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Abstract

Many perceptual processes and neural computations, siggeash recognition,
motor control and learning, depend on the ability to meaantemark the passage
of time. However, the processes that make such temporatjodgts possible are
unknown. A number of different hypothetical mechanismsehagen advanced,
all of which depend on the known, temporally predictableleton of a neu-
ral or psychological state, possibly through oscillationshe gradual decay of a
memory trace. Alternatively, judgements of elapsed timghhbe based on ob-
servations of temporally structured, laichastic processes. Such processes need
not be specific to the sense of time; typical neural and sgmsocesses contain at
least some statistical structure across a range of timesciere, we investigate
the statistical properties of an estimator of elapsed tifiekis based on a simple
family of stochastic process.

1 Introduction

The experience of the passage of time, as well as the timiegerits and intervals, has long been
of interest in psychology, and has more recently attradtieshon in neuroscience as well. Timing
information is crucial for the correct functioning of a largumber of processes, such as accurate
limb movement, speech and the perception of speech (forgeathe difference between “ba” and
“pa” lies only in the relative timing of voice onsets), andisal learning.

Neuroscientific evidence that points to a specialized neuttastrate for timing is very sparse, par-
ticularly when compared to the divergent set of specific rma@ms which have been theorized.
One of the most influential proposals, the scalar expectémayry (SET) of timing [1], suggests
that interval timing is based on the accumulation of agtifiom an internal oscillatory process.
Other proposals have included banks of oscillators whidiewfine-tuned, produce an alignment
of phases at a specified point in time that can be used to gereerseuronal spike [2]; models in
which timing occurs via the characteristic and monotonicageof memory traces [3] or reverberant
activity [4]; and randomly-connected deterministic netk&y which, given neuronal processes of
appropriate timescales, can be shown to encode elapseihtjstieitly [5].

Although this multitude of theories shows that there isdittonsensus on the mechanisms respon-
sible for timing, it does point out an important fact: thahimg information is present in a range
of different processes, from oscillations to decaying meesoand the dynamics of randomly con-
nected neural networks. All of the theories above choosespaeific such process, and suggest that
observers rely on that one alone to judge time. An alteraatixhich we explore here, is to phrase
time estimation as a statistical problem, in which the eddpime At is extracted from a collec-
tion of stochastic processes whose statistics are known. This is loosely gmadato accounts have
appeared in the psychological literature in the form of namtif-events models [6], which suggest
that the number of events in an interval influence the pelmef its duration. Such models have



been related to recent psychological findings the show Hehature of the stimulus being timed
affects judgments of duration [7].

Here, by contrast, we consider the properties of duratiimasors that are based on more general
stochastic processes. The particular stochastic praceesanalyze are abstract. However, they
may be seen as models both for internally-generated netoeégses, such as (spontaneous) net-
work activity and local field potentials, and for sensoryqasses, in the form of externally-driven
neural activity, or (taking a functional view) in the formthie stimuli themselves. Both neural activ-
ity and sensory input from the environment follow well-defitemporal statistical patterns, but the
exploitation of these statistics has thus far not been stlas a potential substrate for timing judge-
ments, despite being potentially attractive. Such a basisrhing is consistent with recent studies
that show that the statistics of external stimuli affectitigrestimates [8, 7], a behavior not captured
by the existing mechanistic models. In addition, there id@vwce that timing mechanisms are dis-
tributed [9] but subject to local (e.g. retinotopic or spadpic) biases [10]. Using the distributed
time-varying processes which are already present in thiea lsamplementationally efficient, and
lends itself straightforwardly to a distributed implemetidn. At the same time, it suggests a possi-
ble origin for the modality-specificity and locality of théals effects, as different sets of processes
may be exploited for different timing purposes. Here, wevsipoimarily that interval estimates
based on such processes obey a Weber-like scaling law foraagcunder a wide range of assump-
tions, as well as scaling with process number that is cardistith experimental observation; and
we use estimation theoretic analysis to find the reasonsidie¢hé robustness of these scaling laws.

