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Neural responses are typically characterized by computing the mean firing rate.  

Yet response variability can exist across trials.  Many studies have examined the 

impact of a stimulus on the mean response, yet few have examined the impact on 

response variability.  We measured neural variability in 13 extracellularly-recorded 

datasets and one intracellularly-recorded dataset from 7 areas spanning the four 

cortical lobes.  In every case, stimulus onset caused a decline in neural variability.  

This occurred even when the stimulus produced little change in mean firing rate.  

The variability decline was observable in membrane potential recordings, in the 

spiking of individual neurons, and in correlated spiking variability measured with 

implanted 96-electrode arrays.  The variability decline was observed for all stimuli 

tested, regardless of whether the animal was awake, behaving, or anaesthetized.  

This widespread variability decline suggests a rather general property of cortex: 

that its state is stabilized by an input. 
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A fundamental approach of systems neuroscience is to probe the brain with 

repeated stimulus ‘trials’ and infer neural mechanism from the recorded responses.  

Extracellularly-recorded responses are typically analyzed by computing the average spike 

rate across trials.  By averaging, the experimenter hopes to overcome the apparent 

noisiness of spiking and estimate the true change in the neuron’s underlying firing rate.  It 

is likely true that much of the recorded spiking variability is effectively noise, and 

doesn’t reflect fundamentally different responses on different trials.  Yet it is nevertheless 

clear that the neural response can vary meaningfully across trials.  For example, the 

neural state may be initially similar across trials, but become variable in response to a 

stimulus, as in1.  Alternately, sensory cortex can be restless and active2,3 prior to stimulus 

onset.  A central question is whether the stimulus-driven response suppresses such 

ongoing variability4,5,6,7, superimposes with it2,8,9, or yields even greater variability due to 

non-linear interactions10?  In general, does stimulus onset drive variability up (due to the 

variable responses themselves) or down (due to suppression of variable ongoing 

activity)?   

In general, the mean rate provides an incomplete characterization of the neural 

response. A fuller characterization requires – at the least – knowing whether rate 

variability is present and how it changes with time.  For example, the responses in Figure 

1a and b have similar means, yet one would infer different things about the neural 

circuits that gave rise to them.  The mean in Figure 1c erroneously suggests little 

stimulus-driven response.  Supplementary Figure 1 illustrates a similar scenario using a 

simulated network.  Because such situations may be common, it is important to 

characterize not only the stimulus-driven change in mean rate, but also the stimulus-

driven change in rate variance. 

The impact of a stimulus on variability could, of course, depend on the brain area, 

stimulus, and task.  However, stimulus onset reduces both membrane potential variability 

in anaesthetized cat V14,5 and firing-rate variability in premotor cortex of reaching 

monkeys11,12.  The presence of similar effects in two very different contexts suggests that 

a decline in variability could be a common feature of the cortical response.  This would 
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agree with recent theoretical work13,14 indicating that such an effect may be a general 

property of large recurrent networks.    

 To address this issue, we analyzed recordings from many cortical areas, driven via 

a variety of stimuli.  A measure of firing-rate variability (the Fano factor) revealed a 

stimulus-driven decline in variability that was similar in timecourse to the decline in V1 

membrane-potential variability.  This decline was present not only for anaesthetized V1, 

but for all cortical areas tested regardless of the stimulus or behavioral state.  The decline 

was also present in the correlated firing-rate variability of neurons recorded using 

implanted multi-electrode arrays.  Finally, we demonstrate how recently developed 

methods, applied to simultaneous multi-electrode recordings, can reconstruct the variable 

evolution of firing rates on individual trials. 
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Results. 

 

Across-trial variability in the membrane potential 

Stimuli and task events can alter the structure and correlation15 of membrane-

potential variability.  In particular, visual stimuli drive a reduction in membrane potential 

(Vm) variability in cat primary visual cortex (V1) that is largely independent of stimulus 

orientation4,5.  We re-analyzed data from5 to illustrate the timecourse of this effect (Fig. 

2).  Stimulus onset drives an immediate decline in Vm variability.  This decline occurs 

even for non-preferred stimuli that elicit little change in mean Vm (see also4 and Fig. 7c,d 

of5).  Average variability (across all neurons/conditions) declined rapidly following 

stimulus onset and then remained at a rough plateau (Fig. 2c).  The variability in question 

is across-trial variability, with a fairly long autocorrelation.  When Vm is low (or high), it 

tends to stay low (or high) for 10’s to 100’s of ms.  

The relationship between intracellularly-recorded Vm variability and 

extracellularly-recorded firing-rate variability is likely to be complex, given the nonlinear 

and dynamic relationship between Vm and firing rate (e.g., considerable Vm variability 

occurs below threshold).  One nevertheless expects across-trial Vm variability to produce 

across-trial firing rate variability.  Consistent with this expectation, firing-rate variability 

declines in parallel with Vm variability, as we will show below.  A larger question is 

whether the observed decline in variability is specific to V1 or whether it reflects a 

broader phenomenon.  The latter is suggested both by the presence of a similar effect in a 

premotor cortex11 and by recent theoretical work13,14. 

Addressing this issue requires quantifying firing-rate variability in extracellular 

recordings.  While quantifying Vm variability is straightforward, quantifying firing-rate 

variability is more complicated.  Extracellularly-recorded spike trains are usually 

described in terms of an underlying firing rate (often termed !) observed via a noisy point 

process (e.g., Poisson) that produces spikes.  It should be stressed that this conception 

captures the statistics of neurons embedded in a network16,17: spike generation at the axon 

hillock in not responsible for the noisy spiking-process statistics18, nor is firing rate 

synonymous with membrane-potential.   Rather, the underlying firing rate can be thought 



 5 

of as the average response of many similarly tuned neurons, or as the average response of 

one neuron across truly identical trials.  Of course, repeated trials are not guaranteed to be 

truly identical: the underlying firing rate may differ somewhat.  It is precisely this 

variability that we wish to capture, while ignoring variability arising from the roughly-

Poisson spiking.  Spiking variability may have interesting structure of its own, but for 

present purposes acts as noise.    

Poisson spiking-process ‘noise’ can severely mask underlying firing-rate 

variability (Supplementary Fig. 1).  It is thus rarely possible to discern changes in firing-

rate variability by eye.  We use two approaches to isolate underlying firing-rate 

variability from the variability contributed by spiking noise.  The first approach employs 

a modified method for computing the Fano factor.  This method is applicable to 

conventionally recorded single-neuron data, allowing analysis of a large number of 

existing datasets.  The second approach uses factor analysis to assess covariance in large-

scale simultaneous recordings.  These methods are technically very different, but both are 

intended to assess the same thing: the degree of across-trial firing rate variability, 

independent of the contribution of noisy spiking statistics.   

 

A variability decline across multiple cortical areas 

We first employed the Fano factor (FF): the spike-count variance divided by the 

spike-count mean.  Counts were made in a sliding window over the duration of the trial.  

The FF has been used extensively to characterize neural variability19,20,21,22,23.  The FF is 

influenced both by variability arising from spiking noise, and by across-trial variability in 

the underlying firing rate24.  Most prior work assumes that the underlying firing rate is 

similar across trials, and uses the FF to assess the statistics of spiking noise, which are 

roughly Poisson (FF ! 1) for most of cortex.  In the present work, we begin with the 

assumption that spiking noise is roughly Poisson, and we use the FF to assess across-trial 

variability in the underlying rate.  An FF greater than one will be interpreted as an 

indication of across-trial firing-rate variability.  Changes in the FF will be interpreted as 

reflecting changes in across-trial firing-rate variability11,24,25.  Although this approach 

begins by assuming Poisson spiking noise, it is reasonably robust to violations of that 

assumption (it is sufficient that spiking-noise variance scale linearly with the mean; the 
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slope needn’t be unity).  We will also present critical controls for potential artifacts 

related to non-Poisson spiking noise.  But before doing so we examine how the FF 

behaves across a variety of cortical areas. 

We computed the mean firing rate and the FF for ten datasets from seven cortical 

areas of the macaque monkey (Fig. 3): V1, V4, MT, the lateral intra-parietal area (LIP), 

the parietal reach region (PRR), dorsal premotor cortex (PMd) and orbitofrontal cortex 

(OFC).  Responses were to various visual stimuli or, for OFC, to juice reward.  For each 

area the FF was averaged across neurons/conditions (see below).  This is similar to what 

was done for the membrane potential analysis, and reflects both a desire for statistical 

power and the expectation that variability may change for both preferred and non-

preferred stimuli (as in Fig. 2a,b). 

In every case, stimulus onset drove a decline in firing-rate variability as assessed 

by the FF (all p-values <0.02).  This is remarkable, given the diversity of areas, stimuli, 

and behavioral states.  Variability declined during responses to simple visual stimuli, 

during operantly-conditioned responses (PRR and PMd), and during reward-driven 

responses (OFC).  The variability decline was present regardless of whether the animal 

was anaesthetized (V1 and the MT datasets at bottom), passively viewing (V4) or 

performing a task (the other six datasets).  For the MT datasets at bottom, stimulus onset 

occurred in two stages: pattern onset followed by motion onset.  Both events drove a 

decline in variability, although only the more effective moving stimulus drove a sustained 

decline.    

We have previously proposed that declining variability in premotor cortex is 

related to the progress motor preparation11.  The changes in V1 membrane potential 

variability have been linked to shunting inhibition4,26 and contrast-invariant orientation 

tuning5.  These explanations are no less likely given the current data.  Yet it is clear that 

the decline in variability is not limited to those cases, but constitutes a cortex-wide effect.   

This suggests a very general property of cortex: that its state is stabilized by an input.  

 

The mean-matched Fano factor controls for rising rates 

The FF declines as mean firing rates are rising.  This is expected: in the 

intracellular data it was similarly true that Vm variability dropped as the mean Vm rose.  It 
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is nevertheless critical to rule out any possibility that the declining FF is trivially related 

to rising rates.  At higher rates, refractory periods will tend to regularize spiking (a 

violation of the Poisson assumption) which could reduce the FF simply because the 

variability of spiking-process noise is reduced.  A less obvious concern is that across-trial 

firing-rate variability could be constant, but becomes normalized by a higher mean after 

stimulus onset (the FF is the spike-count variance divided by the mean). 

