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Abstract
The representation of acoustic stimuli in the brainstem forms the basis for higher auditory
processing. While some characteristics of this representation (e.g. tuning curve) are widely
accepted, it remains a challenge to predict the firing rate at high temporal resolution in
response to complex stimuli.

In this study we explore models for in vivo, single cell responses in the medial nucleus of
the trapezoid body (MNTB) under complex sound stimulation. We estimate a family of
models, the multilinear models, encompassing the classical spectrotemporal receptive field
and allowing arbitrary input-nonlinearities and certain multiplicative interactions between
sound energy and its short-term auditory context. We compare these to models of more
traditional type, and also evaluate their performance under various stimulus representations.

Using the context model, 75% of the explainable variance could be predicted based on a
cochlear-like, gamma-tone stimulus representation. The presence of multiplicative contextual
interactions strongly reduces certain inhibitory/suppressive regions of the linear kernels,
suggesting an underlying nonlinear mechanism, e.g. cochlear or synaptic suppression, as the

source of the suppression in MNTB neuronal responses. In conclusion, the context model
provides a rich and still interpretable extension over many previous phenomenological
models for modeling responses in the auditory brainstem at submillisecond resolution.
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Introduction

Projections of the medial nucleus of the trapezoid body (MNTB) are vital for

computing sound source locations in the subsequent centers of sound localization,

the medial and lateral superior olives (MSO, LSO, Moore and Caspary, 1983;

Brand et al., 2002; Pecka et al., 2008). Modeling sound localization in the MSO and

LSO might therefore require an accurate model of MNTB responses. In a previous

study (Brand et al., 2002), a model of auditory nerve fibers (ANFs, Carney, 1993)

has been substituted for MNTB responses. However, this model does not include

the integration on the way from the ANFs to the MNTB: first, a convergence of

ANFs occurs on the globular bushy cells of the cochlear nucleus, and second, the

responses could be processed during synaptic transmission at the calyx of Held in

the MNTB (Awatramani et al., 2004). In both locations the signal representation

could be influenced by changes in rate or timing, induced by convergent excitatory

and inhibitory inputs as well as cellular and synaptic dynamics (Kopp-Scheinpflug

et al., 2002).

In the present study we estimate a family of phenomenological models, in each

case evaluating their performance. Performance measures are important in neuronal

modeling, because drawing functional conclusions from poorly-fitting models may

be misleading. In contrast, interpretations of well-fitting models are far more likely

to be relevant to neuronal function. Phenomenological models are useful in that

they do not make many assumptions. On the downside, they often lack mechanistic

interpretability; however, the models estimated here do allow us to address

several important structural aspects, including stimulus representation,

nonlinear scaling, and the spectral and temporal relation of suppressive contextual

influences.

The multilinear models (Ahrens et al., 2008a) utilized in the present study have

been shown to improve predictions for firing rate models of neurons in the auditory

cortex. This class of models provides a principled and parsimonious extension over

classical models, such as spectrotemporal receptive fields (STRF, Aertsen et al.,

1981a; Kim and Young, 1994). Multilinear models offer a rich framework,

providing flexible kernel choices in the time, frequency, and stimulus level domain

with the possibility to investigate separability between each of the dimensions,

thereby controlling the number of degrees of freedom. Arbitrary input nonlinearities

can be estimated alongside classical time and frequency kernels. Multiplicative

interactions between two spectrotemporal locations can also be implemented in the

so-called context model, via the ‘‘contextual reweighting field’’ (CRF). Further,

data-driven, Bayesian regularization schemes such as automatic smoothness control

(Sahani and Linden, 2003a) are readily available. For the present study these

models were adapted to the requirements of the auditory brainstem, including a

50-fold higher temporal resolution, rendering the description close to the regime of

temporal coding.

