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Abstract
We develop an approach to learn an interpretable
semi-parametric model of a latent continuous-
time stochastic dynamical system, assuming noisy
high-dimensional outputs sampled at uneven
times. The dynamics are described by a nonlinear
stochastic differential equation (SDE) driven by
a Wiener process, with a drift evolution function
drawn from a Gaussian process (GP) conditioned
on a set of learnt fixed points and corresponding
local Jacobian matrices. This form yields a flexi-
ble nonparametric model of the dynamics, with a
representation corresponding directly to the inter-
pretable portraits routinely employed in the study
of nonlinear dynamical systems. The learning al-
gorithm combines inference of continuous latent
paths underlying observed data with a sparse vari-
ational description of the dynamical process. We
demonstrate our approach on simulated data from
different nonlinear dynamical systems.

1. Introduction
Many dynamical systems with intrinsic noise may be mod-
elled in continuous time using the framework of stochastic
differential equations (SDE). However identifying a good
SDE model from intermittent observations of the process is
challenging, particularly if the dynamical process is nonlin-
ear and the observations are indirect and noisy. A common
response is to assume a latent process that operates in discre-
tised time, often called a state-space model. This approach
has been applied in contexts ranging from modelling hu-
man motion (Wang et al., 2006) to solving control problems
(Eleftheriadis et al., 2017). However, it assumes that obser-
vations, and the critical phenomena of the dynamics, can be
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accurately modelled using a discrete time grid.

A further challenge when the goal is to gain insight into a
physical or biological system whose parametric description
is unknown, is to obtain an interpretable model of the dy-
namics from observed data, whether modelled in discrete or
continuous time. State-space models that rely on nonpara-
metric or flexibly parametrised descriptions of dynamics,
for example using Gaussian process (GP) priors or recurrent
neural networks (RNN), may be effective at prediction but
inevitably leave interpretation to a second analytic stage,
posing its own challenges.

In this paper, we consider continuous-time latent SDE mod-
els of the form

dxxx = fff(xxx)dt+
√

ΣΣΣ dwww

Ey|x[yyy(ti)] = g(CCCxxx(ti) + ddd) , i = 1, . . . , T ,
(1)

where the temporal evolution of a latent variable xxx ∈ RK
is described by a nonlinear SDE with dynamical evolution
function fff : RK 7→ RK and incremental noise covariance
ΣΣΣ shaping the Wiener noise process www(t). Note that the
nonlinear SDE induces a non-Gaussian prior onxxx(t) with no
easy access to finite marginal distributions. The latent state
is observed indirectly through noisy measurements yyyi ∈ RN
at unevenly spaced time points ti. The measurements are
distributed with a known parametric form and generalized
linear dependence; that is the expected value is g(CCCxxx+ ddd)
with inverse-link function g and parametersCCC ∈ RN×K and
ddd ∈ RN . We seek to infer latent paths xxx(t) along with the
dynamical parameters and an interpretable representation of
the dynamical mapping fff .

What do we mean by interpretable? The properties of dy-
namical systems are frequently analyzed by characterizing
dynamical fixed points and local behaviour near these points
(Sussillo & Barak, 2013). When fff is a learnt, general func-
tion, fixed points must be found numerically (Golub & Sus-
sillo, 2018). This makes it difficult to propagate uncertainty
about fff to the number and location of fixed points, and to
the local dynamics around them. Our approach is to develop
a non-parametric Gaussian-process model for fff conditioned
on the learnt locations of fixed points and associated local
Jacobians. Thus, we implicitly integrate out the details of
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fff , while optimising directly over the components of the
intepretable dynamical portrait.

The paper is organised as follows: In section 2 we review
background material on the related Gaussian Process State-
Space Model (GP-SSM) and previous work on GP approxi-
mations to SDEs (Archambeau et al., 2007; 2008). We also
briefly review the inducing point approach for GP models.
In section 3 we make use of GP priors to represent the un-
known nonlinear dynamics fff , incorporating interpretable
structure by conditioning the GP on fixed points and local
Jacobian matrices of the system. We derive a Variational
Bayes algorithm for approximate inference and parameter
learning in section 4. Finally, we demonstrate the perfor-
mance of our algorithm on a number of nonlinear dynamical
system examples in section 5.

2. Background
2.1. Gaussian Process State-Space-Model

A discrete-time analogue of the model in (1) is the GP-SSM,
where the latent state evolution over a fixed step size is
modelled as

xxx`+1 = fff(xxx`) + εεε` (2)

where εεε` ∼ N (εεε`|0, D). There have been a range of
approaches for performing approximate inference in this
model, based on Assumed Density Filtering (Deisenroth
et al., 2009; Ramakrishnan et al., 2011), Expectation Prop-
agation (Deisenroth & Mohamed, 2012), variational infer-
ence (Frigola et al., 2014), or recurrent recognition networks
(Eleftheriadis et al., 2017). The model in (1) requires a dif-
ferent treatment for latent path inference, as it maintains the
continuous-time structure of the system of interest.

2.2. Gaussian Process Approximation to SDEs

The problem of performing approximate inference in
continuous-time SDE models has been considered previ-
ously, with the two main approaches being Expectation
Propagation (Cseke et al., 2016) and variational inference
(Archambeau et al., 2007; 2008). We review the latter ap-
proach in this section, as our Variational Bayes algorithm in
section 4 extends this work.

Archambeau et al. (2007; 2008) consider the model in (1)
under linear Gaussian observations. The authors derive
an approximate inference algorithm based on a variational
Gaussian approximation to the posterior process on xxx(t) un-
der the constraint that the approximate process has Markov
structure, as is the case for the true posterior process. The
most general way to construct such an approximation is via
a linear time-varying SDE of the form

dxxx = (−AAA(t)xxx(t) + bbb(t)) dt+
√

ΣΣΣ dwww (3)

The instantaneous marginal distributions of this approxi-
mation at any time t are Gaussian, with meansmmmx(t) and
covariances SSSx(t) that evolve in time according to the ordi-
nary differential equations (ODEs):

dmmmx

dt
= −AAA(t)mmmx + bbb(t)

dSSSx
dt

= −AAA(t)SSSx −SSSxAAA(t)T + ΣΣΣ

(4)

Archambeau et al. (2007; 2008) derive a lower bound to
the marginal log-likelihood – often called the variational
free energy or evidence lower bound – whose maximisation
with respect to qx is equivalent to minimising the Kullback-
Leibler (KL) divergence between the approximate and true
posterior process. The free energy has the form

F =
∑
i

〈log p(yyyi|xxxi)〉qx − KL[qx(xxx)‖p(xxx)] (5)

The first term is the expected log-likelihood under the ap-
proximation and only depends on the marginal distributions
qx(xxx(t)). The second term is the KL-divergence between
the continuous-time approximate posterior process and the
prior process. Archambeau et al. (2007) show that this term
can be written as

KL[qx(xxx)‖p(xxx)] =

∫
T
dt
〈
(fff − fffq)TΣΣΣ−1(fff − fffq)

〉
q

(6)

where both fff and fffq are evaluated at xxx(t), and fffq(xxx(t)) =
−AAA(t)xxx(t) + bbb(t). Note that the noise covariance ΣΣΣ is
deliberately chosen to be equal for the SDEs in qx and p, as
this term would diverge otherwise.

