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Abstract
Point processes are difficult to analyze because
they provide only a sparse and noisy observa-
tion of the intensity function driving the process.
Gaussian Processes offer an attractive framework
within which to infer underlying intensity func-
tions. The result of this inference is a continu-
ous function defined across time that is typically
more amenable to analytical efforts. However, a
naive implementation will become computation-
ally infeasible in any problem of reasonable size,
both in memory and run time requirements. We
demonstrate problem specific methods for a class
of renewal processes that eliminate the memory
burden and reduce the solve time by orders of
magnitude.

1. Introduction
Point processes with temporally or spatially varying inten-
sity functions arise naturally in many fields of study. When
the intensity function is itself a random process (often a
Gaussian Process), the process is called a doubly-stochastic
or Cox point process. Application domains including eco-
nomics and finance (e.g. Basu & Dassios, 2002), neu-
roscience (e.g. Cunningham et al., 2008), ecology (e.g.
Moller et al., 1998), and others.

Given observed point process data, one can use a Gaussian
Process (GP) framework to infer an optimal estimate of the
underlying intensity. In this paper we consider GP prior
intensity functions coupled with point process observation
models. The problem of intensity estimation then becomes
a modification of GP regression and inherits the computa-
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tional complexity inherent in GP methods (e.g. Rasmussen
& Williams, 2006). The data size n will grow with the
length (e.g. total time) of the point process. Naive methods
will be O(n2) in memory requirements (storing Hessian
matrices) andO(n3) in run time (matrix inversions and de-
terminants). At one thousand data points (such as one sec-
ond of millisecond-resolution data), a naive solution to this
problem is already quite burdensome on a common work-
station. At ten thousand or more, this problem is for all
practical purposes intractable.

While applications of doubly-stochastic point processes are
numerous, there is little work proposing solutions to the
serious computational issues inherent in these methods.
Thus, the development of efficient methods for intensity es-
timation would be of broad appeal. In this paper, we do not
address the appropriateness of doubly-stochastic point pro-
cess models for particular applications, but rather we focus
on the significant steps required to make such modelling
computationally tractable. We build on previous work from
both GP regression and large-scale optimization to create
a considerably faster and less memory intensive algorithm
for doubly-stochastic point-process intensity estimation.

As part of the GP intensity estimation problem we optimize
model hyperparameters using a Laplace approximation to
the marginal likelihood or evidence. This requires an iter-
ative approach which divides into two major parts. First,
at each iteration we must find a modal (MAP) estimate of
the intensity function. Second, we must calculate the ap-
proximate model evidence and its gradients with respect to
GP hyperparameters. Both aspects of this problem present
computational and memory problems. We develop meth-
ods to reduce the costs of both drastically.

We show that for certain classes of renewal process ob-
servation models, MAP estimation may be framed as a
tractable convex program. To ensure nonnegativity in the
intensity function we use a log barrier Newton method
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(Boyd & Vandenberghe, 2004), which we solve efficiently
by deriving decompositions of matrices with known struc-
ture. By exploiting a recursion embedded in the algorithm,
we avoid many costly matrix inversions. We combine these
advances with large scale optimization techniques, such as
conjugate gradients (CG, as used by Gibbs & MacKay,
1997) and fast fourier transform (FFT) matrix multiplica-
tion methods.

To evaluate the model evidence, as well as its gradients
with respect to hyperparameters, we again exploit the struc-
ture imposed by the renewal process framework to find an
exact but considerably less burdensome representation. We
then show that a further approximation loses little in accu-
racy, but makes the cost of this computation insignificant.

Combining these advances, we are able to reduce a prob-
lem that is effectively computationally infeasible to a prob-
lem with minimal memory load and very fast solution time.
O(n2) memory requirements are eliminated, and O(n3)
computation is reduced to modestly superlinear.