We compared the performance of a variety of multilinear models based on three

different stimulus representations. We find that a cochlea-like stimulus represen-

tation in conjunction with the full-fledged context model provides the best

performance. On average 75% of the explainable power was predictable as a

function of the stimulus. In comparison to our reference model, the STRF, the final

context model provided an increase in predictive power of about 35%. The final

context model had combined time-frequency dimensions, nonlinear scaling
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functions on the input and the output as well as an optimized choice of sampling

rate and stimulus representation.

Methods

Experimental procedures

All experimental procedures were approved by the Saxonian District Government,

Leipzig. The physiological methods have been described in greater detail in Tolnai

et al. (2009) and are only provided biefly here.

Preparation. Thirty adult pigmented Mongolian gerbils (Meriones unguiculatus,

aged 2–4 months, weighing 45–70 g) were used in the present study. Anesthesia was

initialized by an intraperitoneal dose of xylazine-ketamine and maintained during

the experiment by hourly, subcutaneous injections. The skull of the animal was

exposed along the midsagittal line and a metal bolt was glued to the bone on bregma

and stabilized with dental cement. Two holes (centered and 1.5mm lateral, 1

0.5mm) drilled into the occipital bone 2–2.3mm caudal to the lambdoid suture

allowed the insertion of a recording electrode (glass micropipette, 3M KCl,

5–15M�) and a reference electrode (silver wire, WPI) in the superficial cerebellum.

Animals were placed in a sound-attenuated booth (Type 400, Industrial Acoustic

Company) on a vibration-isolated table and positioned in a stereotaxic device using

the metal bolt. The MNTB was approached dorsally with the animal tilted at 4–10�

to the midsagittal plane.

Neuronal recordings. Stereotaxic coordinates of the MNTB were determined by

online analysis of acoustically evoked multi-unit activity using low impedance

micropipettes (55M�). Differentiation of the MNTB from other nuclei within the

superior olivary complex was facilitated by the exclusively contralateral excitatory

input to MNTB units. Single-unit, extracellular voltage recordings were performed

using high-impedance glass micropipettes (8–30M�, GB150TF-10, Science

Products) filled with 3M KCl. Single units were identified by the characteristic

shape of their waveform. The complex of the calyx of Held (presynaptic) and the

principal cells of the MNTB (postsynaptic) produces complex waveforms which

distinguish them from other cell types and fibers in this nucleus (Guinan and Li,

1990; Englitz et al., 2009). Only units exhibiting such a complex waveform were

included in the analysis. The voltage signal was preamplified (Neuroprobe 1600,

A-M Systems, Carlsborg), band pass filtered (0.3–7 kHz), and further amplified

(PC1, TDT, Alachua) to match the input voltage range of the A/D converter

(RP2.1, TDT). Voltage traces were digitized (sampling rate SRrec¼ 97.7 kHz) and

stored for subsequent analysis.

Acoustic stimulus generation. Stimulus waveforms were generated at 97.7 kHz using

custom written software (Matlab 7.3, The Mathworks, Nattick). Stimuli were then

transferred to a real-time processor (RP2.1, TDT), D/A converted, and further sent

to a speaker (DT 770 pro, Beyerdynamic). Sound from the speaker was funneled
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into a plastic tube (35mm length, 5mm diameter) whose other end was inserted

into the outer ear canal at a distance of �4mm to the tympanic membrane. Acoustic

calibration was performed by convolving the stimulus with the earphone’s inverse

impulse response prior to stimulus presentation. The impulse response of the

system was estimated by presenting a 10 s white noise stimulus and computing the

real part of the inverse Fourier transform of the frequency transfer function (Matlab

function: tfe) between the original and recorded waveform (recorded with a

condenser microphone, Bruel & Kjær type 2618). The calibration was subsequently

verified to lie within �5dB of the target amplitude in the range of 0.5 to 48 kHz

before the experiment.

