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Summary

Sensory stimulation can systematically bias the perceived
passage of time [1–5], but why and how this happens is

mysterious. In this report, we provide evidence that such
biases may ultimately derive from an innate and adaptive

use of stochastically evolving dynamic stimuli to help refine
estimates derived from internal timekeeping mechanisms

[6–15]. A simplified statistical model based on probabilistic
expectations of stimulus change derived from the second-

order temporal statistics of the natural environment
[16, 17] makes three predictions. First, random noise-like

stimuli whose statistics violate natural expectations should
induce timing bias. Second, a previously unexplored

obverse of this effect is that similar noise stimuli with natural
statistics should reduce the variability of timing estimates.

Finally, this reduction in variability should scale with the
interval being timed, so as to preserve the overall Weber

law of interval timing. All three predictions are borne out
experimentally. Thus, in the context of our novel theoretical

framework, these results suggest that observers routinely
rely on sensory input to augment their sense of the passage

of time, through a process of Bayesian inference based on

expectations of change in the natural environment.

Results and Discussion

A Stochastic Change Model of Stimulus-Derived Timing
Regular stimuli of known periodicity—such as the moving
hands or the ticking of a clock—provide an obvious cue to
the passage of time. Although the natural world is rarely so
conveniently regular, stimuli with known average statistical
properties can still prove informative. We constructed a simple
Bayesian model in which dynamic sensation combined with
knowledge of the second-order statistics of the natural
environment [16, 17] to yield a sensory-based estimate of
duration (Figures 1A–1C). For simplicity, we modeled a small
number of abstract sensory streams using independent
Gaussian processes [18] that followed the power-law statistics
of natural image sequences [16]. The streams thus resembled,
in their second-order statistics, luminance signals measured
far enough apart to avoid correlation on a hypothetical
stationary retina. A realistic model must be constrained by
memory, and thus the duration estimate could not exploit the
whole of the stimulus. Instead, we used a capped number of
observations (or ‘‘snapshots’’), with a random forgetting
process eliminating older snapshots as new ones were drawn.
The estimator was based on the observed change in the
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stimulus between these snapshots. Intuitively, little change
would suggest measurements taken close together in time,
whereas greater change would point to observations spaced
further apart. The exact relationship is dictated by the known
statistics of the stimulus. Estimates based on only second-
order properties will be mathematically identical to optimal
estimates based on the corresponding Gaussian processes,
as in the model.
We found that individually, sensory streams were only

weakly informative about the elapsed time (Figure 1C; red,
blue, and gray lines), but together they constrained the
elapsed time more strongly (Figure 1C, peaked black curve;
Figures 1E–1G), probabilistically bracketing the true duration.
Thus, even relatively few observations of naturalistic sensory
processes carry sufficient information on which to base
reliable timekeeping. The stochasticity of the sensory streams
meant that each simulation yielded a different distribution over
the elapsed time (Figure 1E; strictly, these are normalized
likelihoods, because they do not yet incorporate a prior).
The peak of each distribution indicates the duration most
consistent with the observed snapshots of the processes.
This peak was taken to represent the observer’s estimate of
the elapsed time (the maximum-likelihood or ML estimate).
The average of these ML estimates over many repeated simu-
lations was equal to the true simulated duration for a wide
range of intervals (Figure 1F).
We also found that the distribution of ML estimates from the

model scaled with the length of the duration being estimated
(Figure 1G), thus matching the scalar law of biological timing
[6, 14]—a property that has often proved challenging tomodel.
The stochastic changemodel is robustly scalar. The three sets
of histograms in Figure 1G each represent collected estimates
generated using three different versions of the model with
differing assumptions about the power-law scaling of the
processes and the number of snapshots. The consistency of
the scalar property in all cases suggests that this behavior is
a general property of the framework inherited from the
power-law structure of the sensory processes. The scaling
holds for intervals that fall within a broad range determined
by the autocorrelation structure of the stimulus but does break
down eventually (see Supplemental Experimental Procedures
S1.11 and Figure S1 available online).
Observers do, of course, sense the passage of time without