To maximise F with respect to mmmx(t) and SSSx(t), subject
to the constraint that the approximate posterior process has
Markov structure according to equation (3), one can find the
stationary points of the Lagrangian

L = F − C1 − C2 (7)

with

C1 =

∫
T
dt Tr

[
Ψ(
dSSSx
dt

+AAASSSx +SSSxAAA
T −ΣΣΣ)

]
C2 =

∫
T
dt λλλT(

dmmmx

dt
+AAAmmmx − bbb)

(8)

where Ψ and λλλ are Lagrange multipliers. Archambeau et al.
(2007; 2008) derive a smoothing algorithm that involves
iterating fixed point updates of this Lagrangian. These are
either closed form, or require solving ODEs forward and
backward in time, thus achieving linear time complexity. In
section 4, we will modify this original algorithm in order to
improve its numerical stability, and show how to incorporate
it in an efficient Variational Bayes algorithm.
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2.3. Sparse Gaussian Processes using inducing points

In later sections of the paper, we will make use of the sparse
variational inducing point approach of Titsias (2009). The
key idea of inducing point approaches is to condition a GP
ζ(xxx) ∼ GP(0, κ(xxx,xxx′)) on so-called inducing variables
uuu ∈ RM . These can be thought of as pseudo-observations
of the function at M locationsZZZ = [zzz1, . . . , zzzM ] ∈ RK×M .
An augmented prior for the GP and inducing variables can
be written as

uuu ∼ N (uuu|0,KKKzz) , ζ|uuu ∼ GP(µζ|u(xxx), νζ|u(xxx,xxx′) (9)

The conditioned GP mean and covariance function are

µζ|u(xxx) = KKK ·z(xxx)KKK−1
zz uuu

νζ|u(xxx,xxx′) = κ(xxx,xxx′)−KKK ·z(xxx)KKK−1
zzKKKz·(xxx)

(10)

Where [KKKzz]ij = κ(zzzi, zzzj), and [KKK ·z(xxx)]i = κ(xxx,zzzi). The
computational complexity of building the mean and covari-
ance in (10) is linear in the number of xxx input points and
cubic only in the number of inducing points M . If we were
to integrate over the inducing variables in this augmented
prior, we would recover the original model. However, the
inducing variables can also be kept in the model as auxiliary
variables, which may be incorporated into approaches for
variational inference (Titsias, 2009).

3. Interpretable priors on nonlinear dynamics
Similarly to the GP-SSM work, we wish to model fff using
the framework of GPs. GPs can represent a flexible class of
nonlinear dynamics. However, it may be difficult to interpret
the inferred function with respect to studying the underlying
dynamical system that generated the observed data. As
stated above, standard analysis approaches for nonlinear
dynamical systems rely on identifying local fixed points
sssi, where fff(sssi) = 000, and the locally-linearised dynamics
around them, given by the Jacobians∇∇∇xfff(xxx)|xxx=sssi (Sussillo
& Barak, 2013). This strategy motivates our approach to
interpretability.

3.1. A Gaussian Process prior for dynamics

In order to arrive at a modelling framework that makes fixed
points and Jacobian matrices readily available for analy-
sis, we introduce a GP prior conditioned directly on these
parameters (see also Bohner & Sahani, 2018). The fixed
point locations and Jacobians around them can be viewed
as further hyperparameters specifying the prior mean and
covariance function of the GP, which we will denote by
θθθ = {fff (i)

s ,JJJ
(i)
s }Li=1, where L denotes the total number

of fixed point locations. With fff
(i)
s = fff(sssi) = 000 and

[JJJ
(i)
s ]k,m = ∂fk(xxx)

∂xm
|xxx=sssi . We can hence write a GP prior

conditioned on the fixed points and Jacobians for each di-

mension in fff , using the fact that a GP and its derivative
process are still jointly distributed as a GP.

The Variational Bayes approach in section 4 will make use
of a sparse variational approximation for fff using inducing
variables, as in Titsias (2009). To make later notation more
compact, we therefore directly introduce the augmented
model including inducing variables drawn from the condi-
tioned GP prior here. We denote the joint covariance matrix
between inducing variables, fixed points and Jacobians as

Kθzz =

KKKzz KKKzs KKK∇2
zs

KKKsz KKKss KKK∇2
ss

KKK∇1
sz KKK∇1

ss KKK∇1∇2
ss

 =

[
KKKzz K̃KKzs

K̃KKsz K̃KKss

]
(11)

where the superscript ∇i denotes the derivative of the co-
variance function with respect to its ith input argument such
that [KKK∇2

zs ]ij = ∂
∂sssκ(zzzi, sss)|sss=sssj . The conditional prior on

the inducing variables given θθθ can then be written as

uuuk|θθθ = N
(
uuu
∣∣∣ K̃KKzsK̃KK

−1

ss vvv
θ
k,KKKzz − K̃KKzsK̃KK

−1

ss K̃KKsz

)
(12)

where vvvθk = [f
(1)
s,k , . . . , f

(L)
s,k ,JJJ

(1)
k,: , . . . ,JJJ

(L)
k,: ]T collects the

fixed-point and derivative observations relating to fk. Fi-
nally, for the conditional prior on fk, given the inducing
variables and θθθ, we have

fk|uuuk, θθθ ∼ GP
(
µθf |u(xxx), νθf |u(xxx,xxx′)

)
(13)

with

µθf |u(xxx) = aaaθz(xxx)

