specificity and locality of the bias effects, as different sets of processes
may be exploited for different timing purposes. Here, we show primarily that interval estimates
based on such processes obey a Weber-like scaling law for accuracy under a wide range of assump-
tions, as well as scaling with process number that is consistent with experimental observation; and
we use estimation theoretic analysis to find the reasons behind the robustness of these scaling laws.

Neuronal spike trains exhibit internal dependencies on many time scales, ranging from milliseconds
to tens of seconds [11, 12], so these — or, more likely, processes derived from spike trains, such
as average network activity — are plausible candidates for the types of processes assumed in this
paper. Likewise, sensory information too varies over a large range of temporal scales [13]. The
particular stochastic processes we use here are Gaussian Processes, whose power spectra are chosen
to be broad and roughly similar to those seen in natural stimuli.

2 The framework

To illustrate how random processes contain timing information, consider a random walk starting at
the origin, and suppose that we see a snapshot of the random walk at another, unknown, point in
time. If the walk were to end up very far from the origin, and ifsome statistics of the random walk
were known, we would expect that the time difference betweenthe two observations,∆t, must be
reasonably long in comparison to the diffusion time of the process. If, however, the second point
were still very close to the origin, we might assign a high probability to ∆t ≈ 0, but also some
probability (associated with delayed return to the orgin) to |∆t| > 0. Access to more than one such
random walk would lead to more accurate estimates (e.g. if two random walks had both moved very
little between the two instances in time, our confidence that∆t ≈ 0 would be greater). From such
considerations it is evident that, on the basis of multiple stochastic processes, one can build up a
probabilistic model for∆t.

To formalize these ideas, we model the random processes as a family of independent stationary
Gaussian Processes (GPs, [14]). A GP is a stochastic processy(t) in which any subset of observa-
tions{y(t), y(t′), y(t′′), ...} is jointly Gaussian distributed, so that the probability distribution over
observations is completely specified by a mean value (here set to zero) and a covariance structure
(here assumed to remain constant in time). We denote the set of processes by{yi(t)}. Although
this is not a necessity, we let each process evolve independently according to the same stochastic
dynamics; thus the process values differ only due to the random effects. Mimicking the tempo-
ral statistics of natural scenes [15], we choose the dynamics to simultaneously contain multiple
time scales — specifically, the power spectrum approximately follows a 1/f2 power law, were
f = frequency= 1/(time scale). Some instances of such processes are shown in Figure 1.

Stationary Gaussian processes are fully described by the covariance functionK(∆t):

〈yi(t)yi(t + ∆t)〉 = K(∆t)

so that the probability of observing a sequence of values[yi(t1), yi(t2), ..., yi(tn)] is Gaussian dis-
tributed, with zero mean and covariance matrixΣn,n′ = K(tn′ − tn).
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Figure 1:Left: Two examples of the GPs used for inference of∆t. Right: Their power spectrum.
This is approximately a1/f2 spectrum, similar to the temporal power spectrum of visual scenes.

To generate processes with multiple time scales, we approximate a1/f2 spectrum with a sum over
Q squared exponential covariance functions:

K(∆t) =

Q∑

q=1

α2

q exp(−∆t2/2l2q) + σ2

yI(∆t)

Hereσ2
yI(∆t) describes the instantaneous noise around the underlying covariance structure (I is

the indicator function, which equals1 when its argument is zero), andlq are the time scales of the
component squared exponential functions. We take these to be linearly spaced, so thatlq ∝ q. To
mimic a1/f2 spectrum, we choose the power of each component to be constant: α2

q = 1/Q. Figure
1 shows that this choice does indeed quite accurately reproduce a1/f2 power spectrum.

To illustrate how elapsed time is implicitly encoded in suchstochastic processes, we infer the dura-
tion of an interval[t, t + ∆t] from two instantaneous observations of the processes, namely {yi(t)}
and{yi(t+∆t)}. For convenience,yi is used to denote the vector[yi(t), yi(t+∆t)]. The covariance
matrixΣ(∆t) of yi, which is of size 2x2, gives rise to a likelihood of these observations,

P ({yi(t)}, {yi(t + ∆t)}|∆t) ∝
∏

i

|Σ|−1/2 exp

(
−1

2
y

T
i Σ−1

yi

)

With the assumption of a weak prior1, this yields a posterior distribution over∆t:

Φ(∆t) = P (∆t|{yi}) ∝ P (∆t) ·
∏

i

P (yi|∆t)

∝ P (∆t) · exp

(
−1

2

∑

i

[
log |Σ| + y

T
i Σ−1

yi

]
)

This distribution gives a probabilistic description of thetime difference between two snapshots of
the random processes. As we will see below (see Figure 2), this distribution tends to be centred on
the true value of∆t, showing that such random processes may indeed be exploitedto obtain timing
information. In the following section, we explore the statistical properties of timing estimates based
onΦ, and show that they correspond to several experimental findings.