 To address these issues, the FF traces above (Fig. 3) were computed using a 

method we term ‘mean-matching.’  The motivation is as follows: interpretation would be 

aided if we could record from a population of neurons that did not change its overall 

distribution of mean firing rates.  If some neurons responded to the stimulus with an 

increased mean rate, and others with a decreased mean rate, then the overall distribution 

of mean rates (across neurons and conditions) could stay conveniently constant.  For 

many areas (e.g., PRR) this is not far from what was observed.  The overall mean rate 

always increased post-stimulus, yet this was often driven by a small percentage of 

neurons that strongly prefered the stimulus.  Most neurons exhibited more modest 

changes in mean rate, with declines being almost as common as increases.  For other 

areas (especially anaesthetized V1) it was the case that the vast majority of neurons 

increased their mean rate following stimulus onset.  Nevertheless, for all datasets there 

was considerable overlap, before and after stimulus onset, in the distribution of mean 

rates.  Mean-matching exploits this overlap.    

To apply mean-matching, for each neuron/condition we compute the mean and 

variance of the spike count in a sliding window (Fig. 4a).  At each time, we plot the 

variances versus their respective means, with one data-point for every neuron/condition 

(Fig. 4b, gray and black points).  The ‘raw FF’ is simply the slope of the regression 

relating the variance to the mean.  The concern being addressed is that the raw FF might 

be lower following stimulus onset simply because rates are higher.  Inspection reveals 

this to be unlikely: even for the range of mean counts that is shared across times, there are 

noticeably fewer high-variance points for the later times (compare –100 and +100 ms).  

Mean-matching formalizes this observation.  We compute distributions of mean counts 

(gray marginal distributions) and take the greatest common distribution (black).  At each 
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time, individual points are randomly excluded until the actual distribution matches the 

common distribution.  The mean-matched FF is based on the remaining (black) points. 

All FFs reported in Figure 3 employed mean-matching.  Very similar results were 

obtained for the raw FF (as in Fig. 4c).  Thus, the decline is not somehow produced by 

mean-matching.  Mean-matching simply controls for a potential artifact.  Also note that, 

even following mean-matching, most of the analyzed neurons still showed stimulus-

driven changes in mean rate (both increases and decreases).  Only the overall distribution 

of firing rates is held constant.  Before application to real data, mean-matching was 

applied to many simulated datasets, a few of which are shown in Supplementary Figure 

2.  The mean-matched FF successfully avoids artifacts related to changing mean rates 

over a wide range of circumstances, including low trial-counts, non-Poisson spiking, low 

mean rates, and large changes in mean rate. 

 

Further controls for the FF 

We employed a complementary method to further control for potential changes in 

spiking-noise statistics.  We computed both the FF (for all neurons/conditions) and the 

square of the coefficient of variation of the inter-spike intervals (CV2) using the method 

of24.  While the FF declined following stimulus onset, the CV2 changed little 

(Supplementary Fig. 3).  This is not consistent with a large change in spiking-process 

statistics (which should produce a large decline in both the FF and CV2) but is consistent 

with a decline in across-trial rate variability, a similar conclusion to that drawn in24.  One 

can also control for rising mean rates (and resulting refractoriness) by focusing on 

conditions/neurons that individually exhibit little change in mean rate (e.g., null-

directions and other non-responsive conditions).  This necessitates that there exist a 

sufficient number of such cases to allow further analysis.  Of the datasets in Figure 3, 

four (MT-plaids, PRR, PMd, and MT-speed) could be analyzed in this manner.  In each 

case (Fig. 5), the FF decline is as clear for the non-responsive conditions (p<10–6, p<10–6, 

p<0.002, p<10–4) as it had been for the original analyses.  This finding also addresses a 

second concern: low-rate neurons (which are preferentially preserved by mean-matching 

following stimulus onset) might tend to have low intrinsic FFs, resulting in an artifactual 

FF decline.  However, such an artifact cannot affect the analysis in Figure 5: exactly the 
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same neurons/conditions contribute at all times.  Furthermore, the raw FF always showed 

the same decline as the mean-matched FF.  In summary, the decline in the FF cannot be a 

simple consequence of refractoriness, changing spiking-noise statistics, or normalization.  

Rather it appears to reflect a widespread decline in the variance of the underlying firing 

rate. 

 

Variability declines even for ‘non-responsive’ conditions 

Analyses of non-responsive conditions (Figs. 2,5) act a control, but also make a 

deeper point.  The firing rate – averaged across trials – may change little, yet neurons are 

not truly non-responsive.  It appears that underlying rates do change: from a variable 

range of rates before stimulus onset to a more consistent rate (with a similar mean) 

following stimulus onset.  As in Figure 1c, it may be only the mean rate that changes 

little.  The critical factor is not whether a neuron appears responsive from its mean, but 

whether the population as a whole is responsive.  This is illustrated by the data from 

anaesthetized MT (Fig. 3, bottom).  The onset of a static dot pattern evokes a weak and 

transient increase in mean rate at the population level, and a transient (though large) 

decline in the FF.  In contrast, dot motion onset evokes a sustained increase in the mean 

population rate and a sustained FF decline.  This FF decline is present and sustained even 

for those neurons where the mean rate is changing little (Fig. 5d).  Thus, the FF decline 

depends on the stimulus effectively driving the population as a whole, but not on 

individual-neuron mean responsiveness.  Consistent with this, the FF rises again fairly 

rapidly when the population ceases to respond following stimulus offset (Supplementary 

Fig. 4).             

 

A decline in correlated variability 

Does each neuron undergo its own decline in variability, or is the above effect 

related to variability that is shared?  To assess this, our second approach exploits the 

covariance of simultaneous recordings, obtained via 96-electrode array recordings from 

two of the above areas: V1 and PMd.  The measured covariance matrix (assessed across 

trials) reflects both shared firing-rate variability and ‘private’ spiking-process noise.  It is 

thus necessary to decompose the measured covariance matrix into shared (network-level) 
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and private components (Fig. 6a).  A number of applicable methods exist, all of which 

exploit the assumption that shared variability should be relatively low dimensional (i.e., 

that neurons are tuned to a modest number of shared factors).  Intuitively, if one can 

average across similarly tuned neurons to remove spiking noise, the underlying rate (and 

its variance) becomes more accessible.  More precisely, if neurons are tuned for 8 shared 

factors, the covariance matrix describing the underlying rate will be of rank 8.  The 

measured covariance matrix should then be decomposed into a rank-8 ‘network’ 

covariance matrix, and a diagonal matrix capturing private spiking-process noise.  

Spiking-process variability is not necessarily physiologically cell-intrinsic16,18,20, but is 

weakly correlated between most neurons and thus ‘private’ for present purposes, 

especially given the long analysis windows being used.  Of the applicable methods27, 

factor analysis28 has the most appropriate noise model: different neurons may have 

different levels of private noise.  This is essential, as Poisson spiking ‘noise’ scales with 

the mean rate.  Supplementary Figure 5 further illustrates how FA separates network 

variability from private spiking noise.   

We applied FA to four datasets: two V1 datasets from different animals and two 

PMd datasets collected from one animal on separate days.  After isolating the network 

variances (blue diagonal in Fig. 6a) we computed the average network variance (across 

neurons/conditions) before and after stimulus onset.  The average variance was computed 

following a mean-matching procedure, just as was performed for the FF.  Mean-matching 

aids interpretation by allowing direct comparison of the variance present for a given 

mean rate.  It also insures that any contamination of network variability by private noise 

(inevitable for finite trial-counts) does not increase with rising rates.  Non-mean-matched 

data are presented subsequently.  

A decline in network variability was observed in all datasets (Fig. 6b,c,e,f).  For 

V1, network variability was 66% and 40% lower following stimulus onset.  For PMd, 

network variability was 53% and 45% lower.  This decline was significantly greater for 

network variability than for private noise, in both absolute and relative terms (Fig. 6d,g 

and legend).  Thus, the FF and FA analyses agree: stimulus onset drives a decline in 

firing-rate variability that is not simply due to a change in the regularity of spiking itself. 
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The decline in rate covariance is consistent with29 (from which one of the V1 

datasets is drawn), in which correlations were lower overall after stimulus onset.  

However, the present result does not simply follow from that result.  The mean pairwise 

correlation can decline even while overall covariance grows (e.g., if negative correlations 

become more common or if private spiking variability climbs).  Interestingly, in three of 

the four cases, FA also indicates a small reduction in private noise.  Limited data make it 

difficult to determine whether this indicates an actual change in spiking-process 

statistics30 or occurs because some network variability is incorrectly assigned to private 

noise.  The latter can occur if the true dimensionality of the data is higher than the 

dimensionality assumed by the analysis (Supplementary Fig. 7a).  This possibility is of 

minor concern: it would imply we are underestimating the network-variance decline.  The 

converse (mis-assignment of a private change to a network change) is potentially 

concerning yet unlikely: for trial-shuffled data FA correctly assigns the variance change 

to private noise with only a small ‘leak’ into network variance (Supplementary Fig. 7b–

e).  Furthermore, the decline in network variability was the larger effect, both in absolute 

(Fig. 6b,c,e,f) and percentage (Fig. 6d,g) terms.  In summary, there may or may not be 

modest changes in private spiking-process variability following stimulus onset.  In either 

case, the measured decline in variability is principally a decline in network-level 

variability, shared among neurons.   

As an aside, the shared variability being assessed is indeed variability in the firing 

rate across trials, not variability in precise spike patterns.  Rerunning FA and FF analyses 

after ‘jittering’ each spike within a 20 ms window produced essentially identical results.  

This is unsurprising given the large (400 ms) analysis window.  

 

A qualification regarding the decline in variability 

For both the FF and FA, we compared identical distributions of mean rates before 

and after stimulus onset.  Our central result must thus be stated carefully: for a given 

mean rate there is less variability around that mean following stimulus onset (e.g., the 

variance around a 10 spike/s mean might shrink from 15 to 8 spikes2/s2).  This will often 

imply that overall variability declines, but that can fail to occur when rates are initially 

very low.  In the limit, when initial firing rates are zero, variability is zero and will 
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necessarily rise when rates rise.  For area PMd, overall firing rates change modestly 

following stimulus onset and overall variability does indeed decline.  However, in 

anaesthetized V1 most neurons have baseline rates near zero, and thus near-zero 

variability.  Overall variability is thus essentially guaranteed to rise following stimulus 

onset.  This can be seen by plotting network-level rate variability versus mean rate (Fig. 

