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ABSTRACT

We introduce a greedy generalised convolutional algorithm
to efficiently locate an unknown number of sources in a
series of (possibly multidimensional) images, where each
source contributes a localised and low-dimensional but other-
wise variable signal to its immediate spatial neighbourhood.
Our approach extends convolutional matching pursuit in two
ways: first, it takes the signal generated by each source to
be a variable linear combination of aligned dictionary ele-
ments; and second, it executes the pursuit in the domain of
high-order multivariate cumulant statistics. The resulting al-
gorithm adapts to varying signal and noise distributions to
flexibly recover source signals in a variety of settings.

Index Terms— Matching pursuit, feature decomposition,
higher order, multi-sample, convolutional

1. INTRODUCTION

Sparse signal decomposition is a long-standing and well-
studied problem, with many applications in audio- and image-
processing. The most common case seeks to decompose a
multivariate signal y into a sparse linear combination of ba-
sis elements drawn from a known overcomplete dictionary
{b1 . . .bK}, with weight vector x = [x1 . . . xK ], that solves

min
x

∥∥∥∥∥y −
K∑

k=1

xkbk

∥∥∥∥∥
2

+ γ‖x‖0 (1)

for an appropriate sparsity parameter γ. If y is an image,
the coefficients xk may represent unknown signal amplitudes,
with the corresponding basis element bk reflecting the spatial
influence of the unknown signal. An exact solution requires
evaluating all 2K subsets of the dictionary and so approxima-
tions are necessary in large-scale problems. One choice is the
convex relaxation, replacing the L0 norm by its L1 counter-
part, which leads to a family of methods called Basis Pursuit.
The other common approach, which we expand upon here,
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involves the greedy sequential selection of non-zero coeffi-
cients. This is known as Matching Pursuit [1].

In the basic formulation of Eq. 1, the support of the basis
elements coincides with that of the data vector, and so pro-
jection into the basis requires computation that scales with
both data and basis size. Often, the sources of the unknown
signals are separate objects, which influence the measure-
ments through local, stereotypical features with restricted
support. In this case, each element of the dictionary may be
constructed by translating a single feature to a new location,
and projections may be achieved efficiently by convolution.
Greedy search then results in an algorithm called Convolu-
tional Matching Pursuit [2].

Convolutional Block Matching Pursuit [3] allows greater
variability in the shape of the sparse unknown object signals,
with each described by a linear combination of a limited set
of basis functions. Sparsity, in this approach, applies to the
number of component signals, but not to the basis functions
explored by each signal. This allows the method to identify
better localised objects, and more interpretable signals. In
particular, in biological imaging applications, the signals may
correspond to individual cells of variable appearance [3].

Here, we consider a setting in which multiple data sam-
ples or frames are available, each generated by the same set of
underlying objects with varying signal amplitudes. Again, the
goal is to infer the object locations, often as a prelude to ex-
tracting the associated varying signal amplitudes. Examples
include sequences of micrographs of the same field of view,
repeated radio signal packets, or seismic recordings.

Below we describe how to efficiently exploit information
provided by the multiple samples to identify objects by Con-
volutional Higher-Order Matching Pursuit (CHOMP). Sec-
tion 2 defines the generative model associated with the prob-
lem. Section 3 describes the inference algorithm, evaluated
on simulated data in Section 4. Finally, we discuss the results
and possible further avenues of research in Section 5.

2. PROBLEM DESCRIPTION

Consider data generated by a set of stationary objects O lo-
cated within a d-dimensional space. Each object generates a
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measurable signal in a finite d-dimensional patch around its
centre, described by a linear combination of known basis el-
ements {bk}Kk=1 centred at the object location. We obtain T
noisy sample measurements {yt}, with conserved object lo-
cations but possibly variable signals. Our goal is to recover
the object locations, which may then be used to infer the time-
varying signals {xs,t} for each object s.

2.1. Generative model

We write y ∈ R|I|×T for the entire collection of measure-
ments, where I = I1×I2×. . .×Id is a set of tuples indexing
points in the d-dimensional data space, and T is the number
of measurements. The measured value at location l ∈ I in
measurement t is ytl ∈ R.