dynamically informative stimuli, and the internal processes
that underlie this ability are very likely exploited even when
sensory timing information is available. Thus, the stimulus-
derived estimate modeled thus far must be combined with
an internally generated, stimulus-independent one (Figure 1D).
If both sensory and internally derived estimates are expressed
probabilistically, then the combined belief is given by the
renormalized product of the sensory likelihood and internal
belief. This combined distribution (now a true Bayesian poste-
rior) will generally be more peaked—less uncertain—than
either the sensory or the internal distributions alone. We chose
an internal distribution that was unbiased on average,
respected the scalar property, andwas (by definition) indepen-
dent of the stimulus type. All simulation results were qualita-
tively identical for different forms of the internal estimate,
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Figure 1. Using Snapshots of Stimuli to Judge

Elapsed Time

(A–D) The stochastic change model.

(A) A Bayesian observer derives a sensory-based

duration estimate from observation of sensory

signals, such as the intensity of light falling on

different points of the retina as illustrated

conceptually on the left. If the observer’s know-

ledge of natural temporal structure is limited to

the second-order statistics, then its estimates

will be equivalent to those of an ideal observer

of stationary Gaussian processes with the same

second-order statistics. The example time series

{yi(t)} are therefore Gaussian; that is, for discrete

times t1.tN, P(yi(t1), yi(t2),. yi(tN)) is an N-dimen-

sional Gaussian distribution with mean 0 and

covariance K. The N 3 N matrix K has

elements [K]mn = exp(2ljtn 2 tmj) + s2dmn with

l = 0.01 s21, s = 0.1, and dmn = 1 if m = n and

0 otherwise. This form matched the 1/f2 power-

law statistics of natural scenes [16]. Memory limi-

tations constrain the number of observations

available to the observer. Here, observations

are illustrated by points at the start (squares)

and end (circles) of an interval of length tmarked

by the dashed lines. Later simulations used up to

two further observations made at intervening

times given by a Poisson process with rate

1 s21 with random forgetting.

(B) The discrete set of observations, or snap-

shots, shorn of their temporal labels, forms the

basis of the sensory-derived time estimate.

(C) The normalized likelihood of elapsed times

P(observationsjt) induced by the limited obser-

vations of 12 model sensory processes (corre-

sponding, say, to 12 well-separated points on

the retina—this number was used in all simula-

tions) and the second-order stimulus statistics.

Blue and red lines correspond to the distributions

induced by observations of the blue and red

processes in (A); dashed black line corresponds

to the distribution induced by the red and blue

processes combined; gray lines correspond to

the distributions induced by each of the other

processes (time courses not shown); solid black

line corresponds to the normalized likelihood

function induced by all 12 processes together.

The peak of this function gives the sensory

maximum-likelihood (ML) estimate of elapsed time, which here happens to fall close to the true duration (green triangle).

(D) The sensory likelihood is combinedwith an internal estimatePinternal(t) according to Bayes’ rule to yield an integrated posterior beliefP(tjobservations)f
P(observationsjt)Pinternal(t). The internal estimate was taken to be gamma-distributed with a peak that varied across trials with a scatter consistent with the

Weber law of timing [14]. Results did not depend on the details of this internal distribution. The peak of the posterior distribution yields the estimated dura-

tion in the combined model, used in the simulations in Figure 3 and Figure 4.

(E–G) Modeled sensory duration estimates.

(E) Example belief distributions over elapsed time, each derived from four observations of themodel sensory processes with 1/f2 statistics as above andwith

simulated durations of 5 s or 10 s (dotted lines). Each horizontal bar represents a single belief distribution: color saturation indicates density; hue corre-

sponds to true simulated duration as in (F). Repeated simulations show variation due to stochasticity. The peak of each distribution (black diamond) is

the ML estimate for the corresponding simulated trial.

(F) Mean model estimate matches true duration. Error bars indicate standard deviation of estimates. Colors of dots give key to durations in (E) and (G).