6h,i).  In this analysis, spiking variability has been approximately factored out, leaving 

primarily underlying-rate variability.  The effect of stimulus onset is essentially the same 

for both PMd and V1: the black curve lies well below the gray curve.  For any given 

mean rate there is less variability around that rate after stimulus onset.  However, for V1 

mean rates are low before stimulus onset, necessitating low rate variance.  Overall 

variability thus rises following stimulus onset (average variance rises from 77±5 SE 

spikes2/s2 to 190±8 spikes2/s2) even though it is lower for any given mean rate.  For PMd, 

the overall change in mean rates is modest, and variance is lower after stimulus onset 

both for a given rate and in overall terms (average variance drops from 28±2 spikes2/s2 to 

16±1 spikes2/s2).  Thus, the central effect is a decline in the variability present around a 

given mean rate.  This may or may not translate into an overall variance decline, 

depending on whether overall mean rates rise modestly or sharply.  This qualification is 

restricted to the analysis of firing rate, whose variability must be zero when the mean is 

zero.  By contrast, the membrane voltage shows considerable variability even when firing 

rates are near zero (Fig. 2).   

 

Single trial analysis of variability 

  The ‘neural response’ is incompletely characterized by its mean.  A fuller 

characterization is provided by also assessing firing-rate variance.  Yet ideally one would 

directly observe the evolution of firing rates on individual trials, much as the membrane 

potential was directly observed on individual trials in Figure 2.  Such visualization is 

likely important not only for the initially-high variance, but also for the variance that 

survives stimulus onset.  The presence of remaining firing-rate variability after stimulus 

onset is underscored by its correlation with pre-stimulus variability2,8,10,31 

(Supplementary note 1).  The FA analysis (Fig. 6h,i) also indicates that considerable 

firing-rate variability remains following stimulus onset.  For PMd, such variability is 
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behaviorally meaningful: it correlates with subsequent reaction time11 and reach speed32.  

Estimating the evolution of single-trial firing rates is difficult or impossible based on 

single-neuron recordings, but becomes plausible for large-scale simultaneous recordings.  

To do so we employ apply an extension of FA termed ‘Gaussian-process factor analysis’ 

(GPFA)33.  GPFA projects the responses of many neurons into a low-dimensional space 

where each trial’s ‘neural trajectory’ can be traced through time.  Essentially, each axis 

captures the smoothed and averaged response of similarly-tuned neurons.  More 

precisely, each neuron’s underlying rate is a linear combination of the responses 

represented on each axis (much as for principal component analysis).  Similar 

visualization has recently been employed in invertebrate systems1,34,35.  A full 

characterization of single-trial variability across all conditions is beyond the scope of the 

present study.  Still, the analyses below serve to illustrate the power, and in some cases 

the limitations, of viewing neural responses on a single-trial basis.     

The collapse in variance in PMd is readily visualized via GPFA (Fig. 7a).  The 

neural state is initially variable across trials, even though the monkey’s external state – 

including fixation – is tightly controlled.  Following reach-target onset, the neural state 

becomes less variable and changes its center of mass (i.e., mean rates change).  These 

features are particularly clear in the supplementary movies.  Across both datasets and all 

14 target locations, variability was always lower by the go cue than it had been pre-

stimulus (for the two days, variance was an average of 27% and 37% smaller per 

dimension, relative to 100 ms pre-stimulus, p<10–6 and p<10–8; t-tests across 14 

conditions).  Variability was lower still by movement onset (36% and 46% smaller than 

pre-stimulus variability; p<10–10, p<10–11). 

Despite the above results, the principal goal of GPFA is not to further quantify 

variability and its decline (that is better accomplished by the FF and FA analyses).  

Rather, we would like to know how individual trials deviate from their mean.  In 

particular, while most neural trajectories hewed close to their mean after target onset 

there were intriguing exceptions.  For example, the red trace in Figure 7b follows the 

usual trajectory up until the go cue (presumably indicating successful target detection and 

initial planning).  Yet following the go cue the trajectory wanders before falling back on 

track.  On this trial the monkey did indeed have an unusually long reaction time (629 ms; 
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all others ranged from 240–375 ms).  Other trials, for other target locations/days, 

contained similar outliers associated with long reaction times (Fig. 7c, Supplementary 

Fig. 8).  Thus, across-trial averaging obscures not only the variance decline but also other 

interesting features, including events that may only have happened once. 

We also applied GPFA to data from V1.  Neural trajectories for one example 

condition (a 45º drifting grating) are shown in Figure 8.  The initial overshoot 

corresponds to the onset transient; the looping trajectory is driven by the periodic 

stimulus.  Across-trial variability is, if anything, more pronounced than in PMd.  

Individual-trials showed considerable variability in the stimulus-driven trajectory, and 

also in the trajectory before stimulus onset and after its offset.  Of course, given a limited 

number of neurons, GPFA cannot provide noise-free estimates of single-trial firing rates.  

Yet much of the observed variability is real: shuffling the data to break neuron-neuron 

correlations greatly reduced variability relative to the original data (Fig. 8b,c).  This was 

similarly true for every stimulus condition for all datasets tested.  For the two V1 

datasets, the original data had on average 81% and 89% more variance (p<10–10 for both, 

t-test across conditions) than the shuffled data.  The same was true for PMd (42% and 

43% more variance; p<10–15 for both).  Thus, the variable individual-trial trajectories do 

indeed reflect trial-to-trial departures from the mean behavior.  In particular, for V1 there 

is a surprising degree of variability in the initial state (Fig. 8c, blue), given the low 

average initial rates of most neurons.  Because mean-matching cannot be applied to 

GPFA, total variability certainly did not decline following stimulus onset.  Indeed it was 

higher, in agreement with Figure 6h.  In summary, GPFA is in some ways less flexible 

than the FF or FA analyses (mean-matching cannot be applied, and the noise model is 

fixed across time).  Still, the ability to reconstruct single-trial responses, and observe 

events that may only have occurred once, lends it a unique utility. 
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Discussion 

Stimulus onset drives a widespread decline in the variability of the neural state.  

Consistent with prior reports, this effect is directly observable at the level of the 

membrane potential4,5.  At the level of firing rates, the effect is not initially obvious. 

Much of the measured variability at the level of a single neuron is due to quasi-Poisson 

spiking statistics, whose variance rises with mean rate20.  Nevertheless, appropriately-

controlled metrics reveal that firing-rate variability declines sharply following stimulus 

onset.  Specifically, for a given mean rate there is much less variability around that rate 

after stimulus onset.  The ability to assess this effect in extracellular records was critical, 

as it allowed examination of datasets from many cortical areas, employing many stimuli, 

in both anesthetized and behaving animals.  Stimulus onset might have been expected to 

impact neural variability differently depending on the area, stimulus, task, and behavioral 

state.  Yet we consistently observed a decline in neural variability across all 14 datasets, 

from occipital to frontal cortex.  This finding argues that a stimulus-driven decline in 

variability is a widespread feature of the cortical response. 

The FF and FA methods both indicate that the central effect is a decline in the 

across-trial variability of the underlying firing rate, rather than a change in the spiking-

statistics applied to that rate.  This decline in firing-rate variability is likely a network 

property, for two reasons.  First, the decline occurs even when the mean firing rate of a 

given neuron changes little (e.g., for non-preferred stimuli) provided that the network as a 

whole responds to the stimulus.  Second, the variability in question is shared among 

neurons within an area, as revealed by FA.  This finding, and the similar decline across 

areas, suggests that the relevant network could span much of cortex.  Alternately, it may 

be that different areas exhibit the same effect simply because it is a common property of 

cortex.  Distinguishing these possibilities will require large-scale simultaneous recordings 

from multiple areas.      

 Many prior studies have examined correlations between firing rate variability and 

behavior (e.g.,31,32,36,37,38).  A few have related across-trial firing-rate variability with task 

difficulty,39 attention25 or motor learning40,41.  The present study is the first to fully 

document a simpler effect: the change in variability driven by the stimulus itself.  That 

said, related effects can certainly be found in prior studies.  This is true not only for the 
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membrane potential4,5, but also for firing-rate variability.  We previously reported (using 

methodology related to the FF) a variability decline in premotor cortex11.  Variability also 

undergoes changes in motor cortex24,42.  In retina, LGN and V1, the FF was lowest when 

rates were highest43.  In a recent study of V425, the FF dropped after the stimulus entered 

the receptive field.  There is also a small FF drop in previously-published MT data44.  

Variability declined throughout the trial for multiple areas during a probabilistic choice 

task45.  Zebrafish mitral cell responses become more reliable following odor 

presentation46, and both cerebellar and FEF variability reach minima before 

movement47,48.  A stimulus-driven decline in correlated activity7,29 was found for V1, 

consistent with a decline in (correlated) rate variability (also see49 for a similar effect r.e., 

LFP).   Finally, there are reports50 of lower variability in driven versus spontaneous 

thalamic activity.  In some of these studies variability changes were of passing interest, 

and controls for changing spiking-process statistics were not always applied (although 

see11,24).  Yet our results argue that most of these effects likely reflect a decline in 

network-level firing-rate variance. 

Mechanistically, the variance decline implies that cortical circuits become more 

stable when driven.  Many network types can be stabilized by an input.  Natural 

candidates are recurrent networks with attractor dynamics51.  More broadly, a stimulus-

driven decline in variability may be a general feature of large recurrent networks13,14.  

The widespread effects we observed may thus simply reflect the widespread presence of 

recurrent circuitry.  These ‘network level’ explanations are consistent with the shared 

nature of the firing-rate variability, and with our previous finding that a drop in PMd 

variability relates to reaction time11.  Yet other data indicate a bottom-up source; in 

particular, shunting inhibition appears to be the source of the decline in V1 membrane-

potential variability4,26.  One hopes these two levels of explanation will be reconciled, 

although it is not yet clear how to do so. 

The functional interpretation of converging rates likely varies by area.  For PMd, 

the decline may relate to motor preparation11,12.  In area V4, it may relate to attention25.  

Often it is tempting to relate the variability decline to cognitive-level phenomena: 

stimulus onset is a natural candidate to focus not only attention and planning, but other 

forms of mental processing as well.  On the other hand, the decline was observed even 
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under anesthesia (all V1 datasets and two of the MT datasets) consistent with lower-level 

explanations4.  See Supplementary note 2 for further discussion of the possible origins – 

local versus cognitive – of the initial variability.  The anesthetized data additionally rule 

out effects related to microsaccades or other unobserved changes in behavior.  Finally, 

effects in the anaesthetized data appear unrelated to long-timescale drift of anesthesia: the 

decline is undiminished when computed more locally in time (Supplementary note 3). 