Modeling

The functional relationship modeled here is the translation of an auditory stimulus S

to a vector of instantaneous firing rates r. The actual firing rate �(i ) at time i is not

directly observed but estimated from the available trials as rðiÞ ¼ rnðiÞ ¼
1
N

PN
n¼1 rnðiÞ ¼

1
NDt

PN
n¼1 cnðiÞ, where N is the number of trials, Dt the time-step,

cn(i ) the counts and rn(i ) the rate in the n-th trial at time i and � denotes trial average.

The translation is captured by a neuronal response model consisting of three stages

(schematically depicted in Fig. 1(A)): (i) a time-frequency representation of the

sound pressure wave, (ii) a multilinear model over the dimensions time, frequency

and level, and (iii) a static output nonlinearity.

A time-frequency representation is included in the model to account for the fact

that the auditory system itself generates a time-frequency representation from the

scalar sound pressure wave at each ear. Motivated by the transformation properties

of the cochlea a number of time-frequency representations of the sound have been

in use for modeling neuronal responses, e.g. the spectrogram (Aertsen et al.,

1981a), the Wigner transform (Kim and Young, 1994) and other cochlea-inspired

transforms (e.g. Elhilali et al. 2004). We here compare the effectiveness of three

different representations to account for the neuronal response (in combination with

the following model architecture). The time-frequency representation is then

filtered by a multilinear model (Ahrens et al., 2008a), which constitutes a family of

models in the dimensions time, frequency, and level. This family includes several

models, e.g. the spectrotemporal receptive field (STRF, Aertsen et al., 1981a) and

the time-static models introduced by Young and coworkers (Yu and Young, 2000;

Young and Calhoun, 2005; Bandyopadhyay et al., 2007). Finally, a sigmoidal

output nonlinearity constrains the output of the model to obey the limits of neuronal

discharge rates. These stages are detailed below after introducing the probe

stimulus.

Broadband stimulus

The acoustic stimulus was a broadband sound with a prescribed spectrotemporal

profile of amplitude modulations. Its construction was a modified version of the

TORC (temporally orthogonal ripple combination) method (Klein et al., 2000)

which directly prescribes the modulation spectrum and constructs the acoustic

stimulus from this prescription. This method allows a restriction of the available
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stimulus energy to a limited range of frequency channels and therefore produces

higher modulation depths per channel. Adapting the TORC method for use in

brainstem structures essentially required increasing the maximal temporal modu-

lation rates to 800Hz (from �40Hz typical for the cortex).
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Figure 1. Overview of the overall model structure and stimulus representation. (A) Schematic
overview of estimated models. An acoustic stimulus is created from the spectrotemporal
prescription. This prescription or two other spectrotemporal representations of the stimulus
are used as input for the following models: First, a multilinear model of dimensions time,
frequency, and level is estimated, e.g. a STRF, an input nonlinearity model (IN) or a context
model. Second, an estimated output linearity rescales the multilinear prediction to the final
firing rate prediction. We compare the performance contributed by the individual parts.
(B) Construction of the different stimulus representations. The original TORC stimulus
(Prescription) is generated as the sum of 217 spectrotemporal ripples. This representation is
assumed to be logarithmically scaled with respect to the sound pressure level. Rescaling leads
to the linearly scaled spectrotemporal representation (middle row). Using this stimulus as an
instantaneous weighting of sinusoidal carriers leads to the acoustic stimulus (bottom). The
short-term Fourier transform (STFT) and the �-tone representation (right) are computed
from the acoustic stimulus based on their respective sets of time-restricted filtering functions.
From these linear representations a logarithmic scaling provides the representations
corresponding to the original TORC. (C) Schematic of the STRF and the context model.
In the STRF model (top) the stimulus is weighted by the time-frequency kernel wft (middle)
which produces the rate prediction (bottom). In the context model (bottom) a second time-
frequency filter wqr transforms the stimulus (left) by a similar weighting around a given time-
frequency point (dashed red rectangle around red point on the right). Both the original
and the transformed stimulus are then weighted by wft (middle) producing the rate prediction
(bottom). The colored and darkened rectangles illustrate the weighting regions for each
kernel. For displaying purposes the optional inclusion of input and output nonlinearities have
been omitted here.
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Amplitude modulations are better suited than fine structure modulations to

investigate the responses of MNTB units due to their dominantly high characteristic

frequencies (CF). These units have been shown to modulate their firing rate in

response to amplitude modulations of a carrier tone ( Joris and Yin, 1998; Tolnai

et al., 2008).