(G) Density histograms of duration estimates, grouped and normalized by true durations, are scale invariant. Colors indicate true simulated duration, as

shown in (F). Scale invariance is also seen for variant models with differing power spectra (middle; see Supplemental Experimental Procedures for details

of the covariance function) or differing numbers of observations (right). The skewed shape of the distributions matches human results [14]. (See also Fig-

ure S1.)
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and whether the internal estimate was taken to be informative
or not. That is, the essential features of the model predictions
derived exclusively from the sensory-based estimation
scheme, and not from this hypothesized internal structure.

Our model used direct observations of the sensory streams
for intuitive clarity; the results of arbitrary stochastic accumu-
lators applied to the sensory streams could be used similarly
after adjusting the expected statistics for the effects of
processing. Besides the limited sampling, the small set of
processes and the restriction to only second-order statistics
made estimation tractable [19] but meant that this scheme
was necessarily an abstraction of the potential biological
mechanism. Nonetheless, even this simplified model repro-
duced many features of human behavior, providing a realistic
approximation of the true computation. The qualitative
behavior of the model was surprisingly independent of the
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Figure 2. Stochastic Stimuli Can Bias Duration Judgment

(A) Simulated judgments of the apparent duration of one-second-long noise

stimuli played at different speeds. Mean estimated durations are shown

normalized by the grand average estimate over all playback speeds. Rapid

playback of the stimuli leads to overestimation.

(B) Experiment 1, two-alternative forced choice (2AFC) task. Observers re-

ported which of two smoothed Gaussian noise stimuli, presented sequen-

tially at fixation 1 s apart, appeared to last longer. Frames of one stimulus

were played rapidly and the other slowly, with the order of speeds counter-

balanced. The duration of the first stimulus varied pseudorandomly

between 500 and 650 ms. The second differed by an interval D that was

adjusted by two independent staircases to find points of subjective equality

(PSE) in the slow-rapid and rapid-slow conditions. Bars show the average

value of D at PSE (n = 8; standard error shown); in both cases, the slow stim-

ulus needed to be longer for subjective isochrony (p < 1026).

(C) Experiment 1, reproduction task. Subjects were asked to depress a key

to match the duration of a smoothed noise stimulus presented at fixation at

varying playback speeds. Durations of stimuli played rapidly were overesti-

mated on average (n = 6; standard error shown). (See also Figure S2.)
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values of its parameters, obviating the need to fine tune their
settings.

Behavioral Experiments

The stochastic change model makes predictions about
behavior that differ qualitatively from those of competing
accounts of stimulus-induced timing effects. We tested three
such predictions experimentally.
Experiment 1: Stochastic Bias

Equal-length periodic stimuli of different frequencies appear
different in duration, a finding that has been interpreted to
support a counting-based contribution to timing [20]. Movies
of natural movement played at unnatural speeds also bias
duration judgments [21], leading to the hypothesis that
observers recalibrate time to maintain physically predictable
dynamics. By contrast, neither periodicity nor physical
predictability plays a special role in the stochastic change
model, which predicts a bias whenever the expected change
induced by an ephemeral, possibly stochastic, class of stimuli
differs from expectations based on the long-term spectrum.
This change-based effect does indeed appear in samples
from periodic processes (Figure S2) but also applies more
generally (Figure 2A). Thus, the first prediction tested was
that aperiodic and unpredictable stochastic stimuli should
induce a systematic timing bias.

The stimuli used were samples of a rolling cloud-like spatio-
temporally smooth Gaussian random process. The temporal
statistics of such stimuli are captured entirely by their Fourier
spectra. Using the power-law spectrum of natural scenes,
we generated a sequence of video frames corresponding to
regular temporal samples taken from a single random instance
of the corresponding continuous noise process. The temporal
statistics of the stimuli were then altered by displaying these
frames at a rate either faster or slower than the sample rate,
shifting the spectrum to higher or lower frequencies, respec-
tively. A new random draw was used on each presentation,
preventing observers from memorizing a particular sequence
to use as a temporal reference.