Despite being widespread, the changes in variability are unlikely to constitute a 

‘coding channel’.  It is unlikely that the brain could measure or interpret variability that is 

present only across trials.  It is the experimenter who, when interpreting the recorded 

responses, needs to know when variability is substantial and how it is changing.  Most 

basically, we need to know when the mean is representative.  More intriguingly, different 

classes of dynamics – single-attractor, multi-attractor, integrator – can have different 

variability ‘signatures’52.  Variability measurements may thus allow hypotheses regarding 

circuit-level dynamics to be tested at the level of the single neuron.  More generally, 

while the mean and the variance are indispensable metrics, one also wishes to observe the 

individual-trial responses themselves.  GPFA and related methods can approximately 

reconstruct individual-trial neural trajectories from simultaneous extracellular 

recordings53, and thus have the potential to uncover telling features of the neural response 

that are normally lost to averaging. 
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Supplementary material is provided. 
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Figure 1.  Schematic illustration of possible types of across-trial firing rate variability.  In 

each panel, we suppose that the same stimulus is delivered four times (four trials) 

yielding four different responses.  Panels a and b were constructed to have the same mean 

response across the four trials.  a. Stimulus-driven decline in variability.  b. Stimulus-

driven rise in variability.  c. Stimulus-driven decline in variability with little change in 

mean rate. 

 

 

 

 

 

Figure 2.  Analysis of intracellularly-recorded membrane potential from cat V1.  Stimuli 

were drifting sine-wave gratings presented at different orientations / frequencies.  

Analysis employed a 50 ms sliding window (box filter) to match the 50 ms window used 

for the FF analysis.  Similar results were obtained with a shorter (5 ms) or longer (100 

ms) window.  a. Data from one example neuron.  Vm for individual trials (black) is 

plotted on top of the mean (gray).  Data are shown when no stimulus was delivered, for a 

non-preferred stimulus, and for a preferred stimulus.  The arrow marks stimulus onset.  b. 

Similar plot for a second example neuron.  c. The mean and variance of Vm across all 52 

neurons and all stimuli.  Flanking traces give SEMs.    

 

 

 

 



 20 

Figure 3. Changes in firing-rate variance for eight datasets (one per panel).  Insets 

indicate stimulus type.  Data are aligned on stimulus onset (arrow).  For the two bottom 

panels (MT-area/direction and MT-speed) the dot pattern appeared at time zero (first 

arrow) and began moving at the second arrow.  The mean rate (gray) and the FF (black 

with flanking SEs) were computed using a 50 ms sliding window.  For OFC, where 

response amplitudes were small, a 100 ms window was used to gain statistical power.  

Analysis included all conditions, including non-preferred.  The FF was computed after 

mean-matching (Fig. 4).  The resulting stabilized means are shown in black.  The mean 

number of trials/condition was 100 (V1), 24 (V4), 15 (MT plaids), 88 (MT dots), 35 

(LIP), 10 (PRR), 31 (PMd), 106 (OFC), 125 (MT-direction/area), and 14 (MT-speed).   
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Figure 4.  Illustration of how the mean-matched FF was computed.  Data are from the 

MT-plaids dataset.  a.  Spike rasters for the 46 trials (one per line) recorded from one MT 

neuron (127) for one stimulus condition (upwards-moving plaid).  Shaded areas show 4 

locations of the sliding window, which moved in 10 ms increments.  For each window 

location, the spike count was computed for each trial.  The mean and variance (across 

trials) of that count then contributed one data-point to the subsequent analysis (next 

panel).  b.  The FF was computed based on scatterplots of the spike-count variance versus 

mean.  Each scatterplot corresponds to a window in a.  Each point plots data for one 

neuron/condition (red indicates the neuron/condition from a).  The orange line has unity 

slope: the expected variance-to-mean relationship for Poisson spiking.  Data above the 

orange line is consistent with the presence of underlying-rate variability.  Grey dots show 

all data.  Gray lines are regression fits to all data (constrained to pass through zero, 

weighted according to the estimated SE of each variance measurement).  Gray 

distributions are of mean counts.  These appear to have different areas because of the 

vertical log scale.  Black points are those preserved by mean-matching (methods).  Black 

distributions are thus identical within the bin resolution.  Black lines are regression slopes 

for the mean-matched data.  c.  The FF versus time.  Arrows indicate time-points from 

the panels above.  The gray trace (with flanking SEs) plots the ‘raw’ FF: the slope of the 

grey lines from panel b.  The black trace plots the ‘mean-matched’ FF: the slope of the 

black lines. 
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Figure 5.  Changes in the FF after restricting the analysis to neurons / conditions with 

little change in mean rate (e.g., non-preferred conditions).  Of the original ‘neuron-

conditions’ (the response of one neuron to one condition), this analysis preserved 28% 

(MT, panel a), 49% (PRR, panel b), 27% (PMd, panel c), and 41% (MT-speed, panel d).  

A 100 ms window (rather than 50 ms) was employed to regain lost statistical power.  The 

trace at the top of each panel shows the mean rate, averaged across all included 

neurons/conditions.  The trace with flanking standard errors shows the FF, computed with 

no further mean matching.  Arrows indicate stimulus onset.  For the MT-speed dataset 

(panel d) the stimulus appeared at the very start of the record (first arrow) and began 

moving 256 ms later (second arrow). 

 

 

 

  

 



 23 

Figure 6.  Application of FA to data from V1 and PMd.  See methods and 

Supplementary Figure 6 for a description of datasets.  a. FA was applied to covariance 

matrices (#neurons " #neurons) of spike counts, taken in an analysis window that either 

ended at stimulus onset (pre-stimulus) or began just after stimulus onset (stimulus).  The 

measured covariance matrix was approximated as the sum of a ‘network’ covariance 

matrix and a diagonal matrix of private noise.  To produce the plots in b–g, network 

variances were averaged across the subset of neurons/conditions (48% and 30% for V1, 

74% and 79% for PMd) whose distribution of mean rates was matched before and after 

stimulus onset (similar to Fig. 4).  b. Estimated variances for one V1 dataset.  Network 

variability declined more than private variability in both absolute (p<10–7) and relative 

(percent of initial value, p<10–7) terms (paired t-tests across conditions).  c. similar plot 

for a V1 dataset from a second monkey: p<0.002 (absolute) and p<0.002 (relative).  d. 

Summary comparison for V1.  Changes in variability (stimulus minus pre-stimulus) were 

expressed in percentage terms.  Data to the left of zero indicate that network variability 

underwent the larger decline.  The distribution includes all conditions and both datasets.  

The mean and standard error is given by the black symbol at top (p<10–7 compared to 

zero, paired t-test).  Gray symbols give individual means for each dataset.  e. Same as b,c 

but for one PMd dataset (G20040123).  Network variability declined more in absolute 

(p<0.005) and relative (p<0.001) terms.  f. Similar plot for a second PMd dataset 

(G20040122): p<0.05 (absolute) and p<0.02 (relative).  g. Summary comparison for PMd 

(distribution mean <0; p<10–4).  h. Relationship between mean firing rate and network-

level (shared firing-rate) variance.  Data (same dataset as panel b) were binned by mean 

rate, and the average network variance (±SE) was computed for each bin.  This was done 

both pre-stimulus (gray) and after stimulus onset (black).  The average was taken across 

neurons and conditions (each datum being averaged was, for one condition, one element 

of the blue diagonal in panel a).  Distributions of mean rates are shown at bottom.  The 

analysis in b was based on the overlapping (mean-matched) portion of these distributions.  

i. Similar plot for PMd (same dataset as panel e). 
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Figure 7.  Individual-trial neural trajectories, computed using GPFA.  a. Projections of 

PMd activity into a 2-dimensional state space.  Each black point represents the location 

of neural activity on one trial.  Gray traces show trajectories from 200 ms before target 

onset until the indicated time.  The stimulus was a reach target (135º, 60mm distant), with 

no reach allowed until a subsequent go cue (see b,c).  Fifteen (of 47) randomly-selected 

trials are shown.  Same dataset as in Figure 6e.  b. Trajectories are plotted until 

movement onset.  Blue dots indicate 100 ms before stimulus (reach target) onset.  No 

reach was allowed until after the go cue (green dots), 400–900 ms later.  Activity 

between the blue and green dots thus relates to movement planning.  Movement onset 

(black dots) was ~300 ms after the go cue.  For display, eighteen randomly-selected trials 

are plotted, plus one hand-selected trial (red, trialID211).  Covariance ellipses were 

computed across all 47 trials.  This is a 2-dimensional projection of a 10 dimensional 

latent space.  In the full space, the black ellipse is far from the edge of the blue ellipse.  

This projection was chosen to accurately preserve the relative sizes (on a per dimension 

basis) of the true 10-dimensional volumes of the ellipsoids.  G20040123 dataset.  c. Same 

presentation and target location as in b, but for data from another day’s dataset 

(G20040122, red trial: trialID793). 
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Figure 8. Projections of V1 activity into a 2-dimensional space.  Blue, black and red 

traces show activity before, during and after stimulus presentation (a drifting 45° 

grating).  Same dataset as Figure 6c.  a. The mean trajectory and three trials picked by 

hand.  The grey spot shows the average location of pre-stimulus activity.  In a few cases 

(e.g., upper left portion of the rightmost panel), traces were moved very slightly apart to 

make it clear that they traveled in parallel rather than crossed.  b. Trajectories after data 

were shuffled to remove correlated variability.  25 randomly-selected trials are plotted 

(lighter traces) along with the mean (saturated traces).  c.  Same as in b, but for the 

original unshuffled data. 
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Methods 

Datasets 

All methods were approved in advance by the relevant institutional animal care 

and use committees.  Data were collected from seven cortical areas of the macaque 

monkey and one cortical area of the cat by members of nine laboratories.  For most 

datasets, methods have been described previously5,11,29,54,55,56,57,58,59,60.  Briefly, for the 

intracellularly-recorded V1 datasets, stimuli were 100% contrast sine-wave gratings 

presented at different orientations.  For the extracellularly-recorded V1 dataset, stimuli 

were 100% contrast sine-wave gratings (6.25 Hz, 1.3 cycles/º) drifting in one of 12 

directions.  For V4, stimuli were one or two oriented bars situated in the neuron’s 

receptive field.  For some conditions, similar bars appeared in the opposite hemifield.  