Construction of the TORC stimulus. In accordance with Klein et al. (2000), a TORC

stimulus is a sum of spectrotemporal ripples (Fig. 1(B)), which are orthogonal in the

time-domain (intended to ideally decouple their effects on the neuronal response).

The i-th spectrotemporal ripple is defined as a function of time t and logarithmic

frequency x

Riðt, xÞ :¼ Rðt, x, fwi,�i,�igÞ ¼ cos 2�ðwit þ�ixÞ þ �ið Þ

where wi denotes the i-th temporal modulation frequency, �i the i-th spectral

modulation frequency, and �i the i-th phase. Temporal orthogonality is defined via

Z T

0

Riðt, xÞRj ðt, xÞdt ¼ 0, for i 6¼ j

and holds as long as the temporal modulation frequencies differ in absolute value

(assuming T � maxðw�1
i ,w�1

j Þ). The whole TORC stimulus is then given by

SdBðt, x, fx, k,�gÞ ¼
X

N

i¼1

Rðt, x, fwi,�i,�i,igÞ:

For the ripple parameters the following ranges were chosen:

. temporal modulation frequencies wi : [�800, 800]Hz in 15 steps.

. spectral modulation frequencies �i : [0, 4.2] oct
�1 in 16 steps.

. phases �i,i : 0� 2� radians, randomly drawn for each ripple.

These parameters covered the upper half-plane of the spectrotemporal modulation

space approximately uniformly. As in Klein et al. (2000), the wi were shifted by

different amounts for each �i to avoid wi’s of same absolute value (see Fig. 9(B) in

Klein et al. (2000) for a depiction of the stimulus arrangement.). Spectral and

temporal modulation frequencies were additionally jittered (normal distribution

with a S.D. of 25% of the spacing in the respective dimension) around the

commonly used equal spacing to reduce long term correlations in the stimulus (due

to commensurate modulation frequencies). Caution was taken to preserve temporal

orthogonality, i.e. no absolute values of two wi were allowed closer than 1Hz.

The overall stimulus duration T was set to 5 s, i.e.440 repetitions of the lowest

temporal modulation frequency (7Hz). In the spectral direction the stimulus

spanned 3 octaves at a spacing of 0.1 octaves, amounting to a total of 31 frequency

channels. Altogether 217 ripples were summed to obtain the final TORC stimulus

(7	15 had negative wi, 7	16 ripples had positive wi, where the �i¼ 0 were contained

in the latter set, Fig. 1(B)). The distribution in each channel was nearly Gaussian

with S.D.� 8.75 dB (which has been termed spectral contrast in Reiss et al. (2007)

and Bandyopadhyay et al. (2007)).

Since MNTB cells usually exhibit approximately linear scaling of response rate

w.r.t. dB-scaled loudness, the amplitude modulation was by design linear in dB and

96 B. Englitz et al.



converted to sound pressure in the process of generating the sound pressure

waveform. Each amplitude was then logarithmically rescaled via the transformation

SPa(x, t)¼ 10(SdB(x,t)�A0)/20, where A0 was the loudness at which calibration had been

performed (80 dB). The resulting amplitudes were used for pointwise scaling of

each frequency channel, i.e. each sinusoidal carrier (phase uniformly randomized)

was amplitude scaled individually and the resulting signals added to produce the

acoustic stimulus.