1such asP (∆t) = β exp(−β∆t)Θ(∆t) with β ≪ 1 andΘ the Heaviside function, orP (∆t) = U [0, tmax];
the details of the weak prior do not affect the results.
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Figure 2: Statistics of the inference of∆t from snapshots of a group of GPs. The GPs have time
scales in the interval[0.05, 50]. Left: The mean estimated times (blue) are clustered around the true
times (dashed). Right: The Weber law of timing,σ ∝ ∆t, approximately holds true for this model.
The error bars are standard errors derived via a Laplace approximation to the posterior. A straight
line fit is shown with adashed line. The Cramer-Rao bound (blue), which will be derived later in
the text, predicts the empirical data well.

3 Scaling laws and behaviour

3.1 Empirical demonstration of Weber’s law

Many behavioral studies have shown that the standard deviation of interval estimates is proportional
to the interval being judged,σ ∝ ∆t, across a wide range of timescales and tasks (e.g. [1]). Here,
we show that GP-based estimates share this property under broad conditions.

To compare the behaviour of the model to experimental data, we must choose a mapping from the
function Φ to a single scalar value, which will model the observer’s report. A simple choice is
to assume that the reported∆t is the maximum a-posteriori (MAP) estimator based onΦ, that is,
∆̂tMAP = argmax∆t Φ(∆t). To compare the statistics of this estimator to the experimental obser-
vation, we took samples{yi(t)} and{yi(t + ∆t)} from 50 GPs with identical1/f2-like statistics
containing time scales from 1 to 40 time units. 100 samples were generated for each∆t (ranging
from 1 to 16 time unis), leading to 100 estimates,∆̂tMAP. These estimates are plotted in Figure 2A.
They are seen to follow the true∆t. Their spread around the true value increases with increasing
∆t. The standard deviation of this spread is plotted in Figure 2B, and is a roughly linear function of
∆t. Thus, time estimation is possible using the stochastic process framework, and the Weber law of
timing holds fairly accurately.

3.2 Fisher Information and Weber’s law

A number of questions about this Weber-like result naturally arise: Does it still hold if one changes
the power spectrum of the processes? What if one changes the scale of the instantaneous noise? We
increased the noise scaleσ2

y, and found that the Weber law was still approximately satisfied. When
changing the power spectrum of the processes from a1/f2-type spectrum to a1/f3-type spectrum
(by letting α2

i ∝ li instead ofα2
i ∝ 1), the Weber law was still approximately satisfied (Figure

3). This result may appear somewhat counter-intuitive, as one might expect that the accuracy of the
estimator for∆t would increase as the power in frequencies around1/∆t increased; thus, changing
the power spectrum to1/f3 might be expected to result in more accurate estimates of large ∆t
(lower frequencies) as compared to estimates of small∆t, but this was not the case.

To find reasons for this behaviour, it would useful to have an analytical expression for the relation-
ship between the variability of the estimated duration and the true duration. This is complex, but a
simpler analytical approximation to this relation can be constructed through the Cramer-Rao bound.
This is a lower bound on the asymptotic variance of an unbiased Maximum Likelihood estimator of
∆t and is given by the inverse Fisher Information:
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Figure 3:Left: Two examples of GPs with a different power spectrum (α2
i ∝ li, for li ∝ i, which

approximates a1/f3 power spectrum, resulting in much smoother dynamics).Right: Inference of
∆t based on these altered processes. Note that the estimator∆̂tMAP is based on the true likelihood,
i.e., the new1/f3 statistics. The Weber law still approximately holds, even though the dynamics
is different from the initial case. The empirical standard deviation is again well predicted by the
analytical Cramer-Rao bound (blue).

Var(∆̂t) ≥ 1/IF (∆t)

The Fisher Information, assuming that the elapsed time is estimated on the basis ofN processes,
each evolving according to covariance matrixΣ(∆t), is given by the expression

IF (∆t) = −N
〈∂2 log P ({yi}|∆t)

∂∆t2

〉

y

=
N

2
Tr

[
Σ−1

∂Σ

∂∆t
Σ−1

∂Σ

∂∆t

]
(1)

This bound is plotted in blue in Figure 2, and again in Figure 3, and can be seen to be a good
approximation to the empirical behaviour of the model.