Observers in the experiment saw stimuli with different
temporal statistics interleaved and so were unlikely to adapt
to the individual stimulus properties. Thus, the predictions of
Figure 2A were based on expectations of change derived
from the average spectrum of natural visual sequences. As
the model stimuli changed in playback rate, biases on the
order of 10% were induced in both directions. Two sets of
experimental subjects were asked to report the duration of
the smoothed noise stimuli in two ways. The first group re-
ported which of two sequentially presented stimuli lasted
longer (Figure 2B). The stimuli in the pair were presented at
different speeds in counterbalanced order. Two interleaved
staircases identified the points of subjective equality for
each ordering. Compensating for presentation-order effects,
slow stimuli were experienced as equal in duration to rapid
stimuli about 50 ms (approximately 10%) shorter. In a second
group, subjects were asked to hold down a key to reproduce
the duration of the stimulus (Figure 2C). This design, used
previously [20], allowed us to explore a wider range of different
statistics within an experimental session at the expense of
motor bias and additional variability. A range of relative biases
were observed, similar to that predicted.

We conclude that the stimulus-induced ‘‘time dilation’’ seen
in earlier studies [20, 21] is not limited to periodic or physically
predictable stimulation, supporting the more general sto-
chasticmodel. The empirical saturation of the effect (Figure 2C)
is not seen in the simple model we implemented (Figure 2A),
but, as discussed above, the sampling scheme was chosen
for conceptual clarity and is deliberately unrealistic. One
particular aspect neglected here is the filtering of higher
temporal frequencies by the visual system [22]. In addition,
decision-related behavioral effects (e.g., [1, 23]) may have
shaped the measured responses. Nonetheless, the qualitative
support for the model predictions, made without fine tuning
the data, is strong.
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Figure 3. Stochastic Stimuli Reduce Variability in Duration Judgment

(A) In the model, the distribution of estimates obtained by combining both

internal and sensory cues (blue histogram and line; distributions obtained

from 5000 simulated trials) is narrower and more peaked than that obtained

from the internal estimate alone (orange histogram and line). The relative

variability (right) is the standard deviation divided by the mean.

(B) Design for experiment 2. A static or dynamic smoothed Gaussian noise

stimulus appeared continuously at fixation. Twice in each trial, a pair of

circles appeared at the edge of the noise stimulus. Duration 1 was 410 or

650ms; duration 2 (appearing 588ms or 50 video frames later) was amultiple

of this (the range of multiples was adjusted for each subject to yield

a complete psychometric curve, typically 0.45–1.8). Subjects reported

whether the first or the second presentation lasted longer. Static and
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Experiment 2: Precision
A key feature of the stochastic change model is that sensory
information augments internal timing. If this augmentation
approaches statistical efficiency, then the variability of timing
estimates should fall when stimuli with known statistical
temporal structure are available, even if those stimuli evolve
randomly. This predictionmay seem counterintuitive. It is clear
thatwatching aclockor an hourglass can improve timingpreci-
sion, but stochastic stimuli might have been expected to inject
noise into the timing process; indeed, this prediction is likely to
emerge from models that depend on stimulus-driven network
evolution [9, 15]. In other accounts where stimulus-induced
biases are incidental to changes in overall neuronal activity
(e.g., [24]), variance should remain unaffected. By contrast,
the integration of sensory and internal distributions in our
model reduced the variability of simulated time estimates
based on stochastic stimuli (Figure 3A). The exact size of this
effect depended on the number of sensory streams that were
tracked, but the distribution always narrowed provided the
sensory estimate was not substantially biased.
We tested this prediction using a stochastic stimulus similar