To aid comparability, the same TORC profile of amplitude modulations was used

for all cells, however, on top of a different range of carrier frequencies adapted to a

unit’s CF. Further, the overall amplitude of the stimulus was chosen to drive the

neuron to high discharge rates (132� 38Hz, n¼ 96).

Choice of carrier frequencies. The choice of carrier frequencies was adjusted to each

cell’s CF (estimated prior to generating the TORC stimulus using a set of brief tonal

stimuli). Carrier frequencies encompassed 3 octaves ideally reaching from two

octaves below to one octave above the CF. This asymmetric spacing reflects the

asymmetric shape of the (logarithmic) frequency tuning of MNTB principal cells. If

the CF was closer than two octaves to the lower (0.5 kHz) or one octave to the upper

bound (48 kHz), the frequency range reached from the respective boundary three

octaves into the admissible frequency range.

Stimulus representation

The choice of stimulus representation can be an important determinant for the

predictive quality of the overall model. We therefore tested three different stimulus

representations to determine the one most suitable for prediction with the

multilinear models. We compared the short-term Fourier transform (STFT) and

a �-tone representation to the TORC representation described above (termed

‘Prescription’ in the following).

STFT. The STFT performs a windowed Fourier transform (Fig. 1(B) middle).

We used a Hamming window of length Lwin� 1ms with an overlap Wover ¼ Lwin �

SR�1
in . This overlap effectively reduces the sampling rate by a desired factor SRrec/

SRin, where SRin is the internal sampling rate of the model (see below). At

SRrec¼ 97.65625 kHz, Lwin stretches 100 bins, i.e. the STFT will divide the

frequency range equally in 50 steps from 0Hz to the Nyquist-limit. Due to the

logarithmic spacing of frequencies in the TORC, it is advisable to attempt to match

these frequencies with the original frequencies, effectively sparsening the linearly

spaced frequencies at the high frequency end. For comparability with the other

stimulus representations, the same number of frequencies (31) was selected. Since

phase information is likely to not be represented above 2.5 kHz, we used only the

absolute value of the spectrogram.

�-tone representation. The �-tone representation was inspired by the filter types

typically used for modeling early stages of cochlear signal transduction (Fig. 1(B)

right). Specifically, the sound pressure was first passed through a filter bank of
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�-tones centered at the original carrier frequencies of the TORC. Each �-tone’s

impulse response is given by

�f ,�ðtÞ ¼ t��1e�t=�ð f Þ cosð2� f tÞ

with �¼ 3, �( f )¼Q/f, and Q¼ 2.2, similar to the cochlear model of Zhang et al.

(2001). Cochlear latencies were not modeled directly to keep the delays in the

estimated kernels absolutely interpretable. Next, the amplitude of each �-tone

channel was estimated by taking the absolute value of the channel’s analytical signal

A (Matlab function: hilbert). Together this transform is given by

S�ðt, f Þ ¼ jAð�f ,� 	 SSPWÞj

All transformations were performed at SRrec and later downsampled to SRin.

Amplitude scaling. On top of these qualitatively different representations, the

appropriate scaling of the stimulus could influence the effectiveness of a given model

(Escabi et al., 2003). Although by far not exhaustive, we compared both linear and

logarithmic scaling of the amplitudes for each representation. A similar comparison

of stimulus representations has been conducted in several avian auditory nuclei by

Gill et al. (2006), with only partially consistent results as to the effectiveness of each

representation.

Sampling rate. Finally, SRin can influence the predictive power. SRin ranging from

�1 to �5 kHz were compared with respect to their predictive quality for the

separated model (see below & Results, Fig. 3). A SRin of �2.2 kHz was found to

maximize the predictive quality and therefore used in estimating all subsequent

models. This resolution is fine enough to guarantee that each bin contains only one

spike per trial, leading to binomial sampling distributions. For comparability the

same SRin was chosen for all cells. Unfortunately this resolution is still too low to

resolve interaural time differences (ITDs). Resolving ITDs in the MNTB could be

required, given that its projections to the MSO/LSO are important for computing

sound location (Brand et al., 2002; Pecka et al., 2008), possibly based on ITDs of

the stimulus envelope (Bernstein, 2001; Bernstein and Trahiotis, 2002).