[
uuuk
vvvθk

]
νθf |u(xxx,xxx′) = κ(xxx,xxx′)− aaaθz(xxx)Kθzzaaa

θ
z(xxx)T

(14)

aaaθz(xxx) =
[
KKK ·z(xxx) KKK ·s(xxx) KKK∇2

·s (xxx)
]
Kθzz
−1

(15)

3.2. Automatic selection of the number of fixed points

When the generative SDE dynamics are unknown, so are
the number of fixed points in the system. We therefore take
the general approach of introducing more fixed points than
expected, and ‘pruning’ by hyperparameter optimisation. In
particular, we include noise variance parameters for each
fixed point, representing uncertainty about the zero-value of
the function at the fixed point location. We hence have

fffsi = fff(sssi) + αiεεε = 000 + αiεεε (16)

with εεε ∼ N (0, I). The variance parameters αi will enter
our model simply via an added diagonal matrix to theKKKss

block in (11). When the αi are optimised, the uncertainty
for superfluous fixed points will grow, while that of the fixed
points the system is actually using will shrink. When the
uncertainty for a fixed point is large, conditioning on it in
the GP prior for fff will have negligible effect on prediction.
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4. Variational inference and learning
We can derive an efficient Variational Bayes (VB) algorithm
(Attias, 2000) for variational inference and learning in the
model in (1) by maximising a variational free energy. We
assume that our full variational distribution factorises as

q(xxx,fff,uuu) = qx(xxx)qf,u(fff,uuu) (17)

Following Titsias (2009), we choose qf,u(fff,uuu) =∏K
k=1 p(fk|uuuk, θθθ)qu(uuuk). The variational approximation

of the posterior over the inducing variables are chosen to be
of the form qu(uuuk) = N

(
uuuk|mmmk

u,SSS
k
u

)
. The marginal varia-

tional distribution qf (fff) =
∏
k

∫
duuukp(fk|uuuk, θθθ)qu(uuuk) is

also a GP. The resulting expression for the variational free
energy is of the form:

F∗ = 〈F〉qf −
K∑
k=1

KL[qu(uuuk)‖p(uuuk|θθθ)] (18)

The VB algorithm iterates over an inference step, where the
distribution qx over the latent path is updated, a learning
step, where qf,u and the parameters in the output mapping
are updated, and a hyperparameter learning step, where
the kernel hyperparameters and fixed point locations are
updated.

4.1. Inference

Our inference approach extends the work of Archambeau
et al. (2007; 2008) to a wider class of observation models
and to a nonparametric Bayesian treatment of the dynam-
ics fff under the conditioned sparse GP prior introduced in
section 3.

After using integration by parts on the Lagrangian in (7)
(exchanging F for F∗), we take variational derivatives with
respect tommmx(t) andSSSx(t). Since our model has a rotational
non-identifiability with respect to the latentsxxx, we fix ΣΣΣ = I
without loss of generality. We arrive at the following set of
fixed point equations:

dΨΨΨ

dt
= AAA(t)TΨΨΨ(t) + ΨΨΨ(t)AAA(t)− ∂F∗

∂SSSx
� P (19)

dλλλ

dt
= AAA(t)Tλλλ(t)− ∂F∗

∂mmmx
(20)

AAA(t) =

〈
∂fff

∂xxx

〉
qxqf

+ 2ΨΨΨ(t) (21)

bbb(t) = 〈fff(xxx)〉qxqf +AAA(t)mmmx(t)− λλλ(t) (22)

with Pij = 1
2 for i 6= j and 1 otherwise and � denotes the

Hadamard product. In contrast to previous work, we ex-
plicitly take the symmetric variations of SSSx(t) into account,
which leads to slightly modified equations in (19) compared
to the work in Archambeau et al. (2007; 2008), and thus to

improved numerical stability in practice. As a result, we
can work with the fixed point updates (21) and (22) directly,
without introducing a learning rate parameter that blends
the updates with the previous value of the variational pa-
rametersAAA and bbb, as was done by Archambeau et al. (2007;
2008).

The inference algorithm involves solving the set of coupled
ODEs in (4) and (19)-(22) using the conditions mmmx(0) =
mmmx,0,SSSx(0) = SSSx,0 andλλλ(T ) = 0, ΨΨΨ(T ) = 0. In principle,
it is possible to use any ODE solver to do this. In this work,
we choose to solve (4) using the forward Euler method with
fixed step size ∆t to obtain mmmx and SSSx evaluated on an
evenly spaced grid. Similarly, we then solve (19) and (20)
backwards in time to obtain evaluations of λλλ and ΨΨΨ. The
solutions from the ODEs can then be used with equations
(21) and (22) to obtain evaluations ofAAA and bbb on the same
time-grid used for solving the ODEs.

Evaluating the expectations of the terms involving fff with
respect to qx and qf only involves computing Gaussian
expectations of covariance functions and their derivatives.
These can be computed analytically for choices such as an
exponentiated quadratic covariance function. We update the
initial state valuesmmmx,0 and SSSx,0 using the same procedure
as that described by Archambeau et al. (2008). Given the
function evaluations on the inference time-grid, we use
linear interpolation to obtain function evaluations ofmmmx and
SSSx at arbitrary time points. Further details on the inference
algorithm are given in the supplementary material.

4.2. Learning

4.2.1. DYNAMICS

The only terms in (18) that depend on parameters in fff are the
expected KL-divergence between the prior and approximate
posterior processes and the KL-divergence relating to the
inducing variables for fff , which are jointly quadratic in
the inducing variables and Jacobians. Thus, given mmmx(t),
SSSx(t), AAA(t) and bbb(t), we can find closed form updates for
the Jacobians and variational parameters relating to fff . For
SSSku the update is of the form

SSSku =

(
ΩΩΩu
−1 +

∫
T
dt[〈aaaθz(xxx)Taaaθz(xxx)〉qx ][u,u]

)−1

(23)

with ΩΩΩu = KKKzz − K̃KKzsK̃KK
−1

ss K̃KKsz and where the operation
[X][u,u] selects the first M × M block of X. The induc-
ing variable means and Jacobians around the fixed-point
locations can be updated jointly as

[
mmm1
u . . . mmmK

u

JJJ1 . . . JJJK

]
= BBB−1

1 (BBB2 −BBB3) (24)
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with

BBB1 =

(
Ω̃ΩΩ +

∫
T
dt
[
〈aaaθz(xxx)Taaaθz(xxx)〉qx

]
[uj,uj]

)
BBB2 =

∫
T
dt
[〈
aaaθz(xxx)

〉
qx

]T
[:,uj]
〈fffq〉Tqx

BBB3 =

∫
T
dt
[〈
∇xaaaθz(xxx)

〉
qx

]T
[:,uj]

SSSxAAA
T

Ω̃ΩΩ =

[
ΩΩΩu
−1 −ΩΩΩu

−1GGG

−GGGTΩΩΩu
−1 GGGTΩΩΩu

−1GGG

]
,GGG =

[
K̃KKzsK̃KK

−1

ss

]
[j,j]

where [X][uj,uj] selects the firstM×M and last LK×LK
block of X , [X][:,uj] selects the first M and last LK
columns of X , and [X][j,j] selects the last LK ×LK block
of X . The one-dimensional integrals can be computed ef-
ficiently using, for instance, Gauss-Legendre quadrature.
Detailed derivations are given in the supplementary mate-
rial, where we also provide closed form updates for the
sparse variational GP approach for modelling fff without
further conditioning on fixed points and Jacobians.