For the first MT dataset, stimuli were square-wave gratings superimposed to produce a 

plaid.  These patterns contained a small amount of variable-contrast texture, which was 

identical for all trials of a given type within a recording session (making it sensible to 

compute the response variance across those trials).  For the second MT dataset, stimuli 

were 0%-coherence random dots.  These had exactly the same dot pattern for repeated 

trials within a session.  For LIP, stimuli were two colored saccade targets, between which 

the monkey chose.  Analysis was further segregated by the eventual choice and the 

estimated value of that choice to the monkey.  E.g., one of the conditions corresponded to 

rightwards saccades to a red target of high reward probability.  For PRR, stimuli were 

reach/saccade targets (modality instructed by color) both within and outside the neuron’s 

receptive field.  For PMd, stimuli were reach targets at one of 2 distances and 7 

directions.  For OFC, the task was similar to that used for LIP, but analysis was locked to 

reward delivery (after the saccade).  Analysis was segregated based on the features that 

OFC neurons seemed most sensitive to: choice, whether that choice repeated the last 

choice, and whether reward was delivered.  E.g., one of the conditions corresponded to 

rewarded saccades to a red target when that target was chosen last time.  For the third and 

fourth MT datasets, stimuli were random dot patterns.  For ‘MT-direction/area’, stimulus 

direction and dot-patch area varied across conditions.  For the ‘MT-speed’ dataset, 

stimuli were presented at different speeds (1–128º/s) in the preferred and null directions.  

For these two datasets, the exact location of the individual dots within the aperture was 
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different on each trial.  This presumably did inflate the FF by injecting additional across-

trial variability.  However, this appears to be a modest concern: robust FF declines were 

still observed.  These two datasets were also unusual in that the stimulus (the dot patch) 

appeared at the moment the trial began (and data collection commenced).  Motion onset 

occurred 256 ms later.  

   Extracellular V1, MT-direction/area, and MT-speed datasets were recorded from 

opioid-anaesthetized monkeys (macaca fascicularis or macaca nemestrina).  Intracellular 

V1 recordings were made from anaesthetized cats.  All others were made from awake 

monkeys (macaca mulatta) performing a task with controlled fixation.  For the V4 

dataset, the task was simply to fixate while stimuli were presented.  For PMd, the task 

required a reach.  For PRR the task required a reach or a saccade.  For the remaining 

datasets the task required a saccade indicating a choice or perceptual discrimination.  

Tasks involved a delay between stimulus onset and when a response was allowed, with 

one exception.  For the MT-dots dataset, the monkey was allowed to respond as soon as 

he had made the discrimination. Analysis was thus limited to reaction times longer than 

250 ms to allow a sufficient analysis window.  All tasks involved a period of enforced 

fixation prior to stimulus onset.  For LIP this was not true for all trials, and analysis was 

thus restricted to those that did.  Fixation enforcement makes it unlikely that changes in 

variability are indirectly due to saccades.  Additionally, datasets recorded from 

anaesthetized/paralyzed animals showed the same changes in variability.  Finally, it is 

unlikely that changes in the FF, with a latency of ~60 ms, could be indirectly due to 

saccades, which would incur a latency of 80–200 ms61 plus an additional visual delay of 

40–80 ms before firing rates could be affected.  For all analyses, each trial’s data were 

aligned on stimulus onset. 

Most datasets were recorded across multiple days (and for LIP and MT, more than 

one monkey) using single electrodes.  Exceptions were the V1 and PMd datasets.  (The 

following applies to the FF analysis.  See below regarding FA and GPFA.)  The V1 data 

(dataset 565L) were recorded in one day from a 96 channel electrode array 

(Cyberkinetics).  Only single-unit isolations (44) were analyzed.  The PMd dataset was 

recorded using a similar array.  Data were pooled across 5 days to increase trial and 

neuron count (although many units were likely recorded repeatedly).  Single-neuron 
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counts for the datasets used for the FF analysis were: 44 (V1), 49 (V4), 314 (MT plaids), 

82 (MT dots), 43 (LIP), 175 (PRR), 73 (PMd), 116 (OFC), 47 (MT-direction/area), and 

57 (MT-speed).  The mean number of trials/condition was 100 (V1), 24 (V4), 15 (MT 

plaids), 88 (MT dots), 35 (LIP), 10 (PRR), 31 (PMd), 106 (OFC), 125 (MT-

direction/area), and 14 (MT-speed).  The total numbers of ‘neuron-trials’ (number of 

neurons times the number of trials per neuron) were 52,800 (V1), 7063 (V4), 106,007 

(MT plaids), 7179 (MT dots), 8357 (LIP), 14,160 (PRR), 35,953 (PMd), 49,389 (OFC), 

61,343 (MT-direction/area) and 12,797 (MT-speed).  

     FA requires simultaneously recorded data (e.g., array-based recordings from a 

single day).  Simulations similar to that in Supplementary Figure 5 convinced us that 

the V1 and PMd datasets used for the FF analyses had neuron/trial-counts barely 

sufficient to provide FA with sufficient statistical power.  To increase statistical power 

we included multi-unit isolations in the analysis.  We used the two PMd recording days 

with the most (>~50) trials per condition (G20040123 & G20040122).  For V1, we 

employed two datasets (567R and 106R).  Both used the same stimuli as the dataset used 

for the FF (described above) but had higher unit/trial counts.  The first (567R) had only 

20 single-unit isolations, but many multi-unit isolations (102) and more trials/condition 

(200 rather than 100) relative to the dataset used for the FF analysis.  The second dataset 

(106R) had a very large (172) number of primarily multi-unit isolations, and even more 

trials/condition (400).  These datasets were thus well-suited to the FA analysis.  Both 

these datasets exhibited very clear FF declines (Supplementary Fig. 6).  However, the 

decision was made to keep the original FF analysis (Fig. 3) restricted to the single-unit-

only dataset.  While the FF can be reliably computed for multi-unit recordings (the sum 

of independent Poisson-distributed counts is Poisson-distributed), the mean-matching 

procedure is not guaranteed to work.   

 

Fano factor 

 The FF was computed using matlab (The Mathworks) code available at 

(http://www.stanford.edu/~shenoy/GroupCodePacks.htm).  Data for each neuron and 

condition are initially treated separately.  A condition corresponds to multiple trials of the 

same stimulus.  Spike counts were computed in a 50 ms sliding window moving in 10 ms 
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steps.  We then computed the variance (across trials) and mean of the spike count.  Thus, 

the data for neuron1, condition1, time1 were reduced to two numbers: the variance and 

mean of the spike count in a window centered on that time.  For each time, a scatterplot 

of the variance versus the mean was compiled, with one point per neuron/condition 

(typically a few thousand points).  The ‘raw’ FF was the slope of the regression relating 

the variance to the mean.  This regression was weighted according to the estimated 

sampling error for the variance (computed based on the number of trials and the mean 

rate, and assuming Poisson statistics).  The observed effects are not due to the use of a 

short (50 ms) window: effect magnitudes were generally larger with larger windows, at 

the cost of blurred timecourses.   

To compute the ‘mean-matched Fano factor’, we first computed the distribution 

of mean counts (one datum per neuron/condition) for each time being analyzed (grey 

distributions; Fig. 4b).  We then computed the greatest common distribution present at all 

times (black distribution).  Each bin of this common distribution had a height equal to the 

smallest value for that same bin across all distributions at all times.  For each time, we 

then matched the analyzed distribution of mean rates to this common distribution.  This 

was accomplished by discarding, from each bin, randomly chosen datapoints (each 

corresponding to the variance/mean pair for one neuron/condition) until the height of that 

bin matched that of the common distribution.  The FF was then computed.  This 

procedure was repeated 50 times with different random seeds, with a different subset of 

the data preserved on each repetition, and thus a slightly different resulting FF.  The 

reported FF is the mean of these individual FFs. 

This mean-matching method discards less data than might be expected, and far 

less than if we restrict analysis to individual neurons whose rates were not changing for 

particular conditions (as in Fig. 5).  Mean matching preserved 49% (V1), 31% (V4), 71% 

(MT plaids), 32% (MT dots), 48% (LIP), 84% (PRR), 75% (PMd), 86% (OFC), 46% 

(MT-direction/area) and 70% (MT-speed) of the ‘neuron-conditions’.  Prior studies using 

the FF have occasionally presented controls involving informal mean-matching: drawing 

attention to different values of the FF over a similar range of rates11,25,43.  The current 

method removes the need for such additional controls.  Mean-matching also does more 
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than validate the basic effect; it prevents artifacts from corrupting the timecourse 

(Supplementary Fig. 2). 

The statistical significance of the FF decline was assessed by comparing the FF 

100 ms before stimulus onset and 200 ms after (for the MT-direction/area and MT-speed 

datasets, where the FF underwent two declines, we compared the time of motion onset 

with 200 ms after).  Significance was computed based on sampling distributions 

estimated from the 95% confidence intervals yielded by the regression used to compute 

the FF.  The decline was statistically significant in all cases: p<0.001(V1), p<10–5 (V4), 

p<10–10 (MT plaids), p<0.01 (MT dots), p<0.005 (LIP), p<0.002 (PRR), p<10–10 (PMd), 

p<0.02 (OFC), p<10–14 (MT-direction/area), and p<10–7 (MT-speed).   

 

Factor analysis       

 FA was applied to spike counts in a 400 ms window, which either ended at 

stimulus onset (‘Pre-stimulus’) or began 100 ms after stimulus onset (‘Stimulus’).  For 

the 2nd V1 dataset (Fig. 6c), stimulus duration was only 400 ms, so we used a shorter 

(350 ms) window that began 50 ms after stimulus onset.  A data matrix, D, was compiled, 

with Dij being the spike count for the ith trial and the jth neuron.  D included only neurons 

with rates >= 1 spike/s for both periods.   FA was then applied to this matrix (neurons are 

variables, trials are observations).  FA was performed separately on the D matrices 

compiled before and after stimulus onset.  FA was performed separately for each 

condition.  Subsequent results were averaged.  We used code written by Z. Ghahramani27 

to fit the FA parameters using expectation-maximization.  Essentially identical results 

were obtained using matlab’s ‘factoran’.  FA requires an estimate of the dimensionality 

of the latent space capturing shared variability.  To estimate this, we exploited the fact 

that recordings were made for multiple stimulus conditions (14 for PMd, 12 and 8 for the 

two V1 datasets).  We computed the mean (across time and trials) response for each 

condition.  We also included the pre-stimulus period as a condition.  We then applied 

PCA (to the c " n matrix) and asked how many dimensions were necessary to account for 

95% of the across-condition response variance (PCA is acceptable because it is being 

applied to trial-averaged data).  For PMd and V1, 5 and 4 dimensions were required.  