Neuronal spike trains exhibit internal dependencies onyrtiare scales, ranging from milliseconds
to tens of seconds [11, 12], so these — or, more likely, peeslerived from spike trains, such
as average network activity — are plausible candidateshietypes of processes assumed in this
paper. Likewise, sensory information too varies over adaange of temporal scales [13]. The
particular stochastic processes we use here are Gaussi@@sBes, whose power spectra are chosen
to be broad and roughly similar to those seen in natural ditimu

2 Theframework

To illustrate how random processes contain timing inforamtconsider a random walk starting at
the origin, and suppose that we see a snapshot of the randénatvanother, unknown, point in
time. If the walk were to end up very far from the origin, anddime statistics of the random walk
were known, we would expect that the time difference betwhertwo observations)t, must be
reasonably long in comparison to the diffusion time of thegess. If, however, the second point
were still very close to the origin, we might assign a highlyadaility to At =~ 0, but also some
probability (associated with delayed return to the orgin)X¢| > 0. Access to more than one such
random walk would lead to more accurate estimates (e.goifamdom walks had both moved very
little between the two instances in time, our confidence thiatz 0 would be greater). From such
considerations it is evident that, on the basis of multipdecisastic processes, one can build up a
probabilistic model forAt.

To formalize these ideas, we model the random processesasily bf independent stationary
Gaussian Processes (GPs, [14]). A GP is a stochastic prgggsa which any subset of observa-
tions{y(t),y(t'),y(t"), ...} is jointly Gaussian distributed, so that the probabilitgtdbution over
observations is completely specified by a mean value (her® gero) and a covariance structure
(here assumed to remain constant in time). We denote thd pedba@esses byy;(¢)}. Although
this is not a necessity, we let each process evolve indepgpdeecording to the same stochastic
dynamics; thus the process values differ only due to theaaneffects. Mimicking the tempo-
ral statistics of natural scenes [15], we choose the dymamoicsimultaneously contain multiple
time scales — specifically, the power spectrum approximdtalows a 1/f2 power law, were
f = frequency= 1/(time scal¢. Some instances of such processes are shown in Figure 1.

Stationary Gaussian processes are fully described by tlraiaace functionk (At):

(yi()yi(t + At)) = K(At)

so that the probability of observing a sequence of valygs, ), y;(t2), ..., v:(t,)] is Gaussian dis-
tributed, with zero mean and covariance makix,, = K (t,, — ty).



y
log power

-4 -2 0 2 4
time log frequency

Figure 1:Left: Two examples of the GPs used for inferenceaf Right: Their power spectrum.
This is approximately a/ 2 spectrum, similar to the temporal power spectrum of visoahss.

To generate processes with multiple time scales, we appateial / f2 spectrum with a sum over
Q squared exponential covariance functions:

Q
K(At) = aZexp(—At*/207) + 0, T(Al)

q=1

Here o2Z(At) describes the instantaneous noise around the underlyiragiance structureZ( is
the indicator function, which equalswhen its argument is zero), afglare the time scales of the
component squared exponential functions. We take these lindarly spaced, so thaf o« ¢g. To
mimic al/f? spectrum, we choose the power of each component to be curtsgaﬁ 1/@Q. Figure

1 shows that this choice does indeed quite accurately repeodll / f? power spectrum.

To illustrate how elapsed time is implicitly encoded in sstbchastic processes, we infer the dura-
tion of an intervallt, t + At] from two instantaneous observations of the processes,Ingmgt) }
and{y;(t+At)}. For conveniencey; is used to denote the vectior (¢), y; (t+At)]. The covariance
matrix 3(At) of y;, which is of size 2x2, gives rise to a likelihood of these olagons,

PO} e+ a0da) o« T[iE e (~53751y:)

With the assumption of a weak prigtthis yields a posterior distribution ovext:

O(At) = P(At|{yi}) o< P(At) - HP(yi\At)

1
x P(At) - exp <—2 Z [log =]+ y;-rE_lyi]>
This distribution gives a probabilistic description of ttime difference between two snapshots of
the random processes. As we will see below (see Figure B)disiribution tends to be centred on
the true value ofA¢, showing that such random processes may indeed be exploitdsiain timing
information. In the following section, we explore the sttitial properties of timing estimates based
on ®, and show that they correspond to several experimentahfisdi