4.2.2. OUTPUT MAPPING AND HYPERPARAMETERS

The only term that depends on the parameters CCC and ddd in
(18) is the expected log-likelihood. Depending on the choice
of likelihood, the optimal update may be available in closed
form. Otherwise, parameter updates may be found by direct
optimisation of the variational free energy. Similarly, the co-
variance function hyperparameters and fixed point locations
are learnt by maximising the variational free energy. The in-
ducing point locations can also be included here, though we
chose to hold them fixed on a grid for all examples shown
in this paper.

4.3. Computational Complexity

The main costs of the algorithm come from evaluating GP
predictions at a set of input points, and solving the ODEs
(19)-(20). Computing the GP predictions using the basic
sparse inducing-point approach scales cubically in the num-
ber of inducing points, the number of fixed points and the
number of entries in the Jacobians, but scales linearly in
the number of input points. Solving the ODEs using simple
forward Euler integration achieves linear time complexity.
In principle, adaptive ODE solvers could achieve a lower
cost. Similarly, recent advances in scalable sparse Gaussian
Process methods could improve on the cubic dependence
on the inducing points. Hence, the cubic cost relating to
the candidate number of fixed points could be viewed as
the intrinsic cost of our description of the dynamics, while
the costs relating to integrating ODEs and computing sparse
Gaussian Process predictions could be improved.

5. Experiments
In this section, we apply our algorithm to data generated
from different nonlinear dynamical systems. In all exper-
iments, we choose an exponentiated quadratic covariance
function in the prior over the dynamics fff and initialise the
inducing point means and Jacobian matrices at zero. Each
fixed point observation’s uncertainty is initialised with a
standard deviation of 0.1. We generateCCC and ddd by drawing
their entries from Gaussian distributions unless otherwise
stated, and initialise our algorithm at these parameter val-
ues. For inference, we solve the ODEs (19)-(22) using
the forward Euler method with ∆t = 1ms. Unless stated
otherwise, the link function is the indentity g(z) = z.

5.1. Double-well dynamics

We first demonstrate our method on the classic one-
dimensional double-well example, where the latent SDE
evolves with drift f(x) = 4x(1− x2). We simulate data on
20 trials with multivariate Gaussian outputs of dimension-
ality N = 15 with unknown variances 0.25, and observe
the output process at 20 randomly sampled time-points per
trial. We chose 8 evenly spaced inducing points in (−3, 3)
for f . While the true dynamics have three fixed points, we
condition the prior on f on four fixed points and use the
method outlined in section 3.2 to automatically select the
correct number. The results are summarised in Figure 1,
demonstrating that our algorithm can successfully perform
inference and interpretable learning of the SDE path and
dynamics, respectively, and does not move away from the
good initial location for the model parametersCCC and ddd.

5.2. Van der Pol’s oscillator

Our next example examines a two-dimensional system
where the dynamics contain a limit cycle around an unstable
fixed point. The dynamics are given by

f1(xxx) = ρτ

(
x1 −

1

3
x3

1 − x2

)
, f2(xxx) =

τ

ρ
x1 (25)

with a time constant τ . We generate data from (1) using
these dynamics with ρ = 2, τ = 15, N = 20 output di-
mensions and Gaussian measurement noise with unknown
variances 2.25 on 20 repeated trials. We use 5× 5 inducing
points evenly spaced in (−2, 2). The results are summarised
in Figure 2, demonstrating that our description of the dynam-
ics successfully captures the limit cycle of the generative
dynamics.

5.3. Neural population dynamics

This example demonstrates our algorithm under multi-
variate point-process observations. We model the in-
tensity functions of the nth output process as ηn(t) =



Interpretable continuous-time latent stochastic dynamical models

0 1 2 3

t

−4

−2

0

2

y n
(t

)

trial 1

0 1 2 3

t

−2

0

2

y n
(t

)

trial 2

A

0 1 2 3

t

−1

0

1

x
(t

)

trial 1B

0 1 2 3

t

−1

0

1

x
(t

)

trial 2

−1.5 0.0 1.5

x

−1.5

0.0

1.5

f
(x

)

true
learnt

C

−2 0 2

true

−1.5

0.0

1.5

le
ar

nt

C

d

D

Figure 1. Double-well dynamics. A: Two example dimensions of the output process on two different trials. The dots represent the
observed data-points of the noisy output processes plotted in faint lines. The solid blue/green traces are the inferred posterior means
with ±1 posterior standard deviation tubes around them. B: True and inferred latent SDE trajectory for the same example trials as in A.
The red traces represent the posterior means with ±1 posterior standard deviation tubes around them, black traces show the true latent
SDE path. The black dots indicate the times when observations of yyy were made. C: True and learnt dynamics together with the learnt
fixed-point locations and tangent lines. Stable fixed points are shown in black, unstable ones in magenta. The uncertainty about the
fixed point observation is illustrated using grey error bars representing ±1 standard deviation. Only the additional fourth fixed point is
associated with high uncertainty. D: True vs. learnt model parameters CCC and ddd.

exp(
∑K
k=1 Cnkxk(t) + dn). Conditioned on the intensity

function, the φ(n) observed event-times ttt(n) are generated
by a Poisson process with log-likelihood

log p(ttt(n)|ηn) = −
∫
T
ηn(t)dt+

φ(n)∑
i=1

log ηn(t
(n)
i ) (26)

In contrast to the Gaussian observation case, the first term
in the log-likelihood above is continuous in ηn(t) and the
absence of events is also informative towards the underlying
intensity of the process.