Multilinear models

We have investigated a hierarchy of models which differ in their model order (first

or second order), separability of dimensions (separated or combined), and input

scaling (linear or nonlinear). This range of models is accommodated within the

framework of multilinear models (Ahrens et al., 2008a). Details on model structure,

estimation, and regularization have been provided previously (Sahani and Linden,

2003a; Ahrens et al., 2008a) and are therefore only given briefly.

All models are conveniently described in the language of k-dimensional arrays

which we either denote as tensors Ma. . .z (bold fonts) or element-wise Ma...z
a...z (regular

fonts), where the upper letters specify the ‘physical’ dimensions of the tensor. For

example, a time kernel will be denoted as wt, a time-frequency kernel as wtf, and a

multi-dimensional stimulus matrix asMitfl, where the letters i, t, f, l, represent time,
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response delay, frequency, and level, respectively. The lower letters specify the

current (multi)index in the respective dimensions. All indices run from 1 to a

maximal integer, usually denoted by the corresponding capital letter, e.g. i usually

runs from 1 to I. Two tensor operations are required for the present model, briefly

(a more detailed description is provided in Appendix B): (i) the generalized inner

product sums out certain dimensions (e.g. for generating a prediction), for example

a 2D matrix can be contracted with a 1D kernel to yield another 1D kernel

Qf ¼ wt 
Mtf with Qf
k ¼

X

j

wt
jM

tf
jk :

(ii) The generalized outer product combines smaller tensors into larger ones (e.g.

for generating a less separated model), for example a 2D kernel can be constructed

from two 1D kernels

wtf ¼ wt �wf with wtf
jk ¼ wt

jw
f
k:

The multilinear models linearize potentially nonlinear transformations by

representing the stimulus in a way that allows formulating and estimating a

number of nonlinear transformations via linear operations. Usually this is achieved

by expressing nonlinear or noninstantaneous maps as linear combinations of

suitable basis functions. In general, a multilinear model is given by

r̂ii ¼
X

j1,...,jn

w
k1
j1
. . .w

kn
jn
Q

ik1...kn
ij1,...,jn

or r̂i ¼ ðwk1 � � � � �wkn Þ 
Qik1...kn ,

where the wk. denote the linear kernels for dimension k. and Qik1...kn the new

stimulus representation. The index i for the time dimension i runs from 1 to I.

While the model structure is simple and the kernels are directly interpretable, the

heart of a multilinear model lies in the representation Qik1...kn .

The set of multilinear models estimated here is almost the same as in Ahrens et al.

(2008a) and will therefore be described only briefly. Broadly, two subsets of models

are distinguished, the input nonlinearity models and the context models.

Input nonlinearity models. This set of models includes an arbitrary transformation

of the stimulus level in addition to a linear mapping from the spectrotemporal

stimulus representation. The neuronal response is then represented as

r̂ ¼ ðwt �wf �wlÞ 
Qitfl,

where Qitfl is a representation of the stimulus as a function of peristimulus time i,

lag time t, stimulus frequency f, and level l. The level representation is based on a

basis function representation of the stimulus. For the present study these basis

functions simply constituted a binning of the range of levels. The kernels wt, wf, and

wl correspond to the respective stimulus dimension and are combined by the outer

product to a matrix compatible in size for the inner product with Qitfl.

Context models. In contrast to the input nonlinearity model, stimulus features at

different times or frequencies can be combined multiplicatively in the context model.