2. Problem Overview
Define x ∈ IR

n to be the intensity function (the high dimen-
sional signal of interest); x is indexed by input1 time points
t ∈ IR

n. Let the observed data y = {y0, . . ., yN} ∈ IR
N+1

be a set of N + 1 time indices into the vector x; that is, the
ith point event occurs at time yi, and the intensity at that
time is xyi

. Denote all hyperparameters by θ. In general,
the prior and observation models are both functions of θ.
The GP framework implies a normal prior on the intensity
p(x | θ) = N (µ1,Σ), where the nonzero mean is a sen-
sible choice because the intensity function is constrained
to be nonnegative. Thus we treat µ as a hyperparameter
(µ ∈ θ). The positive definite covariance matrix Σ (also a
function of θ) is defined by an appropriate kernel such as
a squared exponential or Ornstein-Uhlenbeck kernel (see
Rasmussen & Williams, 2006, for a discussion of GP ker-
nels). The point-process observation model gives the like-
lihood p(y | x, θ). In this work, we consider renewal pro-
cesses (i.e. one-dimensional point processes with indepen-
dent event interarrival times), a family of point processes
that has both been well-studied theoretically and applied in
many domains (Daley & Vere-Jones, 2002).

The GP prior is log concave in x, and the nonnegativity
constraint on intensity (x � 0) is convex (constraining x
to be nonnegative is equivalent to solving an unconstrained
problem where the prior on the vector x is a truncated mul-
tivariate normal distribution, but this is not the same as

1In this work we restrict ourselves to a single input dimen-
sion (which we call time), as it aligns with the family of renewal
processes in one-dimension. Some ideas here can be extended to
multiple dimensions (e.g. if using a spatial Poisson process).

truncating the GP prior in the continuous, infinite dimen-
sional function space; see Horrace, 2005). Thus, if the ob-
servation model is also log concave in x, the MAP estimate
x∗ is unique and can be readily found using a log barrier
Newton method (Boyd & Vandenberghe, 2004; Paninski,
2004). Renewal processes are simply defined by their in-
terarrival distribution fz(z). A common construction for
a renewal process with an inhomogeneous underlying in-
tensity is to use the intensity rescaling m(ti | ti−1) =
∫ ti

ti−1

x(u)du (in practice, a discretized sum of x) (Barbieri
et al., 2001; Daley & Vere-Jones, 2002). Accordingly, the
density for an observation of event times y can be defined

p(y) =

N
∏

i=1

p(yi | yi−1)

=
N
∏

i=1

|m′(yi | yi−1)| fz(m(yi | yi−1)) (1)

by a change of variables for the interarrival distribution
(Papoulis & Pillai, 2002). Since m(t) is a linear trans-
formation of the intensity function (our variables of inter-
est), the observation model obeys log concavity as long as
the distribution primitive fz(z) is log concave. Examples
of suitable renewal processes include the inhomogeneous
Poisson, gamma interval, Weibull interval, inverse Gaus-
sian (Wald) interval, Rayleigh interval, and other processes
(Papoulis & Pillai, 2002). For this paper, we choose one
of these distributions and focus on its details. However, for
processes of the form above, the implementation details are
identical up to the forms of the actual distributions.

To solve the GP intensity estimation, we first find a MAP
estimate x∗ given fixed hyperparameters θ, and then we ap-
proximate the model evidence p(y | θ) (for which we need
x∗) and its gradients in θ. Iterating these two steps, we can
find the optimal model θ̂ (we do not integrate over hyper-
parameters). Finally, MAP estimation under these optimal
hyperparameters θ̂ gives an optimal estimate of the under-
lying intensity. This iterative solution for θ̂ can be written:

θ̂ = argmax
θ

p(θ)p(y | θ) (2)

≈ argmax
θ

p(θ)p(y | x∗, θ)p(x∗ | θ)
(2π)

n

2

|Λ∗ + Σ−1|
1

2

,

where the last term is a Laplace approximation to the in-
tractable form of p(y | θ), x∗ is the mode of p(y | x)p(x)
(MAP estimate), and Λ∗ = −∇2

x
log p(y | x, θ) |x=x∗ .