An interesting application for this setting lies in neural data
analysis, where data may be available as a set of spike times
of a population of simultaneously recorded neurons jointly
embedded in a circuit involved in performing a computation.
In fact, studying neural population activity as a dynamical
system has gained increasing traction in the field of neuro-
science in recent years (Macke et al., 2011; Shenoy et al.,
2013; Pandarinath et al., 2018), and data analysis methods
that can obtain such descriptions are thus of great interest.

We simulate a two-dimensional latent SDE using the dynam-
ics fk(xxx) = −xk + σk(wk1x1 −wk2x2 − zk) for k = 1, 2,
where σk(x) = (1 + exp(−bkx))−1. Depending on the
choice of parameters bk, wkj and zk the dynamical sys-

tem will exhibit different properties. We explore the two
regimes where the system either has two stable and one
unstable fixed points (Figure 3C left) or exhibits a single
stable spiral (Figure 3C right).

We simulate data from 50 neurons on 25 trials for each of
the two parameter regimes for bk, wkj and zk. Figure 3A
shows example neural spike trains under the two regimes.
Figure 3B illustrates sample paths through the latent space
under the different dynamical regimes, together with the
density of latent locations visited across all trials. In both
settings, we initialise our algorithm with three fixed points
and inducing points placed on an evenly spaced 4× 4 grid
in (−0.25, 1.25), and hold the parameters relating to the
output mapping constant. Figure 3D shows the estimated
flow fields in both settings, together with the location of the
fixed points and their stability as indicated by the eigenval-
ues of the Jacobian matrices. In both settings, our method
successfully recovers the main qualitative distinguishing
features of the dynamics. In the regime where the dynam-
ics are conditioned on three fixed points but the generative
system only contains one, the two additional fixed points
will either be associated with higher uncertainty or move to
regions where no or little data was observed, as indicated
by the superimposed density plots.
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Figure 2. Van der Pol’s oscillator. A: Streamline plot of the true
dynamics together with nullclines and the unstable fixed point. B:
Density plot of the locations visited by the latents across all trials
used for learning in red, and streamline plot of the learnt dynamics
with the location of the learnt fixed point. The eigenvalues of
the learnt Jacobian matrix indicate that the fixed point is unstable.
C: Three example dimensions of the output process. The dots
represent the observed data-points of the noisy output process.
The solid traces show the the posterior means with ± 1 standard
deviation tubes around them. D: The true latent SDE path together
with the posterior mean ± 1 posterior standard deviation of each
latent dimension. Black dots represent the locations where the 20
measurements of the output process were made.

5.4. Multistable chemical reaction dynamics

This example is based on the dynamical system in Ganap-
athisubramanian (1991), which describes nonlinear dynam-
ics of two species of iodione in the iodate-AS(III) system
under imperfect mixing by coupled first-order ODEs. We
use these ODEs to describe fff and generate data according to
(1) with high-dimensional Gaussian observations represent-
ing spectroscopic measurements, which can approximately
be described as a linear mapping from concentrations based
on the I− and IO−3 absorption spectra provided in Kireev &
Shnyrev (2015). We simulate data on 20 trials with different
initial conditions, collecting 50 unevenly spaced samples
from 13 spectroscopy measurements on each trial. Figure 4
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Figure 3. Neural population dynamics. Left: simulations with pa-
rameter settings b1 = 1.9, b2 = 0.5, z1 = 3, z2 = 3.9, w11 =
10, w12 = 5, w21 = 9, w22 = 3. Right: simulations with pa-
rameter settings b1 = 0.4, b2 = 0.6, z1 = 1.7, z2 = 7, w11 =
20, w12 = 16, w21 = 21, w22 = 6. A: Raster plot of the observed
spike times for a population of 50 neurons for an example trial.
B: Example paths through the two-dimensional latent space on
the same trial as A, together with a density plot of latent locations
visited across all trials that were used for learning the dynamics,
shown in red. C: Streamline plots of the true dynamics together
with their fixed points and nullclines for each latent dimension.
Stable fixed points are black, unstable ones are magenta. D: Same
density plots as in B together with streamline plots of the learnt
dynamics and learnt fixed points. The fixed point stability is shown
as indicated by the eigenvalues of the learnt Jacobian matrices.

shows observed data and the latent SDE path on an example
trial, as well as the true and estimated dynamical portraits.
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Figure 4. Multistable chemical reaction dynamics. A: Streamline
plot of the concentration dynamics for two species of iodine, to-
gether with nullclines and fixed points. Stable fixed points are
black, unstable ones are magenta. B: Learnt dynamics and fixed
points with stability determined by eigenvalues of learnt Jacobians.
The red contour plot illustrates the density of latent path loca-
tions across all trials used for training. C: Example spectroscopy
measurements (output process) across light wavelengths (nm). D:
Example true latent path together with the inferred posterior mean
and ±1 standard deviation tubes for each latent dimension on the
same trial as C. The black dots indicate the time points at which
measurements were taken.

6. Discussion
We have introduced a flexible and general variational
Bayesian framework for the interpretable modelling of a
continuous-time latent dynamical process from intermittent
observations. Using a suitable GP prior, we integrate over
a nonparametric description of the system dynamics, con-
ditioned on its fixed points and associated local Jacobian
matrices, thus both avoiding the need to assume a specific
parametric dynamical form and directly obtaining a mean-
ingful portrait of the dynamical structure. The approach
applies to a variety of multivariate observation models, with
many updates available in closed form.

The effectiveness of the approach is demonstrated using

data simulated from a number of realistic but known non-
linear dynamical systems describing physical, biological
and chemical phenomena. In each case, it was possible to
recover a meaningful description of fixed points and nearby
dynamics even when data were sparse; and an inferred dy-
namical model that approximated the true systems well over
large regions of the state space.

A similar prior over dynamics could be adopted within a
discrete-time model such as the GP-SSM, albeit with a
less natural interpretation of the local Jacobians. However,
real-world systems evolve in continuous time, and in some
contexts available observations do not arrive at discrete
sample times. Retaining a continuous-time model means
that the variational posterior over latents can be described by
a system of coupled ODEs. While the solution of these may
incur a discretisation error, this is a numerical issue related
to the choice of ODE solver, rather than the assumption of a
discretised model. Indeed, the ODE solution can exploit an
adaptive step size in a way that would be impractical within
a discrete-time model.