to that of experiment 1 (Figure 3B). This time, the smoothed
Gaussian noise was present throughout a block of trials.
A pair of white circles appeared above and below the noise
stimulus for two nonoverlapping intervals during the trial, and
subjectswere asked to reportwhich of the intervalswas longer.
Two conditions were distinguished by the temporal properties
of thestochasticstimulus. In thestatic condition,a single frozen
frame of the noise process remained visible and unchanged
throughout the block. Because this stimulus contained no
temporal cues, duration judgments had to be based entirely
on internal processes. In the dynamic condition, the Gaussian
noise evolved with naturalistic second-order statistics in both
space and time. The noise process continued between trials
without resetting; thus, details of its appearance could not be
used for timing.However, its statistical propertieswere regular,
and thus themodel predicts that it would improve the precision
of the estimates. Subjects viewed both static and dynamic
noise stimuli extensively before theexperimentbegan, allowing
them to adapt to the statistics of the two processes.
We assessed the precision of estimates by fitting psycho-

metric curves to the subjects’ responses. Overall, estimates
were less variable in the presence of the temporally random
stimulus than with the stationary one (Figure 3C). To rule out
changes in attention or arousal between the conditions, we
analyzed reaction times (RTs) and lapse rates (estimates of
inattentiveness derived from the psychometric fits) during
the easiest trials. In these trials, where the second stimulus
was very short, the task was equally simple under both
dynamic conditions alternated in four blocks, with the order of blocks coun-

terbalanced across subjects.

(C) Psychophysical results. Psychometric curves (n = 20) were fit by a cumu-

lativeGaussian combinedwith a probability of accidentally entering an unin-

tended response (the lapse rate, also fit to the data). The variability was

defined as the reciprocal of the maximal slope of the lapse-independent

psychometric curve, corresponding to the width of the Gaussian. Scatter

plot and left inset: the variability during the dynamic condition was signifi-

cantly lower than that during the static condition (p = 0.005, two-sided

paired t test; red circles represent per-subject averages; small black circles

represent each base duration for each subject; orange and blue bars in the

inset are population averages for the static and dynamic conditions, respec-

tively, with standard errors.) Middle and right insets: mean reaction times

during the easiest trials were not significantly different between the static

and dynamic conditions (p = 0.64), nor were the lapse rates (p = 0.73). Error

bars indicate standard errors.
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Figure 4. Weberian Behavior with Stochastic

Stimuli Contradicts Counting Models

(A) Model predictions. A model assuming an

‘‘internal’’ stimulus-independent estimate (black)

combined with a count-based sensory estimate

showed lower relative variability (standard devia-

tion of estimates divided by true duration),

violating the Weber law (red). Weberian behavior

was preserved when the estimate was change

based (blue). In both cases, combining the

sensory-based estimate with the internal one

increased precision. The distinction in variance

scaling between the two models was stronger

when estimates were purely sensory based

(inset). The count-based model was based on

the distribution P(tjNe) over elapsed time t given

Ne observed ‘‘events,’’ defined by threshold

crossings. This distribution was constructed by

simulating Gaussian processes over a range of

possible time intervals and building an empirical

histogram of event number to yield a joint table

of frequencies of times and counts. The sensory

P(tjNe) was obtained by normalizing constant-

count slices of this table and was then combined

with the internal estimate as for the stochastic

change model. (See also Figure S3.)

(BandC)Psychophysical results.Subjects (n=17)

sawa single intervalmarked by the appearance of

circles around a dynamic noise pattern as in

experiment 2 and classified each interval as either

‘‘long’’ or ‘‘short.’’ The relative variability was inde-

pendent of themean duration, in accordance with

the Weber law and with the stochastic change

model. Data for (B) and (C) are the same but are

shown as a population psychometric curve in (B)

and as average relative variability (derived from

psychometric fits to each subject) in (C). Error

bars show standard errors of the means.
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conditions. Thus, RT changes due to differing attentional
states could be distinguished from the general impact on RT
of task difficulty. Neither RTs nor lapse rates on these trials
were significantly different between the two conditions, sug-
gesting that the moving stimulus had little effect on attention,
motivation, or arousal (Figure 3C, insets). We conclude that
visual stimuli do indeed provide usable sensory cues for time
estimation, which can be combined with internal estimates
to improve reliability.
Experiment 3: Variance Scaling