'such asP(At) = Bexp(—BAL)O(At) with 3 < 1 and® the Heaviside function, dP(At) = U0, tmax;
the details of the weak prior do not affect the results.
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Figure 2: Statistics of the inference &ft from snapshots of a group of GPs. The GPs have time
scales in the intervdD.05, 50]. Left: The mean estimated timeldli¢e) are clustered around the true
times @ashed). Right: The Weber law of timingg o« At, approximately holds true for this model.
The error bars are standard errors derived via a Laplacexippation to the posterior. A straight
line fit is shown with adashed line. The Cramer-Rao boundl (), which will be derived later in
the text, predicts the empirical data well.

3 Scaling laws and behaviour

3.1 Empirical demonstration of Weber’s law

Many behavioral studies have shown that the standard d@viat interval estimates is proportional
to the interval being judged; o« At, across a wide range of timescales and tasks (e.g. [1])., Here
we show that GP-based estimates share this property urmbet bonditions.

To compare the behaviour of the model to experimental dagagnwst choose a mapping from the
function ¢ to a single scalar value, which will model the observer'sorep A simple choice is
to assume that the reportéxt is the maximum a-posteriori (MAP) estimator baseddgrthat is,

Alyap = argmax Ar P(At). To compare the statistics of this estimator to the expertai@bser-
vation, we took sample§y; ()} and{y;(t + At)} from 50 GPs with identical / f2-like statistics
containing time scales from 1 to 40 time units. 100 sample®wenerated for eacht (ranging

from 1 to 16 time unis), leading to 100 estimat&syap. These estimates are plotted in Figure 2A.
They are seen to follow the tru&t. Their spread around the true value increases with inargasi
At. The standard deviation of this spread is plotted in Figieathd is a roughly linear function of
At. Thus, time estimation is possible using the stochasticgg®framework, and the Weber law of
timing holds fairly accurately.

3.2 Fisher Information and Weber’s law

A number of questions about this Weber-like result natyradise: Does it still hold if one changes
the power spectrum of the processes? What if one changesatieso$the instantaneous noise? We
increased the noise scai%, and found that the Weber law was still approximately sa&iisf\When

changing the power spectrum of the processes framfa-type spectrum to a/ f3-type spectrum
(by letting o? o [; instead ofa? 1), the Weber law was still approximately satisfied (Figure
3). This result may appear somewhat counter-intuitive reesmight expect that the accuracy of the
estimator forAt¢ would increase as the power in frequencies arayfidt increased; thus, changing
the power spectrum to/f* might be expected to result in more accurate estimates gé It
(lower frequencies) as compared to estimates of stglbut this was not the case.

To find reasons for this behaviour, it would useful to have raai\dical expression for the relation-
ship between the variability of the estimated duration dradttue duration. This is complex, but a
simpler analytical approximation to this relation can bastaucted through the Cramer-Rao bound.
This is a lower bound on the asymptotic variance of an undid&aximum Likelihood estimator of
At and is given by the inverse Fisher Information:
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Figure 3:Left: Two examples of GPs with a different power spectrur ¢ [;, for I; « 4, which
approximates a/f3 power spectrum, resulting in much smoother dynamiBght: Inference of
At based on these altered processes. Note that the estitgigs is based on the true likelihood,
i.e., the newl/f? statistics. The Weber law still approximately holds, eveough the dynamics
is different from the initial case. The empirical standagdidtion is again well predicted by the
analytical Cramer-Rao bountl(e).

Var(At) > 1/Ip(At)

The Fisher Information, assuming that the elapsed timetimated on the basis oV processes,
each evolving according to covariance maltigAt¢), is given by the expression

Ip(At) = —N< A Tp gt g1 92 )

0? logP({yi}|At)> N o ox

y 2 OAt™  OAt
This bound is plotted in blue in Figure 2, and again in Figurei®d can be seen to be a good
approximation to the empirical behaviour of the model.