Our work also differs from other GP-based approaches to
time series modelling, where each dimension of the process
xk(t) is modelled via an independent GP (Damianou et al.,
2011; Duncker & Sahani, 2018). In this case, the prior on
xxx(t) evaluated at any finite set of points can be described by
a multivariate Gaussian distribution, which greatly simpli-
fies the inference. However, this cannot capture correlations
across the dimensions of the latent process and thus comes
at a loss of the descriptive power.

The variational inference approach for SDEs from Archam-
beau et al. (2007; 2008) relied on a Gaussian observation
model and known dynamics (Archambeau et al., 2007), or
a known parameterisation of the dynamics (Archambeau
et al., 2008), both of which are restrictive. Here, we have
extended the inference approach to handle a wider class of
observation models, as well as a nonparametric GP descrip-
tion of the dynamics. Batz et al. (2018) also use a GP to
model the drift function of an SDE. However, they consider
the setting where dense or sparse observations of the SDE
path are directly available, while we treat the entire SDE
output as latent. Furthermore, the interpretable nonparamet-
ric representation of the SDE dynamics in terms of their
fixed points and local Jacobian matrices is novel.

While we have demonstrated our algorithm in the setting of
unevenly sampled multivariate Gaussian and multivariate
point process observations, the inference approach extends
readily to other stochastic processes typically considered
challenging to model, such as marked point processes. We
therefore expect this approach to have diverse applications,
ranging from neuroscience to chemistry and finance.
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A. Variational Lower Bound
We derive a variational lower bound to the marginal log-
likelihood of our model using Jensen’s inequality

log p(yyy|θθθ) = log

∫
dxxxdfffduuu p(yyy|xxx)p(xxx|fff)p(fff |uuu,θθθ)p(uuu|θθθ)

≥
∫
dxxxdfffduuuq(xxx,fff,uuu) log

p(yyy|xxx)p(xxx|fff)p(fff |uuu,θθθ)p(uuu|θθθ)
q(xxx,fff,uuu)

def
= F∗

where p(fff |uuu,θθθ)p(uuu|θθθ) =
∏
k p(fk|uuuk, θθθ)p(uuuk|θθθ). Choos-

ing a factorised variational distribution of the form

q(xxx,fff,uuu) = qx(xxx)
∏
k

p(fk|uuuk, θθθ)qu(uuuk)

we can rewrite the bound as

F∗ =

∫
dxxxdfffduuuq(xxx,fff,uuu) log

p(yyy|xxx)p(xxx|fff)
∏
k p(uuuk|θθθ)

qx(xxx)
∏
k qu(uuuk)

= 〈log p(yyy|xxx)〉qx − 〈KL[qx(xxx)‖p(xxx|fff)]〉qf
−
∑
k

KL[qu(uuuk)‖p(uuuk)]

where

qf (fff) =
∏
k

∫
duuukp(fk|uuuk, θθθ)qu(uuuk)

and qx(xxx) is described by (3) and (4). We can derive the
Kullback-Leibler divergence between the distributions over
SDE paths qx(xxx) and p(xxx|fff) by discretising time in steps
of ∆t. The discretised paths have Markovian structure with

p(xxxt+1|xxxt, fff) = N (xxxt+1|xxxt + fff(xxxt)∆t,ΣΣΣ∆t)

qx(xxxt+1|xxxt) = N (xxxt+1|xxxt + fffq(xxxt)∆t,ΣΣΣ∆t)

We can hence write

KL[qx(xxx)‖p(xxx)]

=

T−1∑
t=1

∫
dxxxtq(xxxt)

∫
dxxxt+1q(xxxt+1|xxxt) log

q(xxxt+1|xxxt)
p(xxxt+1|xxxt)

=
1

2

T−1∑
t=1

∆t
〈
(fff − fffq)TΣΣΣ−1(fff − fffq)

〉
qX

Taking the limit as ∆t→ 0, we obtain

KL[qx(xxx)‖p(xxx)] =
1

2

∫
T
dt
〈
(fff − fffq)TΣΣΣ−1(fff − fffq)

〉
qx

B. Inference Details
B.1. Lagrangian

The full Lagrangian, after applying integration by parts to
the constraints in (8), has the form

L = F∗ − C1 − C2
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C1 =

∫
T
dt

(
Tr

[
ΨΨΨ(AAASSSx +SSSxAAA

T − I)− dΨΨΨ

dt
SSSx

])
+ Tr [ΨΨΨ(T )SSSx(T )]− Tr [ΨΨΨ(0)SSSx(0)]

C2 =

∫
T
dt

(
λλλT(Ammmx − bbb)−

dλλλ

dt

T

mmmx

)
+ λλλ(T )Tmmmx(T )− λλλ(0)Tmmmx(0)

For the variational free energy termF∗, we have from before

F =
∑
i

〈log p(yyyi|xxxi)〉qx − KL[qx(xxx)‖p(xxx)]

and

F∗ = 〈F〉qf −
K∑
k=1

KL[qu(uuuk)‖p(uuuk|θθθ)]

The Kullback-Leibler divergences can be evaluated as

KL[q(uuuk)‖p(uuuk|θθθ)] =
1

2

(
Tr
[
ΩΩΩu
−1SSSku

]
−M + log

|ΩΩΩu|
|SSSku|

+ (µµµku −mmmk
u)TΩΩΩu

−1(µµµku −mmmk
u)
)

with

ΩΩΩu = KKKzz − K̃KKzsK̃KK
−1

ss K̃KKsz

µµµku = K̃KKzsK̃KK
−1

ss vvv
θ
k

and

〈KL[qx(xxx)‖p(xxx)]〉qf =
1

2

∫ T

0

dt 〈(fff − fffq)T(fff − fffq)〉qxqf

For later convenience, we denote this term as

〈KL[qx(xxx)‖p(xxx)]〉qf = E(mmmx,SSSx)

Using the identity

〈〈fff〉qf (xxx−mmmx)
T〉qx =

〈
∂〈fff〉qf
∂xxx

〉
qx

SSSx

the integrand can be evaluated as

〈(fff − fffq)T(fff − fffq)〉qxqf

= 〈fffTfff〉qxqf + 2Tr

[
AAAT

〈
∂fff

∂xxx

〉
qxqf

SSS(t)

]
+ Tr

[
AAATAAA

(
SSSx +mmmxmmm

T
x

)]
+ 2 mmmT

xAAA
T〈fff〉qxqf

+ bbbTbbb− 2bbbT〈fff〉 − 2bbbTAAAmmmx

For the expected log-likelihood terms, in general, there will
be terms that are continuous in xxx, and terms that depend
only on evaluations of xxx at specific locations ti, which we
will denote by `cont and `jump, respectively. We can write