Despite its aperiodicity, the stochastic stimulus—and, by
extension, natural sensation—might support a more elaborate
event-counting scheme [1, 2, 20] based on nonlinear event
detection. For instance, observers might count appearances
of a region of a certain threshold size and brightness. However,
the variance (not standard deviation) in the number of such
events grows linearly with time, and so such a counting
scheme would predict a sub-Weberian law in situations where
the sensory component contributed significantly to the overall
estimate. This effect was seen in simulations based on the
same underlying naturalistic Gaussian processes as the
stochastic change model (Figure 4A). Events were detected
each time a 1/f2 Gaussian process
crossed a threshold value. We assumed
that observers had access to the true
statistics of event occurrence and that
they used this knowledge to infer a prob-
ability distribution over intervals given
an event count (see Figure S3). As in the change model, this
distribution combined with a probabilistic internal estimate
to yield the simulated response.
The stochastic change model makes the contrasting predic-

tion, with deviations scaling with the mean for purely sensory
estimation (Figure 1G) and therefore also when sensory and
internal estimates are combined (Figure 4A). We were thus able
to distinguish between the models empirically. Subjects were
asked to classify stimuli as shorter or longer than averagewithin
blocks of trials. Without a dynamic stimulus, subjects’ choices
are known to conform to the Weber law in this experiment [25].
When the same Gaussian dynamic stimulus used throughout
this study was present, we found that the Weber law still held,
both in the population psychometric curve and in the individual
psychometric fits (Figures 4B and 4C). This ruled out an event-
counting explanation for the biasing and variance-reducing
effects of this dynamic stimulus. By contrast, the stochastic
change model agrees with all of the experimental findings.

Conclusion

The framework developed here provides a novel account of
how stimuli interact with the perception of temporal intervals.
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It is based on a probabilistic formulation of the Helmholtzian
[26] view of perception as unconscious inference that exploits
implicit knowledge of the structure of the environment, a view
that underlies many successful accounts of perceptual
phenomena [27]. In our framework, temporal statistical struc-
ture in the environment provides an important cue to elapsed
time. Thus, the bias induced by unnaturally structured stimuli
is a counterpart to the improved accuracy gained when the
environment accords with expectations. Sustained alterations
of environmental statistics may lead to adaptation of an
observer’s model of expected change—or recalibration of
their internal clocks—thus modifying the stimulus-duration
contingencies. The reported locality of such adaptation [28]
suggests that observers’ models are sophisticated enough
to capture the joint distribution over temporal change and
space.

Clear experimental evidence for a dedicated physiological
timing mechanism, such as a bank of specialized oscillators
or integrators [6, 8], has been lacking. Consequently, many
recent models of internal timing have depended on the extrac-
tion of temporal information from more general neural
processes [9, 11, 15, 20, 29, 30]. Some of these models
[9, 15] are based on a deterministically evolving neural
network: if the network changes stereotypically and returns
to baseline sufficiently slowly, then its state may provide a reli-
able measure of time since stimulus onset. If the evolution of
this network is sensitive to the ongoing stimulus, and if the
temporal estimate is closely tied to the particular network state
reached, then this sort of model may be difficult to reconcile
with the accuracy improvements seen in experiment 2. On
the other hand, if the interpretation of network state is based
on probabilistic expectations, as we have argued is the case
for external stimuli, then it may be possible to reconcile our
results with this type of model. Studies of the temporal evolu-
tion of neural activity have revealed an approximate underlying
power law [31–33], which means that, as with natural stimuli,
temporal structure in the evolution of neural systems is evident
over a range of scales. Thus, a decoding scheme similar to that
proposed here might also be applicable to intrinsic neural
activity. As in the deterministic network view, time estimation
would thus arise as a corollary to other neural computations.
Most crucially, the scalar property—which has been chal-
lenging to reconcile with many past models—would arise
naturally. Thus, the statistical framework proposed here may
well hold the potential to further integrate the mechanisms of
both internal and stimulus-derived time estimation.
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