What is the reason for the robust Weber-like behaviour? Tavanthis question, consider a different
but related model, in which there ané Gaussian processes, again labelegout each now evolv-
ing according to different covariance matrix(@t). Previously, each process reflected structure at
many timescales. In this new model, each process evolveswgiingle squared-exponential covari-
ance kernel, and thus a single time-constant. This willalls to see how each process contributes
to the accuracy of the estimator.

Thus, in this model[C; (At)],, ,,, = o exp(—(tn —ty)?/217)+0 2T (L —t,). (The power spectrum
is then shaped ascp(— £212/2).) The likelihood of observing the processes at two instamEaow

Py}, {wi(t + A} AL) o HICiI‘l/QGXp<—;yiTC{1yi> )

This model shows very similar behaviour to the original mpdat is somewhat less natural. Its
advantage lies in the fact that the Fisher Information camlm®decomposed as a sum over different
time scales,

1 _,0C; ._,0C;

Using the Fisher Information to plot Cramer-Rao bounds fffeent types of processegy;(t)}
(Figure 4, dashed lines), we first note that the bounds arelalively close to linear, even though
the parameters governing the processes are very difféngodrticular, we tested both linear spacing
of time scalesl( « i) and quadratic spacing; (< i2), and we tested a constant power distribution
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Figure 4: Fisher Information and Cramer-Rao bounds for tbdehof equation 2. The Cramer-Rao
bound is the square root of the inverse of the sum of all thedfitnformation curves (note that
only a few Fisher Information curves are shown). The noiséesc, = 0.1, and the time scales are
eitherl; =i,i = 1,2,...,50 (linear) orl; = i?/50,i = 1,2, ..., 50 (quadratic). The power of each
process is either? = 1 (constant) on? = I;. The graphs show that each time scale contributes to

the estimation of a wide range dft, and that the Cramer-Rao bounds are all fairly linear, legdi
to a robust Weber-like behaviour of the estimator of elapiised.

(a; = 1) and a power distribution where slower processes have mawemp? « [;). None of
these manipulations caused the Cramer-Rao bound to deviste from linearity.

Next, we can evaluate the contribution of each time scal&édocatcuracy of estimates dft, by
inspecting the Fisher Informatiafy; of a given procesg,. Figure 4 shows that (contrary to the
intuition that time scales close vt contribute most to the estimation Aft) a process evolving at

a certain time scalg contributes to the estimation of elapsed tile even if At is much smaller
thanl; (indeed, the peak afy ; does not lie at;, but below it). This lies at the heart of the robust
Weber-like behaviour: the details of the distribution aféi scales do not matter much, because each
time scale contributes to the estimation of a wide rangA®ofFor similar reasons, the distribution
of power does not drastically affect the Cramer-Rao boundmrhe graphs of 7 ;, it is evident

that the Weber law arises from an accumulation of high vatdiéssher Information at low values
of At.

Very small values oAt may be an exception, if the instantaneous noise dominagesititle changes
that the processes undergo during very short periods; ésetht, the standard deviation may rise.
This is reflected by a subtle rise in some of the Cramer-Ramd®at very low values of\t.
However, it may be assumed that the shortest times thatIr@istems can evaluate are no shorter
than the scale of the fastest process within the system mpdhkese smali\t’s irrelevant.

3.3 Dependence of timing variability on the number of processes

Increasing the number of processes, 8&cesses Will add more terms to the likelihood and make
the estimated\¢ more accurate. The Fisher Information (equation 1) scaitfs Mprocesses Which

suggests that the standard deviatiorﬁmAp is proportional tol // Nprocesses this was confirmed
empirically (data not shown).



Psychologically and neurally, increasing the number otpsses would correspond to adding more
perceptual processes, or expanding the size of the netlwatke being monitored for timing es-
timation. Although experimental data on this issue is gpairs [9], it is shown that unimanual
rhythm tapping results in a higher variability of tappingés than bimanual rhythm tapping, and
that tapping with two hands and a foot results in even loweatdity.