The log concavity of our problem in x supports the choice
of a Laplace approximation. Each of the two major steps
in this algorithm (MAP estimation and model selection) in-
volves computational and memory challenges. We address
these challenges in Sections 4 and 5.
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The computational problems inherent in GP methods have
been well studied, and much progress has been made
in sparsification (e.g. Quinonero-Candela & Rasmussen,
2005). Unfortunately, these methods do not apply directly
to point process estimation, as there are no distinct training
and test sets. The reader might wonder if a coarser grid
would be adequate, thereby obviating the detailed meth-
ods developed here. We have found in experiments (not
shown) that the sacrifice in accuracy required to allow rea-
sonable computational tractability is large, and thus we do
not consider the coarse grid a viable option. One could also
consider re-expressing the problem in terms of the integrals
m(yi | yi−1) appearing in Eq. 1. While this is possible in
certain cases, it requires additional approximation. Finally,
we note that the Laplace approximation is often inferior to
Expectation Propagation (EP) (Kuss & Rasmussen, 2005)
for GP methods. While many of the same techniques used
here could also be used with EP, EP requires additional ap-
proximations and computational overhead. We find in ex-
periments (not shown) that EP yields similar accuracy to
the Laplace approximation in this domain, but EP incurs
increased complexity and computational load.

3. Model Construction
To demonstrate our fast method, we choose the specific ob-
servation model of an inhomogeneous gamma interval pro-
cess (Barbieri et al., 2001) (with hyperparameter γ ∈ θ,
γ ≥ 1). If time has been discretized with precision ∆, this
can be written

p(y | x, θ) =

N
∏

i=1

[

γxyi

Γ(γ)

(

γ

yi−1
∑

k=yi−1

xk∆

)γ−1

· exp

{

−γ

yi−1
∑

k=yi−1

xk∆

}]

, (3)

(where we have ignored terms that scale with ∆). Let
f(x) = − log p(y | x, θ)p(x | θ). Our MAP estima-
tion problem is to minimize f(x) subject to the constraint
x � 0 (nonnegativity). In the log barrier method, we con-
sider the above problem as a sequence of convex problems
where we seek to minimize, at increasing values of τ , the
(unconstrained) objective function

fτ (x) = f(x)−
n
∑

k=1

(1

τ

)

log (xk) (4)

which has Hessian (positive definite by our log concave
construction):

H = ∇2
x
fτ (x) = Σ−1 + Λ, where Λ = B + D, (5)

with D = diag(x−2
y0

, . . ., 0, . . ., x−2
yi

, . . ., 0. . ., x−2
yN

) +

( 1
τ
)diag(x−2

1 , . . ., x−2
n ) being positive definite and diago-

nal. B is block diagonal with N blocks B̂i:

B̂i = bib
T
i where bi =

√

(γ − 1)

( yi−1
∑

k=yi−1

xk

)

−1

1. (6)

B is thus block rank 1 (with the positive eigenvalue in each
block corresponding to the eigenvector bi). This matrix is
key, as we exploit its structure to achieve improvements in
computational performance.

4. MAP Estimation Problem
As outlined in Section 2, we first find the MAP estimate x∗

for any model defined by hyperparameters θ. The log bar-
rier method has the intensive requirements of calculating
the objective Eq. 4, its gradient g (in x), and the Newton
step xnt = −H−1g. Each of these calculations is O(n3)
in run time and O(n2) in memory. We show an approach
that alleviates these burdens.

4.1. Finding the Newton Step xnt

First we consider the Hessian, H = Σ−1 + Λ, which itself
contains the costly inverse Σ−1. We would like to avoid
this inversion of Σ entirely with the matrix inversion lemma
(Sherman-Woodbury-Morrison formula):

−H−1 = −(Σ−1 + Λ)−1

= −Σ + ΣR(I + RT ΣR)−1RT Σ (7)

where R is any valid factorization such that RRT = Λ.
This decomposition preserves symmetry in the remaining
matrix inverse (required for CG) and has advantageous nu-
merical properties. With this form, instead of calculating
xnt = −H−1g directly, we need only multiply the right-
most expression in Eq. 7 with the gradient g. Doing so
requires the inversion (I +RT ΣR)−1v where v = RT Σg.
CG allows us to avoid directly calculating matrix inverses
and instead achieve the desired inversion by iteratively
multiplying (I + RT ΣR)z for different vectors z (Gibbs
& MacKay, 1997).