〈log p(yyy|xxx)〉qx = `cont(mmmx,SSSx) + `jump(mmmx,SSSx)

Thus, the variational free energy can be expressed as

F∗ = `cont(mmmx,SSSx) + `jump(mmmx,SSSx)− E(mmmx,SSSx)

−
K∑
k=1

KL[qu(uuuk)‖p(uuuk|θθθ)]

B.1.1. EXAMPLE: GAUSSIAN LIKELIHOOD

In the case of a Gaussian likelihood, there is no continuous
term in the likelihood:

`cont = 0

`jump =
∑
i

∫ Tend

T0
dtδ(t− ti)

(
mmmx(t)TCCCTΓ−1(yyyt − ddd)

− 1

2
Tr

[
CCCTΓ−1CCC

∑
i

(
SSSx(t) +mmmx(t)mmmx(t)T

)] )
B.1.2. EXAMPLE: MULTIVARIATE POISSON PROCESS

LIKELIHOOD

In the case of a multivariate Poisson Process, with g(·) =

exp(·) and observed event times t(n)
1 , . . . t

(n)
φ(n)for the nth

output dimension:

`cont = −
∑
n

∫ Tend

T0
exp

(
cccTnmmmx +

1

2
cccTnSSSxcccn

)
dt

`jump =

N∑
n=1

φ(n)∑
i=1

∫ Tend

T0

(
cccTnmmmx(t) + dn

)
δ(t− t(n)

i )dt

B.2. Symmetric variations in SSSx

To arrive at the fixed point equations given in the main paper,
we need to take variational derivatives of the Lagrangian
with respect tommmx and SSSx. In contrast to Archambeau et al.
(2007), we take the symmetric variations in SSSx into account.
Also note that the Lagrange multiplier ΨΨΨ is symmetric. We
can write

∂C1
∂SSSx

=

(
ΨΨΨAAA+AAATΨΨΨ− dΨΨΨ

dt

)
� P̃

where � denotes the elementwise Hadamard product and
P̃ij = 2 for i 6= j and 1 otherwise. Differentiating the entire
Lagrangian with respect to the symmetric matrix SSSx and
setting to zero we get

0 =
∂F∗
∂SSSx

� P−ΨΨΨAAA−AAATΨΨΨ +
dΨΨΨ

dt

matching the equation given in the main text with Pij = 1
2

if i 6= j and 1 otherwise. Note that the derivatives of the free
energy with respect toSSSx will also need to take into account
the symmetry of the covariance matrix. The derivations for
(20)-(22) follow those of Archambeau et al. (2007).
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B.3. Expected values of dynamics

The inference algorithm requires evaluating several expec-
tations with respect to qx and qf . Let UUU =

[
uuu1 . . . uuuK

]
and 〈UUU〉qu = MMMu, such that we can define (M+L+LK)×
K matrices stacking all inducing variables, zero function
values, and Jacobians as

UUUu,fs,J =


UUUu
000

JJJ
(1)
s

...
JJJ

(L)
s

 , 〈UUUu,fs,J〉qu = MMMu,fs,J =


MMMu

000

JJJ
(1)
s

...
JJJ

(L)
s


The required expectations can then be evaluated as

〈fff(xxx)〉Tqxqf =
〈
aaaθz(xxx)

〉
qx
MMMu,fs,J

〈
∂fff(xxx)

∂xxx

〉T

qxqf

=
〈
∇xaaaθz(xxx)

〉
qx
MMMu,fs,J

〈
fff(xxx)Tfff(xxx)

〉
qxqf

=
∑
k

〈
f2
k (xxx)

〉
qxqf

= κ(xxx,xxx′)

+ Tr
[(〈

UUUu,fs,JUUU
T
u,fs,J

〉
qu
− Kθzz

)
〈aaaθz(xxx)Taaaθz(xxx)〉qx

]
The above expressions still involve computing expectations
of covariance functions and their derivatives, which can be
computed analytically for choices such as the exponentiated
quadratic covariance function.

B.4. Inference algorithm

The full inference algorithm involves solving a set of ODEs
forward and backward in time, which we do using the for-
ward Euler method. We provide the full approach in Algo-
rithm 1, where the subscript r denotes the evaluation of the
functions at the rth point of the time grid between T0 and
Tend taking steps of size ∆t. Note that the derivatives of
the terms in `jump will need to be discretized appropriately
as well. Using the same time-grid as was used for solving
the ODEs, the delta-functions will contribute a factor of
1

∆t , such that the ∆t terms cancel in the update written in
Algorithm 1.

C. Learning Details
C.1. Conditioned Sparse Gaussian Process dynamics

The only term in the variational free energy that depends
on the parameters in fff are the KL-divergence between the
continuous-time processes and the KL-divergence relating
to the inducing points for fff .

C.1.1. INDUCING POINT COVARIANCES

Collecting the terms that contain SSSku we have

∂

∂SSSku
KL[q(uuuk)‖p(uuuk|θθθ)] =

1

2
ΩΩΩu
−1 − 1

2
SSSku
−1

∂E
∂SSSku

=
1

2

∫
T
dt

∂

∂SSSku
Tr

[[
SSSku 0
0 0

]
〈aaaθz(xxx)Taaaθz(xxx)〉qx

]
=

1

2

∫
T
dt[〈aaaθz(xxx)Taaaθz(xxx)〉qx ]:M,:M

where the last line selects the first M × M block from
〈aaaθz(xxx)Taaaθz(xxx)〉qx . We hence obtain the closed form update

SSSku =

(
ΩΩΩu
−1 +

∫
T
dt[〈aaaθz(xxx)Taaaθz(xxx)〉qx ]:M,:M

)−1

C.1.2. INDUCING POINTS AND JACOBIANS

To find the update efficiently, let JJJk = [JJJ
(1)
k,: , . . . ,JJJ

(L)
k,: ]T so

that we can write

µµµku = K̃KKzsK̃KK
−1

ss vvv
θ
k = K̃KKzsK̃KK

−1

ss

[
000
JJJk

]
= GGGJJJk

We can rewrite the quadratic terms in the Kullback-Leibler
divergences of the inducing points as∑

k

(µµµku −mmmk
u)TΩΩΩu

−1(µµµku −mmmk
u)