What is the reason for the robust Weber-like behaviour? To answer this question, consider a different
but related model, in which there areN Gaussian processes, again labeledi, but each now evolv-
ing according to different covariance matrix Ci(∆t). Previously, each process reflected structure at
many timescales. In this new model, each process evolves with a single squared-exponential covari-
ance kernel, and thus a single time-constant. This will allow us to see how each process contributes
to the accuracy of the estimator.

Thus, in this model,[Ci(∆t)]n,n′ = α2
i exp(−(tn′−tn)2/2l2i )+σ2

yI(tn′−tn). (The power spectrum
is then shaped asexp(−f2l2i /2).) The likelihood of observing the processes at two instances is now

P ({yi(t)}, {yi(t + ∆t)}|∆t) ∝
∏

i

|Ci|−1/2 exp

(
−1

2
y

T
i C−1

i yi

)
(2)

This model shows very similar behaviour to the original model, but is somewhat less natural. Its
advantage lies in the fact that the Fisher Information can now be decomposed as a sum over different
time scales,

IF (∆t) =
∑

i

IF,i =
1

2

∑

i

Tr

[
C−1

i

∂Ci

∂∆t
C−1

i

∂Ci

∂∆t

]

Using the Fisher Information to plot Cramer-Rao bounds for different types of processes{yi(t)}
(Figure 4, dashed lines), we first note that the bounds are allrelatively close to linear, even though
the parameters governing the processes are very different.In particular, we tested both linear spacing
of time scales (li ∝ i) and quadratic spacing (li ∝ i2), and we tested a constant power distribution
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Figure 4: Fisher Information and Cramer-Rao bounds for the model of equation 2. The Cramer-Rao
bound is the square root of the inverse of the sum of all the Fisher Information curves (note that
only a few Fisher Information curves are shown). The noise scaleσ2

y = 0.1, and the time scales are
eitherli = i, i = 1, 2, . . . , 50 (linear) orli = i2/50, i = 1, 2, . . . , 50 (quadratic). The power of each
process is eitherα2

i = 1 (constant) orα2
i = li. The graphs show that each time scale contributes to

the estimation of a wide range of∆t, and that the Cramer-Rao bounds are all fairly linear, leading
to a robust Weber-like behaviour of the estimator of elapsedtime.

(αi = 1) and a power distribution where slower processes have more power (α2
i ∝ li). None of

these manipulations caused the Cramer-Rao bound to deviatemuch from linearity.

Next, we can evaluate the contribution of each time scale to the accuracy of estimates of∆t, by
inspecting the Fisher InformationIF,i of a given processyi. Figure 4 shows that (contrary to the
intuition that time scales close to∆t contribute most to the estimation of∆t) a process evolving at
a certain time scalelj contributes to the estimation of elapsed time∆t even if∆t is much smaller
thanlj (indeed, the peak ofIF,j does not lie atlj , but below it). This lies at the heart of the robust
Weber-like behaviour: the details of the distribution of time scales do not matter much, because each
time scale contributes to the estimation of a wide range of∆t. For similar reasons, the distribution
of power does not drastically affect the Cramer-Rao bound. From the graphs ofIF,i, it is evident
that the Weber law arises from an accumulation of high valuesof Fisher Information at low values
of ∆t.

Very small values of∆t may be an exception, if the instantaneous noise dominates the subtle changes
that the processes undergo during very short periods; for these∆t, the standard deviation may rise.
This is reflected by a subtle rise in some of the Cramer-Rao bounds at very low values of∆t.
However, it may be assumed that the shortest times that neural systems can evaluate are no shorter
than the scale of the fastest process within the system, making these small∆t’s irrelevant.

3.3 Dependence of timing variability on the number of processes

Increasing the number of processes, sayNprocesses, will add more terms to the likelihood and make
the estimated∆t more accurate. The Fisher Information (equation 1) scales with Nprocesses, which

suggests that the standard deviation of∆̂tMAP is proportional to1/
√

Nprocesses; this was confirmed
empirically (data not shown).
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Psychologically and neurally, increasing the number of processes would correspond to adding more
perceptual processes, or expanding the size of the network that is being monitored for timing es-
timation. Although experimental data on this issue is sparse, in [9], it is shown that unimanual
rhythm tapping results in a higher variability of tapping times than bimanual rhythm tapping, and
that tapping with two hands and a foot results in even lower variability.