These were then the latent dimensionalities assumed by FA.  These numbers likely 
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underestimate of the true dimensionality of the network response across conditions (our 

stimuli spanned only part of the space of all stimuli).  This underestimate is acceptable: it 

implies that FA will underestimate the drop in the network variance, making our current 

interpretation conservative (Supplementary Fig. 7).  Finally, similar results were 

obtained across a range of reasonable latent dimensionalities (2–8). 

We used FA to estimate the private and shared component of each neuron’s 

variance (that is, we computed but did not analyze the full network covariance matrix).  

This kept each variance associated with a mean rate, and allowed us to apply the mean-

matching procedure used for the FF.  Mean-matching aids interpretation because 1) even 

when rates are rising dramatically, we can ask whether rate variance is changing for a 

given mean rate 2) there is a clear expectation that the estimated private noise should 

change little (assuming effects are not due to private noise), and 3) there is less concern 

that a large increase in private noise (which will occur with rising mean rates) might 

contaminate the network variance estimate.  The percentage of neuron/conditions 

preserved following mean-matching was 31% and 48% (two V1 datasets) and 74% and 

79% (two PMd datasets). 

The ‘estimated variances’ plotted in Figure 6b,c,e,f are the mean network 

(shared) variances, averaged across neurons/conditions, after mean-matching.  

Significance was tested via t-test (n = number of conditions).   

  

Gaussian-process factor analysis 

 GPFA33 was used to extract temporally-smooth single-trial neural trajectories.  

Spike counts were taken in non-overlapping 20 ms bins, then square-rooted.  The square-

root transform62 allows GPFA (which assumes stationary private noise for each neuron) 

to handle what would otherwise be a time-varying scaling of private noise with changing 

rates.  Unlike FA, GPFA was applied simultaneously to data from all timepoints.  It was 

critical that FA was applied separately before and after stimulus onset, to allow it to 

capture any changes in private noise.  For GPFA we require a visualization in which the 

same latent space captures the neural trajectory across time.  Using all timepoints also 

increases the quantity of analyzable data.  The cost is that GPFA, unlike the FA analysis, 

cannot account for changes in private noise with time.  However, such changes are likely 
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modest (Fig. 6b,c,e,f) and are not the focus of the GPFA analysis (which seeks to track 

changes in network state, not private noise).   

 Figures 7 and 8 plot 2-dimensional projections of the higher-dimensional 

trajectories found by GPFA.  For PMd, subsequent analysis quantified ellipsoid volumes 

at different times.  This analysis employed the higher-dimensional latent space.  The 

dimensionality of that space was estimated using cross-validation.  This is reasonable for 

GPFA, relative to FA (where we did not use cross-validation), because of the increase in 

datapoints gained by including different times.  Across the 14 reach targets, each 

analyzed separately, the latent dimensionality ranged from 8 to 12.  It is expected that this 

dimensionality is higher than that for FA, as the latter needed only to account for 

variability at a single time, while GPFA must account for variability across both trials 

and time.  GPFA produced similar results when we used a dimensionality smaller (6) or 

higher (15) than that chosen by cross validation.  Because dimensionality impacts the 

covariance volume, we report that volume per dimension (i.e., volume^(1/k) where k is 

the latent dimensionality;  k was always the same pre- and post-target).   

For PMd, the 2D projections in Figure 7 were chosen to preserve the relative per-

dimensional volumes of the 8–12 dimensional covariance ellipses.  For V1, we simply 

plotted the top two dimensions returned by GPFA, which maximizes the captured 

variability (analogous to the first two principal components).     
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Supplementary figure 1.  Stimulus-driven changes in across-trial variability can be exhibited 

even by simple network architectures.  Details of the simulations are described in the 

supplementary materials below.  a. A simulated two-neuron recurrent network.  The inputs were 

initially zero, and stepped to new values at the indicated time.  The evolution of rates (!) was 

different on each trial, as the network contained noise.  One example trial is shown (saturated 

colored traces).  Light, thicker traces show the mean ! across all trials.  b. Simulated spike-trains 

were produced via an inhomogeneous Poisson process based on each trial’s !2.  25 trials are 

shown.  The FF (blue, bottom) was computed from 10,000 such trials, using a 100 ms sliding 

window (gray shading).  The dashed trace plots the true across-trial variance of !2.  The black 

arrow indicates the step input. 

In the absence of an input, this network has two shallow competing attractors.  It is thus 

unstable given small amounts of noise, but becomes more stable when driven.  As a consequence, 

average rates (thick light-colored traces in a) are initially unrepresentative of singe-trial firing 

rates (colored traces give each neuron’s rate for that trial).  Following the input step, single-trial 

rates hew more closely to their means; across-trial variability is reduced.  That decline depends on 

the attractor dynamics of this example ‘winner-take-all’ network.  A network with different 

dynamics – e.g., integrator dynamics1,2,3 – might produce rising variance.  As in Figure 1a of the 

text, mean rate alone may be inadequately informative.  For example, neuron 2 exhibits only a 

modest mean response (thick blue trace).  This might (mistakenly) suggest weak participation in 

the network computation.  In contrast, the sustained variance decline reveals the involvement of 

both neurons, and correctly suggests attractor dynamics. 
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Supplementary figure 2.  Verification of the mean-matching method for simulated data.  a.  

Illustration of how simulated data was produced.  Each neuron had a mean rate (thick gray trace) 

that underwent a change to a new value at 400 ms (left-hand edge of calibration bar).  On each 

simulated trial (50 in this case), the underlying rate (thin grey traces) differed from the mean.  

Beginning at 400 ms, this rate variance collapsed (with a time constant of 150 ms for this 

simulation).  On each trial, the underlying rate provided the ! for a renewal process that was used 

to produce spikes (rasters).  That process obeyed either Poisson, Poisson-with-refractory, or 

gamma-interval (order 2) spiking statistics.   

 Subsequent panels demonstrate the behavior of the ‘raw’ FF and the mean-matched FF 

under a variety of circumstances.  Gamma-interval spiking statistics provide the sternest test for 

the FF, as they most seriously violate the assumption that the spike-count variance scales linearly 

with the mean.  Thus, to demonstrate the robustness of the method, the simulations in panels b-f 

employ gamma spiking statistics.  Data similar to that in a were produced for 2000 simulated 

neuron-conditions (the equivalent of 20 conditions for 100 neurons).  Each neuron’s mean rate 

underwent a change at 400 ms, with the initial and final mean rates being drawn from uniform 

distributions over the intervals [0 35] and [0 50] spikes/s.  Thus, individual-neuron mean rates 

could either rise or fall, though the overall tendency was towards increasing rates.  Additional 

trial-to-trial variability, of a given magnitude and with a given time-constant, was then added to 

the mean rate (using the procedure that produced the thin grey traces in panel a).  This was done 

independently for each neuron-condition.  b. Application of the method to a simulation with no 

variability in underlying rate (i.e., where the thin gray traces in a were all superimposed on the 

mean).  The mean-matched FF (black, with flanking SEs) correctly reports little change in 

variance.  In contrast, the raw FF (grey) incorrectly reports a small drop, due to the gamma-

interval spiking statistics, which become more regular at higher rates.  The grey trace at top plots 

the ‘measured’ mean rate across all simulated neurons / conditions.  The black trace plots the 

mean rate after applying the mean-matching procedure.  c. Application of the method to a 

simulation with constant variability in the underlying rate (i.e., the thin traces in a never 

converge).  The mean-matched FF correctly reports little change in underlying variance.  The raw 

FF is again plagued by a small artifact.  The red trace plots the true (unchanging in this case) 

timecourse of underlying rate variability.  d-f. Similar plots, but for different time-constants for 

the convergence of the underlying rates.  The mean-matched FF approximately captures the true 

(red) timecourse.  The raw FF performs reasonably well, but tends – due to the rising rates and 

gamma-interval spiking statistics – to overestimate the steepness of the initial drop.  In summary, 



even when the Poisson assumption is violated, the mean-matched FF avoids artifacts that impact 

the raw FF (this was also true when we used an absolute refractory period, rather than gamma 

spiking statistics).  This allows the mean-matched FF to accurately capture underlying changes 

(or lack thereof) in rate variance. 

Panels g-i present an exploration of how the FF is affected by trial count.  For these 

simulations, there was no variability in the underlying rate, and spiking statistics were Poisson.  If 

well behaved, the FF should thus remain near unity for all times.  As above, firing rates changed 

at 400 ms, and 2000 ‘neuron-conditions’ were employed, with a range of initial and final mean 

firing rates.  g.  Initial and final mean-rate distributions (across neuron-conditions) were drawn 

from the intervals [0 15] and [0 35].  We simulated 50 trials per neuron-condition.  h. Same as g 

but with 5 trials per neuron-condition.  i. Same as h but with a lower initial range of rates, [0 5].  

Inspection of panels g-i reveals that neither the FF (gray) nor the mean-matched FF 

(black) is biased by a low trial count, or by a low initial range of rates.  In particular, the FF is not 

biased upwards for low rates / trial counts.  One might have expected this, as the denominator 

will often be near zero, but in those cases the numerator is similarly small.  That said, when both 

trial counts and spike rates are very low, mean-matching is not guaranteed to completely 

eliminate artifacts due to non-Poisson spiking.  Estimates of the mean are then poor, and mean-

matching becomes only approximate.  In this case, the mean-matched FF will show smaller 

artifactual changes than will the raw FF, but it may not behave perfectly.  For example, for 

gamma order-2 spiking, with low initial rates (0-5 spikes/s) and low trial counts (5), the raw FF 

will of course decline sharply with rising rates, and the mean-matched FF can actually show a 

slight rise.  However, we have never seen this pattern in real data, and all the datasets we 

analyzed had an average of at least 10 trials per condition, and often 100 (V1) or more (the V1 

datasets used for FA, the FF for which is plotted in Supplementary figure 6).            
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Supplementary figure 3.  An additional analysis to determine whether the decline in the Fano 

factor (FF) is due to declining firing rate variability, or to spiking statistics that become more 

regular.  This analysis complements the mean-matching method.  Mean-matching controls for 

changes in spiking statistics that are due to changing rates (e.g., the impact of a refractory period) 

but not for spiking statistics that might change for some other reason (e.g., perhaps spiking 

statistics change from Poisson to fourth-order gamma-interval due to some change in the nature 

of the synaptic input). 