=
∑
k

[
mmmk
u

JJJk

]T [
ΩΩΩu
−1 −ΩΩΩu

−1GGG

−GGGTΩΩΩu
−1 GGGTΩΩΩu

−1GGG

] [
mmmk
u

JJJk

]
= Tr

[
MMMT

u,JΩ̃ΩΩMMMu,J

]
withMMMu,J =

[
mmm1
u . . . mmmK

u

JJJ1 . . . JJJK

]
and derivative

∂

∂MMMu,J

∑
k

KL[q(uuuk)‖p(uuuk|θθθ)] = Ω̃ΩΩMMMu,J

∂E
∂MMMu,J

=

∫
T
dt
[
〈aaaθz(xxx)Taaaθz(xxx)〉qx

]
[i,i]

MMMu,J

+

∫
T
dt
[〈
∇xaaaθz(xxx)

〉
qx

]T
[:,i]

SSSxAAA
T

−
∫
T
dt
[〈
aaaθz(xxx)

〉
qx

]T
[:,i]

(−AAAmmmx + bbb)T

Putting all terms together, we obtain the update

MMMu,J = BBB−1
1 (BBB2 −BBB3)
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Algorithm 1 Inference algorithm
Input: data {yi, ti}Ti=1,mmmx,0, SSSx,0, qf (fff), ∆t, T0, Tend
InitializeAAA(t), bbb(t)
R = T0−Tend

∆t
repeat

for r = 0 to R− 1 do
mmmx,r+1 ←mmmx,r −∆t (AAArmmmx,r − bbbr)
SSSx,r+1 ← SSSx,r −∆t

(
AAArSSSx,r +SSSx,rAAAr

T − I
)

end for
for r = R to 1 do
λλλr−1 ← λλλr −∆t

(
AAAr

Tλλλr +
(
∂`cont

∂mmmx
− ∂E

∂mmmx

)
|t=r∆t

)
−∆t∂`

jump

∂mmmx

∣∣∣
t=(r−1)∆t

ΨΨΨr−1 ←ΨΨΨr −∆t
(
AAAr

TΨΨΨr + ΨΨΨrAAAr + P�
(
∂`cont

∂SSSx
− ∂E

∂SSSx

)
|t=r∆t

)
−∆tP� ∂`jump

∂SSSx

∣∣∣
t=(r−1)∆t

end for
AAA =

〈
∂fff
∂xxx

〉
qxqf

+ 2ΨΨΨ

bbb = 〈fff(xxx)〉qxqf +AAAmmmx − λλλ
until convergence in F∗
return: {AAAr, bbbr,λλλr,ΨΨΨr,mmmx,r,SSSx,r}Rr=1

with

BBB1 =

(
Ω̃ΩΩ +

∫
T
dt
[
〈aaaθz(xxx)Taaaθz(xxx)〉qx

]
[uj,uj]

)
BBB2 =

∫
T
dt
[〈
aaaθz(xxx)

〉
qx

]T
[:,uj]
〈fffq〉Tqx

BBB3 =

∫
T
dt
[〈
∇xaaaθz(xxx)

〉
qx

]T
[:,uj]

SSSxAAA
T

and we have defined an indexing operation where [X][uj,uj]
selects the first M ×M and last LK × LK block of X
and [X][:,uj] selects the first M and last LK columns of X .
Hence, this selects the appropriate block matrices for the
updates. The one-dimensional integrals can be computed
efficiently using Gauss-Legendre quadrature.

C.2. Sparse Gaussian Process dynamics

Similarly, closed form updates are available in the sim-
pler case, when fff is modelled by a classic sparse Gaussian
Process, i.e. using inducing points without the additional
conditioning on fixed points and Jacobians.

SSSku = KKKzz

(
KKKzz +

∫
T
dt 〈κκκ(ZZZ,xxx)κκκ(xxx,ZZZ)〉qx

)−1

KKKzz

MMMu = SSSkuKKK
−1
zz

(∫
T
dtΦΦΦ1fff

T
q −

∫
T
dtΦΦΦd1SSSxAAA

T

)
Where ΦΦΦ1 = 〈k(xxx,ZZZ)〉qx and ΦΦΦd1 =

〈
∂
∂xxxk(xxx,ZZZ)

〉
qx

.

C.3. Linear dynamics

Our modelling framework also easily extends to other pa-
rameterisation of fff . For example, in a continuous-time lin-

ear dynamical system with fff(xxx) = −ÃAAxxx+ b̃bb direct minimi-
sation of the KL-divergence between the continuous-time
processes leads to the closed form updates

ÃAA =

(∫
T
dt
(
bbb〈xxx〉T − 〈fffq(xxx)xxxT〉

))(∫
T
dt〈xxxxxxT〉

)−1

b̃bb =
1

T

∫
T
dt (〈fffq(xxx)〉+AAA〈xxx〉)

reminiscent of the update equations for the generative pa-
rameters of a discrete-time Linear Dynamical System.

C.4. Output mapping

We consider an observation model of the form

yyy(ti) = CCCxxx(ti) + ddd+ εεεi

where εεεi ∼ N (ε|0,Γ). Dropping all terms that are constant
inCCC,ddd from the expression for the variational free energy,
we have

F∗ = −1

2

∑
t

〈
(yyyt −CCCxxxt − ddd)

T
Γ−1 (yyyt −CCCxxxt − ddd)

〉
qx

Differentiating and setting to zero gives

CCCnew =

(∑
t

(yyyt − ddd)mmmT
t

)(∑
t

(SSSx,t +mmmx,tmmm
T
x,t)

)−1

dddnew =
1

T

∑
t

(yyyt −CCCnewmmmx,t)
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D. Chemical reaction dynamics
The dynamical system used to generate the data in section
5.4 is of the form

dbI−cA
dt

=
(
kabI−cA + kbbI−c2A

) (
S0 − bI−cA

)
+
F1bI−c0
VA

− (F3 + F4)bI−cA
VA

+
F4bI−cD
VA

dbI−cD
dt

=
(
kabI−cD + kbbI−c2D

) (
S0 − bI−cD

)
+
F4bI−cA
VD

− F4bI−cD
VD

To generate the simulations, we use the parameter settings

bI−c0 = 4.4× 10−5 k0 = 2.7× 10−3

VA = 4× 101 F4 = 3.25× 10−3

VD = 1 F3 = k0Va

ka = 2.1425× 10−1 F1 =
1

2
F3

kb = 2.1425× 104 F2 =
1

2
F3

S0 =
1

2

(
bI−c0 + 1.42× 10−3

)