It is common to precondition the CG method to reduce
the number of iterations required for convergence. How-
ever, our experience with preconditioning (using both clas-
sic preconditioners and some of our own design) was that
it actually degraded run-time performance. Precondition-
ers typically aim to improve the condition number of the
Hessian, which indeed they do in this problem. However,
the rapidity of CG convergence here is facilitated more by
spectral concentration – many eigenvalues being equal or
close to 1 – than by overall conditioning. Thus, we found it
more effective to use CG inversion directly on (I+RT ΣR).
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In general, however, finding the decomposition Λ = RRT

is an O(n3) operation, which would remove any computa-
tional benefit from this approach. For log concave renewal
processes, we can derive a valid decomposition in closed
form and linear computation time. Since Λ is block diago-
nal, we consider only one block without loss of generality.
Calling this block Λ̂, we know Λ̂ = bbT + D̂, where D̂ is a
diagonal block of the larger diagonal matrix D, and b is de-
fined in Eq. 6. D̂ is positive definite, so T = D̂−

1

2 satisfies
TD̂T = I (a similarity transform). Then, calling b̃ = Tb,
we have T Λ̂T = b̃b̃T + I . With this form, we see that the
general structure of T Λ̂T is preserved under the desired
matrix decomposition, up to scaling of the components:

(αb̃b̃T + I)(αb̃b̃T + I)T = (α2‖b̃‖2 + 2α)b̃b̃T + I (8)

and we want to choose α such that (Eq. 8) equals b̃b̃T + I .
Using the quadratic formula to find this α, we see then that

R̃ =

(

√

1 + ‖b̃‖2 − 1

‖b̃‖2

)

b̃b̃T + I (9)

satisfies T Λ̂T = R̃R̃T . Since T is diagonal, it easily in-
verts to T−1 = D̂

1

2 . Then:

Λ̂ = T−1R̃R̃T T−1 = (T−1R̃)(T−1R̃)T = R̂R̂T . (10)

To be explicit, we have found that

R̂ =

(

√

1 + ‖D̂−
1

2 b‖2 − 1

‖D̂−
1

2 b‖2

)

bbT D̂−
1

2 + D̂
1

2 (11)

is a valid decomposition R̂R̂T = Λ̂. This decomposition
can be seen as a partial rank-one (blockwise) update to a
Cholesky factorization (Gill et al., 1974), in that D̂ can triv-
ially be factorized to D̂

1

2 . The final form is not, however, a
Cholesky factorization, since R̂ is not triangular (making a
triangular factor would require additional computation and
the explicit representation of the Cholesky matrix).

Since all of the products needed to construct R̂ can be
formed in O(m) time (where m is the size of the block),
and since the larger matrix R can be formed by tiling the
blocks R̂, we have a total complexity for this decomposi-
tion of O(n). We can then use CG to find the solution to
(I + RT ΣR)−1(RT Σg). With this inversion calculated,
we can perform the remaining forward multiplications in
Eq. 7; this completes calculation of a Newton step.

In fact, we need not form the matrix R in memory. Instead,
we retain each of its component elements (in Eq. 11), and
reduce multiplication of a vector by R to a sequence of in-
ner products and multiplications by diagonal matrices, all

of which can be stored and calculated in O(n) time. Thus,
we eliminate the need for O(n2) storage, and we perform
the relevant matrix multiplications in O(n) time. Since R
can be multiplied in linear time, the complexity of mul-
tiplying vectors by (I + RT ΣR) depends on multiplying
vectors by the covariance matrix Σ.

Since we have evenly spaced resolution of our data x in
time indices ti, Σ is Toeplitz. This matrix can be embed-
ded in a larger circulant matrix, multiplication by which
is simply a convolution operation of the argument vector
with a row of this circulant matrix. Thus, the operation
can be quickly done in O(nlog n) using frequency domain
multiplications(Silverman, 1982). Further, we need never
represent the matrix Σ; we only store the first row of the
circulant matrix. Again we have eliminated O(n2) mem-
ory needs. Other methods for fast kernel matrix multiplica-
tions include Fast Gauss Transforms (FGT) (Raykar et al.,
2005) and kd-Trees (Shen et al., 2006; Gray & Moore,
2003). We note that the single input dimension (time) en-
ables this Toeplitz structure, and thus an extension to mul-
tiple dimensions should use FGT or similar. The regular
structure of the data points in any dimension make Σ mul-
tiplications very fast with such a method. Further, these
methods avoid explicit representation of Σ. Here, the sim-
ple FFT approach for this one-dimensional problem signif-
icantly outperforms other (more general) methods in both
speed and accuracy.