The objects in the set O = {Os}Ss=1 each influence a con-
fined cuboidal region around their corresponding centre loca-
tion ls, which we call a “patch” (Fig. 1). The size of the patch
in the ith dimension is 2mi + 1, and the region influenced by
object s is defined by the indices P ls = P ls

1 ×P ls

2 ×. . .×P ls

d ,
where P ls

i = {lsi − mi, . . . , l
s
i + mi}. Let M = |P0| be

the number of elements within a patch. For notational conve-
nience we treat the indices P l as well as the regions indexed
by them as column vectors (P l ∈ ZM×1 and yt

Pl ∈ RM×1).
The set of possible basis elements within a patch is B =

{bk ∈ RM}Kk=1 and the coefficients describing the signal
produced by object s in each measurement are represented
by xs ∈ RK×T . Thus, each object and its signal is fully rep-
resented by the tuple Os = (ls,xs), and we will sometimes
write Ol = {ls} and Ox = {xs}.

The observed data is the sum of the signals generated by
the objects, corrupted by additive noise:

∀ l
′
∈ I, t ∈ {1 . . . T} ŷt

l′
(O,B) =

(
S∑

s=1

K∑
k=1

bk
l′−lsx

s,t
k

)
yt = ŷt(O,B) + ε (2)

where ε ∼ D is a sample from noise distribution D and in-
dexing outside the size of the basis function returns zero: that
is, bkl = 0 if for any j, |lj | > mj

3. CHOMP

3.1. Motivation

We consider the problem of inference, where the basis func-
tions B are known and we wish to find an estimate Ô of the
generating latent signals. The general sparse decomposition
problem for normally distributed additive noise is

Ô = argmin
O

T∑
t=1

‖yt − ŷt(O,B)‖2 + γ|O| (3)

where we minimise the data reconstruction error, while incur-
ring a cost for each object added to the set.

l1
P l1 l2

P l2

I1

I2

Fig. 1. Object locations and affected patches. An example
two-dimensional space with two embedded objects affecting
a 3x3 region around their locations

The interdependence of the elements of the solution set,
ls and xs, makes identification of the true optimum in Eq. 3
intractable for large T . One practical approach is to first lo-
cate the objects using the mean of the sample frames 〈y〉 =
1
T

∑
t y

t, and only then reconstruct the time-courses of the
signals at those locations:

Ôl = argmin
Ol

min
OX

‖〈y〉 − ŷ(Ol,OX,B)‖2 + γ|O| (4)

Ôl,xt = argmin
Oxt

‖yt
Pl − ŷt

Pl(l,Oxt ,B)‖2 (5)

where X represents the coefficients needed to reconstruct the
mean data vector. Note that Xs ∈ RK whereas the original
coefficients xs ∈ RK×T , making the optimum of Eq. 4 far
easier to find.

However, in many contexts the mean (or DC) signals as-
sociated with each object may be too weak to support ro-
bust localisation. Thus, we propose and formulate a new
approach called Convolutional Higher Order Matching Pur-
suit (CHOMP), which locates objects using higher-order sum-
mary statistics of the data. CHOMP finds an efficient compro-
mise between the intractable simultaneous decomposition of
all samples (Eq. 3) and the potential paucity of surviving sig-
nal in the mean (Eq. 4), providing a mechanism to trade off
the full exploitation of the available data, against the demands
for computational and storage resources.

3.2. Cost function
CHOMP extends the domain of signal pursuit from the
mean alone to all empirical cumulant tensors of orders
r ∈ {1 . . . R} estimated using unbiased, minimum-variance,
multivariate K-statistics [4]1.

Define the unnormalised non-central vector moments of
the data Sr =

∑T
t=1(yt)⊗r, where (·)⊗r is the rth gener-

alised (tensor) outer product (·)⊗ (·)⊗ . . .⊗ (·). Then the

1In principle, it is possible to use any multilinear function of the data
patches; we use the cumulant tensors as they provide convenient interpreta-
tion and additivity, which simplifies matching pursuit



first three K-statistics are (see [5] for higher-order expres-
sions, and [6] for a general discussion):

Y(1) =
S1

T

Y(2) =
TS2 − S⊗21

T (T − 1)

Y(3) =
T 2S3 − 3TS2 ⊗ S1 + 2S⊗31

T (T − 1)(T − 2)
(6)

From these K-statistics of the entire data, we extract the rth
patch-cumulant around location l, Yl·(r) ∈ RMr

, by selecting
entries Y(r)

l for which the index r-tuples l = [l1, l2 . . . lr] fall
within P l·(r) ≡ P l ×P l × · · · × P l. Note that the cumulants
for spatially overlapping patches contain shared elements, and
that only those elements of Y(r) that fall within some P l·(r)

need be computed, reducing computational and storage de-
mands. Using these multilinear features of the data we can
define a general cost function C that represents a discrepancy
measure f between the original and the reconstructed feature
cumulants Y(r) and Ŷ(r). For the squared-difference dis-
crepancy, weighting cumulant orders using hyperparameters
{σ2

r}Rr=1:

Ôl = argmin
Ol

min
OX

C (7)

C =

R∑
r=1

1

σ2
r

f(Y(r), Ŷ(r)(Ol,OX,B)) + γ|O| (8)

f(·, ·) =
∑

l∈
⋃

l∈I Pl·(r)

‖Y(r)
l − Ŷ

(r)
l (Ol,OX,B))‖2 (9)

Ŷ
(r)
l′ =

∑
s∈O

∑
k∈{1...K}r

Xs,r
k bk1

l′1−ls
bk2

l′2−ls
. . . bkr

l′r−ls
(10)

where the union over P l·(r) in Eq. 9 ensures that all elements
that appear in a patch-cumulant are counted exactly once.

The reconstruction of Eq. 10 resembles that of Eq. 2, but
the elements of the Xr ∈ RKr

tensors are now the recon-
struction weights for the estimated r-order cumulants in the
linear space over the basis functions B. The hyperparameters
{σ2

r}Rr=1 correspond to the expected error variances in the var-
ious cumulant reconstructions. These may be estimated by
approximating the noise level in the data – using the lower
quantiles of the absolute pixel values, which are unlikely to
represent signals — and then applying Isserlis’ theorem [7][8]
to estimate the expected residual in each order, taking into ac-
count the reconstruction over the basis function space. Note
that for R = 1 and taking into account the support of the ba-
sis functions P0, we obtain an equivalent problem to Eq. 4,
whereas for large R we represent the full sample distribution
more completely and thus approximate the localisation of the
original matching pursuit problem (Eq. 3).

a.

l1 l2

b. Mean

Variance

Skewness

Fig. 2. Feature extraction a. Two identical sources in a 1D
space, l1 with high mean and skewness, l2 with high variance.
The thick line is the true mean, the thin ones are individual
samples. b. The resulting cumulants at the source locations

3.3. Solution
The problem defined by Eqs. 7–10, although easier that the
complete temporal decomposition of Eq. 3, is still generally
intractable owing to the large search space {0, 1}|I|. Match-
ing pursuit offers a greedy solution to the problem, and comes
with several computational advantages. The object locations
are identified one-by-one as follows (Fig. 3):

1. Initialise Ô = {} and s = 1.

2. For all locations l ∈ I compute the change in cost that
would follow from assuming a new signal centred at l
with optimal signal parameters X.

3. Set ls to the source location with the largest decrease in
cost, add it to the solution set Ôl, and store the corre-
sponding optimal signal parameters Xs.

4. Update the cost changes associated with each l so that
they reflect incremental changes from the solution that
now includes ls. This update affects only those loca-
tions for which the associated patch overlaps with P ls .
Let s = s+ 1 and return to step 3,

5. If no change decreases the cost, accept the locations Ôl.

6. For all s and t, solve for xs,t (Eq. 5), and add to the
final source solution set Ô.

The core computations of steps 2 and 4 are elaborated below.
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Fig. 3. Algorithm flowchart. The iterative updates only affect the projection maps locally, so we only need to compute the
expensive convolutional projection once.

3.3.1. Initial computation

The decrease in cost (Eqs. 8 and 9) obtained by assuming an
object at a location l depends on the value of the signal pa-
rameters Xr

l , and so pursuit of the greatest decrease requires
that we compute the optimal parameter Xr

l at each location.
This is achieved by least-squares regression2 from all possible
r-th order tensor combinations of basis functions to the r-th
order cumulant at location l:

X̂r
l = argmin

X
‖Yl·(r) − B(r)X‖2 (11)

X̂r
l = (B(r)>B(r))−1Zr

l

Zr
l = B(r)>Yl·(r)

where B(r) ∈ RMr×Kr

is a matrix that contains as columns
all vectorised bk1 ⊗ . . . ⊗ bkr , ki ∈ {1 . . .K} and Zr

l ∈
RKr

denotes the vectorised projection of the r-th order patch
cumulant tensor onto each of the basis function tensors. Then
the change in cost associated with an object located at l is:

∆Cl =

R∑
r=1

1

σ2
r

(‖Yl·(r) − B(r)X̂r
l ‖2 − ‖Yl·(r)‖2) + γ

=

R∑
r=1

1

σ2
r

(2X̂r
l
>Zr

l − X̂r
l
>B(r)>B(r)X̂r

l ) + γ

=

R∑
r=1

1

σ2
r

Zr
l
>(B(r)>B(r))−1Zr

l + γ (12)

We proceed in a greedy fashion choosing l1 = argminl ∆Cl

to be the first element in the solution set Ôl as in step 3.