This correlates well with the theoretical scaling behaviour of the estimator̂∆tMAP. Note that a
similar scaling law is obtained from the Multiple Timer Model [16]. This is not a model for timing
itself, but for the combination of timing estimates of multiple timers; the Multiple Timer Model
combines these estimates by averaging, which is the ML estimate arising from independent draws
of equal variance Gaussian random variables, also resulting in a1/

√
N scaling law.

Experimentally, a slower decrease in variability than a1/
√

N law was observed. This can be ac-
counted for by assuming that the processes governing the right and left hands are dependent, so that
the number of effectively independent processes grows moreslowly than the number of effectors.

4 Conclusion

We have shown that timing information is present in random processes, and can be extracted prob-
abilistically if certain statistics of the processes are known. A neural implementation of such a
framework of time estimation could use both internally generated population activity as well as
external stimuli to drive its processes.

The timing estimators considered were based on the full probability distribution of the process val-
ues at timest andt′, but simpler estimators could also be constructed. There are two reasons for
considering simpler estimators: First, simpler estimators might be more easily implemented in neu-
ral systems. Second, to calculateΦ(∆t), one needs all of{yi(t), yi(t

′)}, so that (at least){yi(t)}
has to be stored in memory. One way to construct a simpler estimator might be to select a particular
class (say, a linear function of{yi}) and optimize over its parameters. Alternatively, an estimator
may be based on the posterior distribution over∆t conditioned on a reduced set of parameters, with
the neglected parameters integrated out. Another route might be to consider different stochatic pro-
cesses, which have more compact sufficient statistics (e.g.Brownian motion, being translationally
invariant, would require only{yi(t

′)−yi(t)} instead of{yi(t), yi(t
′)}; we have not considered such

processes because they are unbounded and therefore hard to associate with sensory or neural pro-
cesses). We have not addressed how a memory mechanism might be combined with the stochastic
process framework; this will be explored in the future.

The intention of this paper is not to offer a complete theory of neural and psychological timing, but to
examine the statistical properties of a hitherto neglectedsubstrate for timing — stochastic processes
that take place in the brain or in the sensory world. It was demonstrated that estimators based on
such processes replicate several important behaviors of humans and animals. Full models might be
based on the same substrate, thereby naturally incorporating the same behaviors, but contain more
completely specified relations to external input, memory mechanisms, adaptive mechanisms, neural
implementation, and importantly, (supervised) learning of the estimator.

The neural and sensory processes that we assume to form the basis of time estimation are, of course,
not fully random. But when the deterministic structure behind a process is unknown, they can still be
treated as stochastic under certain statistical rules, andthus lead to a valid timing estimator. Would
the GP likelihood still apply to real neural processes or would the correct likelihood be completely
different? This is unknown; however, the Multivariate Central Limit Theorem implies that sums
of i.i.d. stochastic processes tend to Gaussian Processes —so that, when e.g. monitoring average
neuronal activity, the correct estimator may well be based on a GP likelihood.

An issue that deserves consideration is the mixing of internal (neural) and external (sensory) pro-
cesses. Since timing information is present in both sensoryprocesses (such as sound and movement
of the natural world, and the motion of one’s body) and internal processes (such as fluctuations in
network activity), and because stimulus statistics influence timing estimates, we propose that psy-
chological and neural timing may make use of both types of processes. However, fluctuations in the
external world do not always translate into neural fluctuations (e.g. there is evidence for a spatial
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code for temporal frequency in V2 [17]), so that neural and stimulus fluctuations cannot always be
treated on the same footing. We will address this issue in thefuture.

The framework presented here has some similarities with thevery interesting and more explicitly
physiological model proposed by Buonomano and colleagues [5, 18], in which time is implicitly
encoded in deterministic2 neural networks through slow neuronal time constants. However, temporal
information in the network model is lost when there are stimulus-independent fluctuations in the
network activity, and the network can only be used as a reliable timer when it starts from a fixed
resting state, and if the stimulus is identical on every trial. The difference in our scheme is that here
timing estimates are based on statistics, rather than deterministic structure, so that it is fundamentally
robust to noise, internal fluctuations, and stimulus changes. The stochastic process framework is,
however, more abstract and farther removed from physiology, and a neural implementation may well
share some features of the network model of timing.

Acknowledgements: We thank Jeff Beck for useful suggestions, and Peter Dayan and Carlos Brody
for interesting discussions.
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