Finally, we note that the matrix (I +RT ΣR) is particularly
well suited to CG. Although RT ΣR is full rank by defini-
tion, in practice its spectrum has very few large eigenvalues
(typically fewer than N , the number of events). Loosely,
the matrix looks like identity plus low rank. In practice, the
CG method converges with high accuracy almost always in
fewer than 50 steps (very often under 30). This is drasti-
cally fewer than the worst case of n steps (n of 103 to 104).

Instead of decomposing Λ = RRT , one might have con-
sidered using the matrix inversion lemma to write (Σ−1 +
Λ)−1 = Σ − ΣΛ(Λ + ΛΣΛ)−1ΛΣ. Indeed this valid
form enables all of the CG and fast multiplication methods
previously discussed. While it may seem that this form’s
ease of derivation (compared to the matrix decomposition
in Eq. 11) warrants its use in general, the matrix to be in-
verted is poorly conditioned compared to (I +RT ΣR), and
thus the inversion requires more CG steps. We have found
in testing that the number of CG steps can roughly dou-
ble. Thus, the decomposition of Eq. 11 is computationally
worthwhile.

In this section, we have constructed a fast method for cal-
culating the Newton step that costs O(nlog n) per CG step
and incurs a very small number of CG steps. Also, we
have avoided explicit representation of any matrix, so that
memory requirements are only linear in the data size n, al-
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lowing problem sizes of potentially millions of time steps.
These two factors stand in contrast to the cubic run time
and quadratic storage needs of a naive method.

4.2. Evaluating the Gradient and Objective
Calculating the objective fτ (x) (Eq. 4) and its gradient
(both required for the log barrier method) require finding
Σ−1(x − µ1). Note that the kth iterate x(k) (of the log
barrier method) has the form

(x(k) − µ1) = x(k−1) + t(k−1)x
(k−1)
nt − µ1

=

k−1
∑

j=1

t(j)x
(j)
nt + (x(0) − µ1) (12)

where t(j) and x
(j)
nt represent the jth iterates of the Newton

step size t and the step xnt, and x(0) is the algorithm initial
point. The most logical starting point x(0) is µ1, in which
case the rightmost term in Eq. 12 drops out. Thus, letting
x(0) = µ1 and using the form of xnt = −H−1g with
−H−1 defined as in Eq. 7, we write:

Σ−1(x(k) − µ1) =

k−1
∑

j=1

t(j)
(

−g(j)+R(j)(I+R(j)T ΣR(j))−1R(j)T Σg(j)
)

.

(13)

In the earlier calculation of xnt (Section 4.1), both of the
right hand side arguments in Eq. 13 have already been
found. As such, we have a recurrence that obviates the
invertion of Σ, with no additional memory demands (Ras-
mussen & Williams, 2006).

The above steps reduce a naive MAP estimation (of any
log concave renewal process) that requires cubic effort and
quadratic storage to an algorithm that is modestly superlin-
ear in run time and linear in memory requirements.

5. Model Selection Problem
Having now found x∗ for any hyperparameters θ, the sec-
ond major part of the problem is to find the negative log-
arithm of our approximation to the evidence p(y | θ) in
Eq. 2, and its gradients with respect to θ. The approximated
log evidence can be written as:

− log p(y | θ) ≈ −log p(y | x∗)

+
1

2
(x∗ − µ1)T Σ−1(x∗ − µ1) +

1

2
log |I + ΣΛ∗|

(14)

(ignoring constants). Each of these terms has an explicit
and an implicit gradient with respect to θ, where the lat-
ter result from the dependence of the MAP estimate x∗

on the hyperparameters (such implicit gradients are typi-
cal for the use of Laplace approximation in GP learning;
see Rasmussen & Williams, 2006, section 5.5.1). The im-
plicit gradients in this problem are extremely computation-
ally burdensome to calculate (requiring the trace of matrix
inversions and matrix-matrix products for each element of
x). In empirical tests, we find implicit gradients to be quite
small relative to the explicit gradients (often by several or-
ders of magnitude). Ignoring these gradients is undesirable
but essential to make this problem computationally feasi-
ble. Thus we consider only explicit gradients. This is a
common approach for GP methods; see Rasmussen and
Williams (2006).