To investigate this possibility, The FF was normalized by the square of the coefficient of 

variation (CV2) of the inter-spike intervals.  The FF/CV2 was computed using the method of 

Nawrot et al.4  That approach is based on the equality FF = CV2, which holds for any stationary 

renewal process in the limit of long windows.  Thus, a change in underlying spiking statistics 

(e.g., from Poisson to gamma-interval) may cause the FF to decline, but will not impact the 

FF/CV2 (both the numerator and denominator will decline similarly).  However, a decline in 

across-trial rate variability will be captured by the FF/CV2: the FF will decline much more than 

the CV2.  A hurdle to applying this method is that mean firing rates are typically very non-

stationary, at which point the above equality does not hold.  To overcome this, time is rescaled 

(separately for each neuron and condition) to produce a stationary mean rate.  The FF and CV2 

are then computed.  To account for underlying rates that may not always equal the mean, the CV2 

is computed on individual trials and then averaged.  After computing the FF/CV2, time is scaled 

back before averaging across neurons and conditions.   

 Panels a,b plot the results of this analysis using a 250 ms window  (250 ms of rescaled 

time, which can be more or less than 250 ms of actual time, depending on whether rates are low 

or high, respectively).  Arrows indicate stimulus onset.  The FF and CV2 are plotted individually 

at the top of each panel.  Their ratio is plotted with flanking standard errors.  The 250 ms window 

is longer than that used in other analyses (e.g., Figure 3).  A longer window is needed for the 

current analysis for two reasons.  First because the FF = CV2 equality holds only for long 

windows and second, to insure there are enough spikes within the window for the CV of the inter-

spike intervals to be estimated.  Also to this end, analysis was restricted to neurons/conditions 

where the mean number of spikes in the 250 ms analysis window was at least 4.  We further 

restricted the analysis to neurons where there was an average of at least 4 spikes during the pre-

target period.  Following this restriction, the median number of spikes/window was 9 (MT) and 5 

(PMd).  Panels c,d plot the same analysis, based on the same datasets, but using a 450 ms 

window.  We enforced a minimum mean number of spikes per window of 10 (MT) and 7 (PMd).  

The median number of spikes/window was 27 (MT) and 8.5 (PMd). 



For all the above analyses, the FF/CV2 fell following stimulus onset.  This decline was 

the result of a strongly declining FF, normalized by a CV2 that was both low and fairly constant 

(consistent with Figure 11d of Nawrot et al. 20084).  This confirms that the change in the FF is 

due to a change in across-trial underlying-rate variability, and not a change in the statistics of 

private spiking noise.  Had spiking statistics transitioned from irregular to regular, the CV2 of the 

inter-spike intervals would have undergone a large decline from an initially high value 

(paralleling the decline seen for the FF).  In that case the FF/CV2 ratio would have remained fairly 

constant.  Instead the CV2 is near or even slightly below unity (indicating spiking statistics 

slightly more regular than Poisson) at all times.  Note that the FF decline is much larger than in 

the analyses elsewhere in the study, a result of using a longer window (250 or 450 ms, versus 50 

ms in Figure 3).  This occurs because the impact of across-trial rate variability on the FF is 

strongly window dependent.   

Using the FF/CV2 method, the decline in variability is somewhat smeared in time 

(especially in c and d).  This is due to the necessity of a large analysis window.  Furthermore, 

given the need for time rescaling, the true size of the window varies (across time, neurons, and 

conditions) depending on the underlying rate.
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Supplementary figure 4.  Timecourse of the recovery of the FF following stimulus offset.  This 

analysis could not be performed for all datasets, as it was common for data collection to cease 

following stimulus offset, or for behavioral control to be poor at that time (e.g., the animal may 

have made its response and be consuming its reward with no fixation requirements).  This 

analysis is thus restricted to the V1 dataset from Figure 6c, and the MT-speed dataset (Figure 3, 

bottom).  Both these datasets involved anaesthetized preparations.  For improved statistical 

power, a 100 ms window is used (the decline/recovery is not noticeably sharper with a 50 ms 

window).  a. Recovery of the FF in V1 following stimulus offset.  b. Recovery of the FF in MT 

following the offset of motion.  Note that for this dataset there are three key events: the onset of a 

static stimulus, the onset of motion, and the cessation of motion.  Offset of the static stimulus 

occurred after the end of the record. 
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Supplementary figure 5.  To illustrate the application of FA, we apply it to simulated data.  a. 

Two-dimensional rate trajectories for three simulated trials from the simple artificial network 

shown in Supplementary figure 1b.  Traces are grey for a 400 ms transition time following 

stimulus onset.  For 10,000 simulated trials, we computed the mean state in a 200 ms window, 

both before (Pre) and after (Post) the onset of the input.  Red ellipses plot the covariance across 

these measurements.  The variance decline is now evident as a decline in covariance-ellipse area 

from pre-input to post-input.  Unfortunately, in practice one measures not these underlying-rate 

covariances, but single-trial spike counts, simulated below by draws from Poisson distributions 

with rates !1 and !2.  Panel b plots the resulting single-trial estimates of spike rate (grey) and 

their covariance ellipses (dashed orange).  These ‘measurements’ are dominated by the Poisson 

spiking-process noise.  (Note that the fixed 200 ms measurement window produces discrete 

values.  For presentation, ‘jitter’ has thus been added to make clear where density is highest.)  Yet 

despite measurement noise, the underlying structure is recoverable (blue ellipses, see below), 

provided many trials and neurons.  We simulated 10,000 trials for 60 neurons, 30 each with rates 

!1 and !2.  We then used FA (panel c) to decompose the measured covariance into a network and 

private components.  The resulting network covariance ellipses (blue, panel b) accurately reflect 

the true underlying-rate covariance (red ellipses in panel a), despite non-Gaussian underlying 

data and spiking-process noise.  Estimating the blue network covariance ellipses required 

abundant data, but even modestly-sized datasets allow FA to estimate the network variances of 

individual neurons (blue diagonal in c).  To illustrate this, panel d plots the mean network 

variance across 200 trials for the 30 simulated units with rate !2.  FA accurately reports declining 

network (shared rate) variability, with little change in private spiking-process noise.  The full 

network covariance matrix was computed, but we subsequently averaged variances only for units 

with little change in mean rate (those with rate !2, whose mean changes little, see panel a and 

Supplementary figure 1b).  This aids interpretation; were mean rates not stabilized, spiking-

process noise would scale with rate.  We similarly restricted neural analysis in Figure 6 b–g to 

matched distributions of mean rates across time (much as was done for the FF). 



!"##$%&%'()*+,-./"*%,0
1(2%,33,-4*,(2%,&"$(.5"'.(,)**)+,*%64*7.'/!8

9:7

;<<,&!
=>?

;>?

@

=A

B=

:%)',*)(%

3)
'4
,-)
6(
4*

C
#D
!

;<<,&!
=>=

=>A

3)
'4
,-)
6(
4*

;

;A

C
#D
!

;<<,&!

<>EA

=>=A

=<

=0

;<<,&!

<>EA

=>=A

E

=0

&)(62%7,&%)',*)(%

) 6

7F



Supplementary figure 6.  The FF (computed using the mean-matching method) for the V1 and 

PMd datasets that were used for FA (V1: 567R and 106R; PMd: G20040123 & G20040122).  

Panels a,b,c,d plot the FF for the same datasets used in Figure 6b,c,e,f (respectively) of the main 

text.  Format is similar to that of Figure 3 in the main text.  However, these datasets (unlike those 

in Figure 3) contained multi-unit isolations (see methods).  Nevertheless, similar drops in the FF 

were seen.  Also note that the changes in the FF (black with flanking SEs) do not always mirror 

those in the mean rate (grey).  For example, in panel a the FF decline is immediate while the 

mean rate ramps up in two successive steps.  In panel d, the FF initially declines as the mean rate 

is rising.  The FF then continues declining although the mean rate is by then falling. 
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 Supplementary figure 7.  Exploration of when FA might mis-assign variance from one source 

(e.g., network-level rate variance) to the other (e.g., private spiking noise).  This can happen if the 

specified dimensionality (rank) of the network covariance matrix is too low or too high.  In the 

former case, some network variability will be mis-assigned as private.  Thus, a decline in network 

variability will ‘leak’ into private noise.  This possibility is of minor concern, as it would imply 

that our results slightly underestimate the true effect.  This possibility is explored in a (see 

below).  Alternately, if the rank is too high, some private noise will be mis-assigned as network 

variance.  A decline in spiking-process variability (e.g., a change from Poisson to gamma-interval 

spiking statistic) could then appear as a decline in network variance.  This artifact is of potential 

concern, as our interpretation is that the observed variance decline has a network source and is 

not principally due to more a regular spiking-process.  It is perfectly acceptable if there is a real 

drop is spiking-process variability.  However, if spiking-process variability were ‘leaking’ 

heavily into network variability, this would make interpretation difficult.  A large leak is unlikely 

a priori: the changes in network variance seen in Figure 6 (of the main text) are larger than the 

changes in private noise, and remained so when we tested a range of dimensionalities (2-8, effects 

only become stronger for higher dimensionalities).  This is inconsistent with the primary effect 

being a change in private noise.  A further control is presented below (panels b-e).   