2If Kr > Mr the problem is overdetermined; it is not meaningful for
the local feature dictionary to be overcomplete as there is no sparsity penalty
on local features, only on object locations.

3.3.2. Update

At step 4, the changes in cost associated with each possible
object location must be revised to take into account the ad-
dition of a new source {ls, X̂ls} to the current solution set.
Given an established set of sources, the incremental change
in cost associated with a new assumed source depends on its
ability to fit the residual from the current model. Conceptu-
ally, the update thus requires the subtraction of the contribu-
tion of the reconstructed object (B(r)X̂r

ls ) from the data, and
then the computation of X̂l and thus ∆Cl for any location l
such that P l·(r) overlaps P ls·(r). However, as the data only
appear in Eq. 12 through the basis projections Zr

l , it is possi-
ble to compute the change in projection at l based on the new
source {ls, X̂ls} implicitly:

∆sZ
r
l = −Gr

l−lsX̂
r
ls

Gr
l−ls = B(r)>Srl−lsB(r)

where Srl−ls ∈ {0, 1}M
r×Mr

is a sparse binary shift tensor
indicating which elements of the respective r-th order tensors
interact for shifts of l− ls in the original space3. The explicit
forms of the updates for projections of the first two cumulant
orders at location l are:

∆sZ
1
l,k =

∑
l′

bkl′−l

(∑
k′

bk
′

l′−lsX̂
1
ls,k′

)

∆sZ
2
l,k1k2

=
∑
l′1,l
′
2

bk1

l′1−l
bk2

l′2−l

∑
k′1,k

′
2

b
k′1
l′1−ls

b
k′2
l′2−ls

X̂2
ls,k′1k

′
2


Once these updates have been computed, the projections,

3Note that if the original space is d > 1 dimensional then the l indices
are themselves d-dimensional vectors. In our formulation, however, this extra
complication only enters into the structure of S during the algorithm.
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(c) The use of higher order features substantially increases localisation performance
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pared to matrix factorisation

Fig. 4. a. CHOMP incorporating higher order cumulants offers substantial gain in localisation performance when the corre-
sponding structure is present in the signal distribution. Each cell shows the fraction of sources correctly localised in n = 10000
runs for different signal parameters (exact parameters were distributed normally with a standard deviation of one order of mag-
nitude around the specified value). b. Localisation performance expressed as AURC for all runs (n = 3 × 10000 + 600) with
varying mixtures of sources within a single run. No mixing: All sources share the same signal distribution. Realistic mixture:
as in (a). Uniform mixture: Signal distributions may vary up to 4 orders of magnitude within the same field of view. Means,
1σ and 2σ quantiles indicated. c. Assessing the improvement within a single field of view gained by incorporating higher
order cumulants. Bars are the mean gains in AURC over the first order method, runs selected by signal distribution criterion
(n <= 10000). High variance>= 1, Low mean<= 0.1. Error bars are SEM. d. Comparison of running times (n = 4× 600).

optimal signal parameters, and cost increments are straight-
forward to update for the next iteration:

Zr
l ← Zr

l + ∆sZ
r
l

X̂r
l ← (B(r)>B(r))−1Zr

l

∆Cl ←
R∑

r=1

1

σ2
r

Zr
l
>(B(r)>B(r))−1Zr

l + γ (13)

If ∀l : ∆Cl > 0, inference is complete. If not, we proceed to
identify the next source.

4. EVALUATION

We evaluated the impact of incorporating higher order cumu-
lants in pursuit under a broad range of signal distributions.
Data were simulated from the generative model (Eq. 2) in
a one dimensional space (I = 512), with a source density
of 0.05. Each simulation was based on a new random set
of basis functions (M = 11, K = 2). Signal distributions
were modelled as mixtures of Gaussians, with parameters se-
lected by non-linear least-squares to match an intended set of
moments. We explored symmetric distributions with means



and variances spanning multiple orders of magnitudes and a
number of kurtosis values. Coefficients xsk,t were sampled
iid (T = 1000), combined with the basis functions, and the
products summed along with zero-mean, unit-variance, addi-
tive Gaussian noise to yield the generated data.