Efficient computation of the first two terms of Eq. 14, as
well as their gradients with respect to θ, can be achieved
by the fast multiplication method and the recursion derived
in Sec. 4. Specifically, the values of the first and second
terms of Eq. 14 are calculated during the MAP estimation,
so no additional memory or computation is necessary for
them. The gradient of the first term is nonzero only with
respect to γ and is linear in x (no matrix multiplications
are required). Thus it can be quickly calculated with no
additional memory demands. Computation of the gradient
of the second term (the prior) can exploit the fact that we
calculated Σ−1(x∗ − µ1) in the final step of the MAP es-
timation. The gradient of this term with respect to µ is a
simple inner product 1T (Σ−1(x∗ − µ1)) (since we have
already calculated the right side of this inner product, this
computation isO(n) in run time and requires no additional
memory). The gradient of this term with respect to a kernel
hyperparameter θi (e.g. a lengthscale or variance) is:

d

dθi

[1

2
(x∗ − µ1)T Σ−1(x∗ − µ1)

]

=

1

2

(

Σ−1(x∗ − µ1)
)T
( dΣ

dθi

)

(

Σ−1(x∗ − µ1)
)

. (15)

Since we have Σ−1(x∗ − µ1), this gradient only requires
one matrix-vector multiplication. dΣ

dθi

has the same Toeplitz
structure as Σ and can thus be quickly multiplied. Thus,
calculating the first two terms of Eq. 14 and their gradients
adds no complexity to the method developed so far.

Only the term 1
2 log |I + ΣΛ∗| presents difficulty. De-

terminants in general require O(n2) memory and O(n3)
solve time using a Cholesky or PLU factorization, so we
must consider the problem more carefully. We examine the
eigenstructure of (I + ΣΛ∗). Since we are not trying to
find a MAP estimate, there is no log barrier term (i.e. let
τ → ∞); thus D (from Eq. 5) is rank N only. This means
that Λ∗ = B + D (Eq. 6) is block outer product plus sub
rank diagonal, so it is also rank deficient with block rank 2.
Thus, it has 2N nonzero eigenvalues (two corresponding to
each of the N events, one in each block from B and one in
each block from D). Using the eigenvalue decomposition
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Λ∗ = USUT , we see

log |I + ΣΛ∗| = log |I + ΣUSUT |

= log |UT ||I + ΣUSUT ||U |

= log |I + UT ΣUS|, (16)

since the orthogonal matrix U has determinant 1 and
UT U = I by definition. Since Λ∗ has rank 2N , we know
that S is diagonal with zeros on the last n−2N entries. By
construction, the number of events N is much smaller than
the total data size n. Since the determinant of a matrix is
the product of its eigenvalues, the unit eigenvalue dimen-
sions of I + UT ΣUS can be ignored. We define S as the
2N × 2N submatrix of S that is made up of the diagonal
block with nonzero diagonal entries. Further define U as
the corresponding 2N eigenvectors. Then, since the other
dimensions of UT ΣUS contribute nothing to the determi-
nant, we have

log |I + ΣΛ∗| = log |I + UT ΣUS|

= log |I + U
T
ΣU S|

= log |I + Σ S|, (17)

where I is now the 2N × 2N identity, and we have fur-
ther defined Σ = U

T
ΣU . Computationally, Σ is formed

by multiplying Σ with the columns of U . Since Λ∗ is block
rank 2, both matrices S and U can be found in closed form
(N rank 2 eigendecompositions, one decomposition per
block). This calculation of Eq. 17 requires 2N matrix mul-
tiplications which each have a run time cost of O(nlog n).