This correlates well with the theoretical scaling behaviofithe estimatorAtyap. Note that a
similar scaling law is obtained from the Multiple Timer Mdd&6]. This is not a model for timing
itself, but for the combination of timing estimates of mplé timers; the Multiple Timer Model
combines these estimates by averaging, which is the ML agtiarising from independent draws
of equal variance Gaussian random variables, also regultial/v/N scaling law.

Experimentally, a slower decrease in variability thah/a/N law was observed. This can be ac-
counted for by assuming that the processes governing theangl left hands are dependent, so that
the number of effectively independent processes grows slovdy than the number of effectors.

4 Conclusion

We have shown that timing information is present in randootesses, and can be extracted prob-
abilistically if certain statistics of the processes ar@kn. A neural implementation of such a
framework of time estimation could use both internally gated population activity as well as
external stimuli to drive its processes.

The timing estimators considered were based on the fullghitity distribution of the process val-
ues at timesg and¢’, but simpler estimators could also be constructed. Therévew reasons for
considering simpler estimators: First, simpler estimmtoight be more easily implemented in neu-
ral systems. Second, to calcula¢At), one needs all ofy;(t),y; (')}, so that (at leastjy;(¢)}
has to be stored in memory. One way to construct a simplenasir might be to select a particular
class (say, a linear function dfy;}) and optimize over its parameters. Alternatively, an eston
may be based on the posterior distribution arconditioned on a reduced set of parameters, with
the neglected parameters integrated out. Another routhtrbgto consider different stochatic pro-
cesses, which have more compact sufficient statistics Beagvnian motion, being translationally
invariant, would require onlyy; (t') —y;(t) } instead of{y; (¢), y;(t') }; we have not considered such
processes because they are unbounded and therefore hagbtiate with sensory or neural pro-
cesses). We have not addressed how a memory mechanism migbirtbined with the stochastic
process framework; this will be explored in the future.

The intention of this paper is not to offer a complete thednyaural and psychological timing, but to
examine the statistical properties of a hitherto neglestdxstrate for timing — stochastic processes
that take place in the brain or in the sensory world. It was alestrated that estimators based on
such processes replicate several important behaviorsmeéhsi and animals. Full models might be
based on the same substrate, thereby naturally incorpgrite same behaviors, but contain more
completely specified relations to external input, memorgima@isms, adaptive mechanisms, neural
implementation, and importantly, (supervised) learnifthe estimator.

The neural and sensory processes that we assume to formsie@btime estimation are, of course,
not fully random. But when the deterministic structure Inela process is unknown, they can still be
treated as stochastic under certain statistical rulesttargllead to a valid timing estimator. Would
the GP likelihood still apply to real neural processes or e correct likelihood be completely
different? This is unknown; however, the Multivariate GahLimit Theorem implies that sums
of i.i.d. stochastic processes tend to Gaussian Process&s that, when e.g. monitoring average
neuronal activity, the correct estimator may well be based GP likelihood.

An issue that deserves consideration is the mixing of imtiefmeural) and external (sensory) pro-
cesses. Since timing information is present in both sensagesses (such as sound and movement
of the natural world, and the motion of one’s body) and indéprocesses (such as fluctuations in
network activity), and because stimulus statistics infbgetiming estimates, we propose that psy-
chological and neural timing may make use of both types afgsses. However, fluctuations in the
external world do not always translate into neural fluctuai(e.g. there is evidence for a spatial



code for temporal frequency in V2 [17]), so that neural amehsius fluctuations cannot always be
treated on the same footing. We will address this issue ifuttuee.

The framework presented here has some similarities witlvéing interesting and more explicitly
physiological model proposed by Buonomano and colleagbied], in which time is implicitly
encoded in deterministimeural networks through slow neuronal time constants. Kewéemporal
information in the network model is lost when there are stirstindependent fluctuations in the
network activity, and the network can only be used as a reliilmer when it starts from a fixed
resting state, and if the stimulus is identical on every.tithe difference in our scheme is that here
timing estimates are based on statistics, rather thanrdigtistic structure, so that it is fundamentally
robust to noise, internal fluctuations, and stimulus chan@éde stochastic process framework is,
however, more abstract and farther removed from physiolgy a neural implementation may well
share some features of the network model of timing.
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