Intuitively, these can be thought of as a local neighborhood in the stimulus – the
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context – which modifies each point in the stimulus multiplicatively, before the

principal filters are applied to produce the response (Fig. 1(C)). This local

modification is another linear kernel on the spectrogram – the contextual

reweighting field (CRF, Ahrens et al., 2008a). As in the input nonlinearity model

the CRF can be extended to contain another weighting of stimulus level. In the

present study the principal filters were either given by a spectrotemporal kernel

(similar to an STRF) or an input nonlinearity model. As detailed below, estimation

of all kernels was done simultaneously rather than independently.

The full context model is given by

r̂ ¼ ðwt �wf �wl �ws �w/ �wkÞ 
Qtfls/k,

where the lag kernel ws, the frequency kernel w/, and the amplitude kernel wk form

the CRF. The stimulus representation Qtflqrj is computed to contain the

corresponding multiplicative interactions between different points in the time-

frequency-level representation of the stimulus on which the CRF operates.

Note, that both the input nonlinearity and the context model can model a

constant offset (background) rate by extending the stimulus representation

appropriately (detailed in Ahrens et al. 2008a). Also, for comparison with other

models certain kernels can be left out, e.g. the input nonlinearity for comparing the

input nonlinearity model with the STRF. To distinguish the first-order spectro-

temporal kernel in the nonlinearity/context model from the classical STRF, we will

refer to it as the principal receptive field (PRF).

Grouping of stimulus dimensions. While a fully dimension-separated representation

of the multilinear kernels is preferrable for parsimony in the number of parameters,

interactions between certain stimulus dimensions can lead to inseparabilities

(e.g. Depireux et al., 2001). These can be accounted for in the multilinear frame-

work by grouping certain stimulus dimensions. For example, if time and frequency

are assumed to be inseparable, the input nonlinearity model can be modified

to r̂ ¼ ðwtf �wlÞ 
Qitfl, where wtf denotes the time-frequency kernel. This

grouping can be applied to any set of kernels in the aforementioned models. For

notational convenience, the models will be abbreviated by their grouping structure,

e.g. tf� l.

Model estimation. Errors and parameter priors were assumed to follow a Gaussian

distribution. Under this assumption, maximizing the likelihood of the data given the

model becomes equivalent to minimizing the squared error

" ¼ kr�W 
Qk2 ¼
X

I

i¼1

ðrðiÞ �W 
QiÞ2

a problem which is solved by linear regression.

In the multilinear setting the full kernel W is given by the outer product of the

individual kernels, W¼w1� � � ��wn. Estimating W directly by linear regression

would lead to an oversized representation and require a post-hoc step to estimate

the constituent kernels w
k. Ahrens et al. (2008a) proposed an iterative algorithm
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based on the alternating least squares method to estimate the wk directly. Starting

from the expanded error expression

" ¼ kr� ðw1 � � � � �wnÞ 
Qk2

the following set of equations

Qð1Þ ¼ ðw2 � � � � �wnÞ 
Q w1 ¼ ððQð1ÞÞTQð1ÞÞ�1ðQð1ÞÞTr

.

.

.
.
.
.

QðnÞ ¼ ðw1 � � � � �wn�1Þ 
Q wn ¼ ððQðnÞÞTQðnÞÞ�1ðQðnÞÞTr

can be derived by differentiating with respect to each wk. Each equation minimizes

the squared error with respect to the corresponding dimension k, providing the

updated kernel wk. Since each step reduces the lower-bounded error ", the iteration

has to converge eventually. Estimation was terminated if
kwk

new�wk
old

k

kwk
newk

5 0:005 for all

kernels wk, which was usually reached after a few iterations. For the input

nonlinearity model this criterion was already achieved after 3–4 iterations, while

context models converged after �20 iterations.