We can make a small approximation that simplifies this
problem even further. Typically, N of these 2N eigenval-
ues are substantially larger than the other N . Each block
of Λ∗ contributes two nonzero eigenvalues. The larger is
due to the diagonal entry x−2

yi
(from the matrix D) and is

nearly axis aligned. The smaller eigenvalue is due to the
outer product vector from block B̂i. Examination of the
denominators in the definition of B̂i and D in Eqs. 5 and
6 explains the difference in magnitude, since x2

yi
is much

smaller than the square of sums denominator in B̂i. We ap-
proximate the eigenvector as the yi axis and approximate
its eigenvalue as the corresponding value in Λ∗. Then S is
size N ×N . This savings is small, but importantly we can
form Σ = U

T
ΣU simply by picking out the N rows and

columns of Σ corresponding to the event times yi.

In this formulation, we are left with matrices of size N×N
only, so we have some modest number of O(N 3) opera-
tions; this approach is considerably faster and scales better
than the exact method above. We have also reduced O(n2)
storage to O(N2). The following section elucidates the
quality of this approximation.

To calculate the gradients with respect to this log determi-
nant term, we also use the approximation of Eq.17. We call

our approximate gradient of this term the gradient of the ap-
proximation in Eq. 17. This approximation can readily be
differentiated with respect to the hyperparameters (again,
typical for GP; see Rasmussen & Williams, 2006). Since
these approximations are matrices in the event space N (not
time space n), these gradients are quickly calculated with a
handful of O(N3) operations and with storage of O(N 2).

6. Results and Discussion
The methods developed here maintain computational accu-
racy while achieving massive speed-up and the elimination
of memory burden. First, we have shown a fast method
that achieves an accurate approximation of the MAP esti-
mate x∗ in much less time than a naive method. We have
made all matrix multiplications implicit, thereby eliminat-
ing the memory burden of representing full matrices. We
call this piece the “MAP Estimation.” Second, we found
the approximate model evidence, as well as its gradients,
so as to perform model selection on the hyperparameters
θ. These calculations, which involved the calculation of a
log determinant and its gradients (Eq. 17), were achieved
with matrices of significantly reduced dimension, again re-
moving the storage demands of teh naive method. We call
this piece the “log determinant approximation.” These two
pieces must be iterated (as described before Eq. 2) to find
both the optimal model θ̂ and the optimal intensity x∗. We
call this iterative method (combining the two pieces above)
the “full GP intensity estimation.” We show here that each
piece is fast and accurate, and finally that they combine to
make an overall method that is considerably faster than a
standard implementation, with minimal sacrifice to accu-
racy.

To demonstrate results, we pick six representative intensity
functions, consisting of sinusoids of various amplitudes
(5-100 events/second), means (15-150 events/second), fre-
quencies (1-2 Hz), and lengths (0.5-10 seconds of millisec-
ond resolution data, implying data sizes n of 500 to 10000).
This set is by no means exhaustive, but it does indicate
how this method outperforms a naive implementation in a
range of scenarios. Our testing over many different inten-
sity functions (including those in Cunningham et al., 2008)
agrees with the results shown here. We simulate point pro-
cess data y from these intensities, and we implement both
the naive and the fast method on these process realizations.

All results are given for 2006era Linux (FC4) 64 bit work-
stations with 2-4GB of RAM running MATLAB (R14sp3,
BLAS ATLAS 3.2.1 on AMD processors). The naive
method was implemented in MATLAB. The fast method
was similarly implemented in MATLAB with some use of
the C-MEX interface for linear operations such as multi-
plication of a vector by the (implicitly represented) matrix
R.
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Table 1. Performance for fast and naive methods. Results averaged over 10 independent trials.