Localisation was carried out as described (Fig. 3), with
a stopping condition corresponding to the true source density.
The values of σ were set as described above, resulting in σ2

r ≈
(Mr − Kr) ∗ (σ2

noise/T ) for large M and T , by the central
limit theorem. For comparability we used the true value for
σ2

noise = 1, instead of estimating it from the data.
A natural evaluation metric is the frequency with which

the algorithm correctly locates the sources, applied using in-
creasing orders of cumulants. We find that as long as the sig-
nal distributions contain significant higher order structure, it
is indeed feasible to attempt to reconstruct those tensors, in
spite of the vast dimensionality increase involved (Fig. 4(a)).
A further feature of greedy algorithms in general, including
the current one, is that they provide a natural ordering of the
sources found. We thus define the Area Under the Recall
Curve as

AURC(O, Ô) =
1

S

S∑
s=1

NumCorrect[Ô1:s]− Chances
s− Chances

Chances =
1(|I|
s

) s∑
s′=1

s′
(
s

s′

)(
|I| − s
s− s′

)
and estimate the performance using this metric. This is of
interest especially in the case when the field of view con-
tains signals from multiple distributions (Fig. 4(b)). Finally
we looked at how much higher order features offer on a case-
by-case basis (Fig. 4(c)) and we found that for all practical
cases, higher order estimators are substantially beneficial4.

We compared5 our proposed method to a group lasso im-
plementation [9], corresponding to the L1-relaxation of Eq. 3,
for which we provided the I ×KI spatial design matrix and
grouped time courses belonging to the same locations. Esti-
mated time courses were sorted by their norms to obtain Ô
and the AURC evaluated as above. CHOMP outperformed
the group lasso Fig. 4(b) while being over two orders of mag-
nitude faster Fig. 4(d).

5. DISCUSSION

We have described a flexible generalisation of convolutional
matching pursuit, that extends the classical formulation us-
ing a multilinear expansion of the basis functions to recon-
struct higher order features of data distributions. Convolu-
tional Higher Order Matching Pursuit (CHOMP) is able to

4Uniform mixture performance can also be improved by up to 0.3 AURC
gain by using an adaptive scheme for setting {σ2

r}Rr=1
5Note that we could evaluate the group lasso method only on smaller

sample of n = 600 due to prohibitively slow running times.

efficiently use multiple samples of the same region to pin-
point the location of generating sources. As each and every
step in the algorithm is fully linear and additive, it is easy
to extend to arbitrary input dimensionalities and numbers of
basis functions, and lends itself to parallel implementation.

We evaluated the localisation performance of the algo-
rithm either using just the mean, or including higher order
features. We found that the latter provided substantial im-
provements, even under challenging circumstances where sig-
nal distributions may differ by multiple orders of magnitude.

The general idea of reconstructing higher order tensors
of mixed signals of interacting sources may well be applica-
ble outside the multi-sample localisation problem solved here,
with the proviso that the nature of the interaction itself may
be unknown, whereas in localisation it is well described as a
function of spatial location.

6. REFERENCES

[1] SG Mallat and Z Zhang, “Matcing pursuite with time-
frequency dictionaries,” IEEE Trans. Signal Process.,
vol. 41, no. 11, pp. 3397–3415, 1993.

[2] A Szlam, K Kavukcuoglu, and Y LeCun, “Convolutional
Matching Pursuit and Dictionary Training,” Faces, pp.
1–7, 2010.

[3] M Pachitariu, AM Packer, N Pettit, H Dalgleish,
M Hausser, and M Sahani, “Extracting regions of interest
from biological images with convolutional sparse block
coding,” in Adv. Neural Inf. Process. Syst., 2013, vol. 1,
pp. 1745–1753.

[4] PR Halmos, “The Theory of Unbiased Estimation,” Ann.
Math. Stat., vol. 17, no. 1, pp. 34–43, 1946.

[5] A Stuart and JK Ord, Kendall’s advanced theory of statis-
tics, vol. 1, 1987.

[6] E Di Nardo, G Guarino, and D Senato, “A unifying
framework for k -statistics, polykays and their multivari-
ate generalizations,” Bernoulli, vol. 14, no. 2, pp. 440–
468, 2008.

[7] L Isserlis, “On a Formula for the Product-Moment Coef-
ficient of Any Order of a Normal Frequency Distribution
in Any Number of Variables,” Biometrika, vol. 12, no.
1-2, pp. 134–139, 1918.

[8] C. Vignat, “A generalized Isserlis theorem for location
mixtures of Gaussian random vectors,” Stat. Probab.
Lett., vol. 82, no. 1, pp. 67–71, 2011.

[9] S Boyd, N Parikh, E Chu, B Peleato, and J Eckstein,
“Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers,” Found.
Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2010.