Panel a. Dark traces are the same as in Supplementary figure 5d.  Light traces plot the 

results of FA if the underlying network state had a higher dimensionality (6) but FA was still run 

assuming a dimensionality of 2.  This was accomplished using a simulation in which three 2-

neuron networks evolved independently.  This produced data that spanned 6 dimensions.  The key 

point is that when FA is run assuming a dimensionality that is too low, the algorithm has no 

choice but to assign some unexplained variance to private noise.  Private noise is initially inflated, 

and then appears to decline.  Such artifacts are possible because FA requires that we specify in 

advance the rank of the network covariance matrix (i.e., the dimensionality of the latent space, 

analogous to the number of principal components).  Often there is no certain way to do so, 

especially as cross-validation techniques will underestimate the true network dimensionality 

unless the dataset is very large.  We attempted to estimate the network dimensionality by 

assessing the dimensionality spanned by the mean population response across stimulus conditions 

(this yielded 4 and 5 dimensions for V1 and PMd, see methods).  Yet given that not all possible 

stimuli were tested, this approach may also underestimate the true dimensionality spanned by the 

network state.  Thus, the small decline in private spiking noise for the neural data, seen in Figure 

6b,c,e,f, may result from an artifact similar to that shown in this panel.  For finite data, this issue 

is difficult to resolve.  Note, however, that this makes the central result conservative: the true 



decline in network variance is likely larger than what is measured, on the assumption that we 

have underestimated the true dimensionality of the network space.   

Panels b-e.  Control for the converse concern to that addressed above.  Might private 

noise ‘leak’ into the network variance, especially if we assumed too high a dimensionality for FA.  

Analysis was the same as for Figure 6b,c,e,f of the main text.  However, analysis was applied to 

trial-shuffled data, so that there was no real covariance among neurons, only private noise.  This 

was done by taking the data matrix, D (for which each column corresponds to one neuron, and 

each row to one trial), and for each column reassigning the rows randomly.  This eliminates all 

correlation between neurons (i.e., all network variance) except that occurring by chance.  FA 

correctly assigns the majority of the variance, and the majority of the drop in variance, to private 

noise (black traces undergo the largest drops), with only a small ‘leak’ into the network variance.  

This occurs despite the fact that FA assumed the original latent dimensionalities (see methods), 

whereas the true dimensionality of the shared network variance was actually zero due to 

shuffling. 
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Supplementary figure 8.  Comparison of reaction-time outliers with ‘neural trajectory’ outliers.  

For the first PMd dataset (dataset G20040123) 5 trials had outlier RTs > 500 ms.  Here we ask if 

those trials also had unusual neural trajectories, as in Figure 7b of the main text (where the red 

trial was one of the 5 outliers).  The 5 outliers were spread across 3 targets.  We applied GPFA to 

the recordings for each of these targets, and computed the mean neural trajectory during the 400 

ms after the go cue.  We then calculated the average distance, in neural space, of each trial’s 

trajectory from the mean trajectory.  a. A histogram of these values.  b. A histogram of RTs.  The 

5 trials that were flagged as outliers based on their RTs are colored red in both plots.  It was 

indeed the case that the RT outliers were also outliers in terms of their neural trajectories.  c,d, 

same analysis but for a different day’s dataset (G20040122, same as in Figure 7c).  For this 

dataset there were three RT outliers (red), spread across three targets.  These were also outliers in 

neural space.  



  

Supplementary note 1.  For both PMd and V1 (the datasets where FA could be applied), we 

found that the ‘network’ state after stimulus onset tended to correlate with the network state pre-

stimulus.  This was assessed, after applying FA, and finding the network state on each trial.  Note 

that this is different from what was done in Figure 6 of the main text, where FA was used solely 

to estimate the network covariance matrix.  Here we are using FA to find the network state on 

each trial (analogous to using PCA, and finding each trial’s projection onto the first few PCs).  

Each trial’s datum becomes a point in a 5 (V1) or 4 (PMd) dimensional latent space.  On each 

trial, there is then one location (in one latent space) pre-stimulus, and another location (in a 

different latent space) during the stimulus.  We regressed the network state found during the 

stimulus against the pre-stimulus state.  For each stimulus-epoch dimension, data were regressed 

against all dimensions of pre-stimulus data.  For example, for V1 this led to 60 total comparisons 

(5 stimulus-epoch dimensions, 12 conditions).  Of 60 and 36 comparisons, 32% (V1) and 39% 

(PMd) showed a significant (p<0.05) correlation. 

 

 



Supplementary note 2.  A fundamental question, largely unaddressed in this study, is the source 

and meaning of the variability that is present before target onset.  On the one hand, such 

variability could be produced by local circuitry, which might be less stable when not driven.  For 

example, circuitry related to gain control5, involving lateral inhibition, might be less stable when 

un-driven, much like the network in Supplementary figure 1b.  A related hypothesis is that the 

decline in variability is related to the recruitment of shunting inhibition, and there is indeed good 

evidence for this in V16. 

A second possibility is that variability arises due to a lack of ‘internal’ behavioral control 

during the pre-stimulus period.  Even if external behavior (hand and eye position) is perfectly 

controlled during the baseline, the monkey’s attention and ‘thoughts’ certainly are not.  

Variability in cognitive factors might be expected to be high during the baseline, and then be 

reduced following stimulus onset.  In this view, variability is produced not by local circuitry, but 

by broader circuits involving attention or other cognitive phenomena. 

In support of the local-circuitry hypothesis, the decline in variability is readily apparent in 

all the datasets from anaesthetized animals (all V1 datasets and the two MT datasets used for the 

FF).  In support of the cognitive hypothesis, we have previously found that the decline in neural 

variability is predictive of reaction time, being faster for trials with shorter reaction times7.  This 

suggests that the trials where motor preparatory becomes accurate most rapidly are also the trials 

where the neural state becomes consistent most rapidly.  In summary, it is still quite unclear 

which explanation is correct, and it is quite plausible that both are at play. 

 



Supplementary note 3.  The central result of this study is that there is considerable trial-to-trial 

variability present before stimulus onset, and that this variability is diminished by stimulus onset.  

What is the timescale of this variability?  In particular, for anaesthetized animals, is the variability 

related to slow drift in anesthesia?  A slow drift in excitability would certainly create across-trial 

firing-rate variability.  However, it isn’t clear that an increase from this source would be limited 

to the pre-stimulus period; it would likely increase variability at all times.  Still once can imagine 

scenarios in which this might occur.  Thus, to examine whether slow drift could be a partial 

source of our effect, we recomputed the FF for the V1 data (from Figure 3), after splitting the 100 

trials/condition into 10-trial sets.  Thus, variability was being computed across a smaller set of 

trials, presented close to one another in time.  This did indeed result in slightly lower variability 

overall.  However, the stimulus-driven decline in variability was undiminished; the effect looked 

essentially identical to the original effect.  Virtually identical results were also obtained if we 

computed variability across subsets of 5 trials each.  Thus, while some slow drift is present 

(variability is slightly lower overall when computed locally) this appears to have little to do with 

the stimulus-driven decline in variability.



Supplementary video 1.  A movie version of Figure 7a.  Data are from PMd, and show the 

decline in across-trial variance after the onset of the stimulus (a reach target).  The movie spans 

750 ms, beginning 400 ms before stimulus onset and ending 350 ms after.  The movie ends before 

the go cue is given.  Each black dot shows the state of PMd on one trial.  Fifteen randomly-

chosen trials are shown.  Dots turn blue for a brief moment at the time of stimulus onset.   Note 

the subsequent drop in the variance of the dot locations (i.e., a drop in firing-rate variance).  This 

feature of the response is at least as clear as the change in mean dot location (i.e., the change in 

mean firing rates).  G20040123 dataset. 

 

Supplementary video 2.  Same as Supplementary video 1, but more time is shown and the 

trajectory of the RT-outlier trial is now included (red).  The movie spans ~1500 ms.  This time-

span differs slightly across trials, as they have different go-cue and movement-onset times.  At 

the time of the go cue, each dot turns green and further progress is halted.  Progress resumes once 

all trials have passed the time of their respective go cues.  This re-aligns the data to the go cue, 

much as is commonly done in PSTH’s.  Traces end at movement onset.  

 

Supplementary video 3.  Same as Supplementary video 1, but for the G20040122 PMd dataset 

(that shown in Figure 7c). 

 

Supplementary video 4. Supplementary video 2, but for the G20040122 PMd dataset (that shown 

in Figure 7c).    



 
Simulations 

The simulation (Supplementary figure 1 and Supplementary figure 5a,b) employed two 

units with activities that varied continuously from zero to one.  This network is merely meant to 

be illustrative: its details are not intended to model any real network.  The network’s two units 

form a winner-take-all network.  When receiving balanced inputs (initially zero) the network is 

unstable and intrinsic noise has a large effect on the network state.  When driven with an 

unbalanced input, the network settles to a state where one unit is more active.  In doing so, the 

network becomes more stable.  Network activity evolved according to,  

" d s(t) / dt = -s(t) + f( Ws(t) + b + d(t) + q(t) ) ,   

where " = 35 ms, W is a 2x2 anti-diagonal matrix with both entries = -0.7, b is a two-

dimensional bias vector with both entries = 0.7, d(t) is a two-dimensional input vector, and q(t) is 

two-dimensional Gaussian noise of standard deviation 0.22, independent at each time and for 

each neuron.  At the time of stimulus onset, d(t) stepped from [0 0] to [0.42 0.355].  f(x) is a 

sigmoidal transfer function: f(x) = (!/2 + atan(20*(x-0.5)))/!.  The zero to one range of s(t) was 

mapped to a ! from zero to 60 spikes/s.  These firing rates were converted to ‘recorded’ spike 

trains via an inhomogeneous Poisson process with rate !.   

To compute the red ellipses in Supplementary figure 5a, the mean ! on each trial was 

computed in a 200 ms measurement window which either ended at stimulus onset (Pre) or began 

400 ms after stimulus onset (Post), by which point network ‘settling’ had largely finished.  For 

Supplementary figure 5b, the spike count on each of 10,000 trials was drawn from a Poisson 

distribution, with mean equal to the ! on that trial (averaged over the measurement window) 

times the length of the measurement window.  The spike count was transformed back to a rate for 

plotting purposes. 

When applying Factor analysis (FA) to the simulated data, we simulated recordings from 

a 60 unit network in which half the units shared the underlying rate of neuron 1 and half shared 

the underlying rate of neuron 2.  Thus, the underlying network-level variance was strongly 

correlated across units (perfectly within a type).  Measured rates were computed using draws 

from a Poisson distribution that were independent for each unit.  This emulates the very weak 

spike-spike correlations typically observed for pairs of cortical neurons.  FA was applied to data 

for all simulated units.  Supplementary figure 5d then restricts subsequent analysis to the neuron-

2-like class. 
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