Data Set
1 2 3 4 5 6

Data Size(n) 500 1000 1000 2000 4000 10000
Num. Events (N )1 20-30 30-40 140-160 55-70 55-70 140-160

MAP Estimation
Fast Solve Time(s) 0.12 0.17 0.46 0.32 7.6 37.9
Naive Solve Time(s) 7.04 40.5 39.5 333 3704 1day3

Speed Up 58× 232× 86× 1043× 493× 2000×3

MS Error (Fast vs. Naive)2 4.3e-4 4.2e-4 2.1e-4 5.2e-6 6.1e-6 -
Avg. CG Iters. 6.4 5.5 16.2 8.1 29.9 49.7

Log Determinant Approximation
Fast Solve Time(s) 6.5e-4 1.8e-3 1.9e-2 2.8e-3 2.8e-3 2.5e-2
Naive Solve Time(s) 0.24 1.02 0.97 5.7 34.7 5403

Speed Up 375× 566× 52× 2058× 1.3e4× 2.2e4×3

Avg. Acc. of Fast Approx. 99.1% 98.8% 99.8% 98.9% 99.7% -
Avg. Model Selection Iters. 54.3 54.6 89.1 68.1 39.4 40.7

Full GP Intensity Estimation (Iterative Model Selection and MAP Estimation)
Fast Solve Time(s) 4.4 7.1 30.3 18.7 128 423
Naive Solve Time(s) 443 3094 4548 2.4e4 1.5e5 1month3

Speed Up 105× 451× 150× 1512× 1166× 1e4×3

MS Error (Fast vs. Naive)2 0.10 0.03 10.8 0.01 0.01 -
1 Entries show a range of data used.
2 Squared norm of x(t) is roughly 103 to 105, so these errors are insignificant.
3 Unable to complete naive method; numbers estimated from cubic scaling.

First we demonstrate the utility of our fast MAP estimation
method on problems of several different sizes and with dif-
ferent x. We compare the fast MAP estimation to a naive
implementation, demonstrating the average mean squared
(MS) error (between the fast and naive estimates) and the
average solve time. These results are found in the first part
of Table 1. The squared norm of x is roughly 103 to 105,
so the errors shown (the difference between the naive and
fast methods) are vanishingly small. Thus, the fast MAP
estimation gives an extremely accurate approximation of
the naive MAP estimate. For all practical purposes, the fast
MAP estimation method is exact.

The naive method scales in run time as the cube of data size
n, as expected. The fast method and the speed-up factor
do not appear to scale linearly in the data size. Indeed,
run time depends heavily on the number of CG iterations
required to solve the MAP estimation. This number of CG
steps depends on problem size n, number of events N , and
hyperparameters such as the lengthscale of the covariance
matrix. Even so, major gains are achieved.

Second, we demonstrate our model selection accuracy and

speed-up (the log determinant approximation). We run the
full iterative fast method with both MAP estimation and
evidence model selection. At each iterate of θ, we calcu-
late evidence and its gradients using both the fast and naive
methods. In the second section of Table 1, we show av-
erage solution times for calculating the log determinant in
both naive and fast methods, and we compare their accu-
racy. For the sake of brevity, we demonstrate only the cal-
culation of log |I + ΣΛ∗|, not its gradients with respect to
the hyperparameters. Those calculations show very similar
speed-ups and are as well approximated. Thus, the log de-
terminant is calculated to 99-100% accuracy with the naive
method, and we have a highly accurate approximation.

Finally, the full intensity estimation problem requires it-
erative evidence calculations and MAP estimations, so we
must also demonstrate the accuracy of the full fast method
versus the full naive method. The last part of Table 1 shows
this result (Full GP Intensity Estimation). We see that all
data sets converge to quite similar results in both the fast
and the naive methods, and the fast method enjoys signif-
icant speed-up. The MS errors shown compare the result
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of the fast method to the result of the naive method and are
very small compared to the squared norm of x (103 to 105).

We have demonstrated a method for inferring optimal in-
tensity estimates from an observation of renewal process
data, and we have exploited problem structure to make this
method computationally attractive. As an extension, we
also developed this fast GP technique for multiple obser-
vations y(i) of the same underlying x. It uses the same
approach with comparable performance improvements. As
such, we do not report it here.

Since we avoid all explicit representations of n × n matri-
ces, our memory requirements are very minor for a problem
of this size. The major run time improvements in Table 1
require effectively no loss of accuracy from an exact naive
approach, and thus the additional technical complexity of
this approach is well justified. Having fast, scalable meth-
ods for point process intensity estimation problems may
mean the difference between theoretically interesting ap-
proaches and methods that become well used in practice.
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