Regularization. Some of the estimated linear models contain hundreds of

parameters. Spurious correlations between stimulus and response are often reflected

in noisy parameter estimates. This overfitting can be limited by supplying prior

information on the parameters. Matching this prior to aspects of the observable data

reduces the arbitrariness of this general strategy. Sahani and Linden (2003a)

developed a method to adapt the covariance structure of the parameters to the

evidence given by the data. This method effectively controls the smoothness

between parameters and has therefore been termed Automatic Smoothness

Determination (ASD, see Sahani and Linden 2003a and Ahrens et al. 2008a for

details). All estimates were regularized using ASD for the first three iterations of the

alternating least squares procedure after which the prior parameters were kept fixed

to guarantee convergence of the kernel estimation.

Degeneracies. For the multilinear models, certain parameter choices can lead to the

same global mapping. While the predictive power is not influenced by these choices,

the certainty with which a parameter can be constrained often decreases severly. We

implemented the counter-measures detailed in Ahrens et al. (2008a) for both the

‘scaling’ degeneracy (level related) and the ‘additive’ degeneracy (context related).

Output nonlinearity

A static output nonlinearity can improve the predictive power by (i) confining the

predicted firing rate within its natural bounds (�0–1300Hz, based on a typical

refractory period of 0.7ms in the MNTB) and (ii) approximating certain static

nonlinear transformations which cannot be captured by the linear model (see

Ahrens et al. (2008b) for a dramatic example of this kind).

Since the ability for generalization is typically inversely related to the number of

free parameters, we attempted to find a functional prototype with only a small
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number of parameters which captured the range of observed output nonlinearities.

An extended sigmoidal function served this purpose well, given by

s2ð pÞ :¼ r0 þ
rmax

1þ e�k1ð p�p1Þ þ e�k2ð p�p2Þ
,

depending on 6 parameters: a minimal rate r0, a maximal rate increase rmax, and two

pairs of shift (p1,2) and slope parameters (k1,2). An example is shown in Fig. 6(A).

The realizable functional forms of s2(p) account for the different curvatures of the

nonlinearity close to its lower and upper saturating values. More complex functions

did not improve crossvalidation performance beyond the level attained with s2.

Estimation of the nonlinearity can either be performed jointly with the linear

model or sequentially. A previous comparison for cortical neurons (Ahrens et al.,

2008b) suggested only slight improvements of joint over sequential estimation.

Therefore we considered it acceptable to estimate the output-nonlinearity post-hoc

using nonlinear least-squares minimization (Matlab function: lsqnonlin), i.e.

between the multilinear prediction and the PSTH.

Model evaluation and analysis

Model evaluation. The performance of the different models was compared based

on their predictive power � (Sahani and Linden, 2003b; Machens et al., 2004),

defined as the difference between total and error power normalized by the estimated

signal power, i.e.

�ðfrngn¼1,...,N Þ :¼
PðrnÞ � Pðrn � l̂Þ

P̂ðlÞ
ð1Þ

where � denotes trial average, l is the true, but unobserved firing rate, and the power

of a signal s is defined as

PðsÞ :¼ hðs� sÞ2i ¼
1

T

X

T

i¼1

sðiÞ �
1

T

X

T

j¼1

sð j Þ

 !2

:

The estimator for the signal power P̂ðlÞ :¼ 1
N�1

NP rnð Þ � PðrnÞ
� �

is unbiased and

only assumes additivity and independence between signal and noise (Sahani and

Linden, 2003b). The predictive power is a measure of the explained variance with

respect to the signal, i.e. explainable variance. In comparison, the fraction of

explained variance is defined as fVE :¼ PðrnÞ�Pðrn�l̂Þ
PðrnÞ

and is known to underestimate the

predictive quality in the presence of noise since the denominator overestimates the

explainable variance.

Applying model estimation and prediction to the same dataset (insample

estimate) overestimates the true predictive power, since the model also learns

some of the noise in the dataset. Conversely, estimating the model on one part of the

dataset and predicting another part (crossvalidation estimate, 80% training set, 20%

test set, 5 divisions) underestimates the true predictive power, since the learned

noise worsens the prediction on the unseen data. For linear models, these estimates

diverge linearly with the power of the noise, with the slope determined by the signal

power and the model complexity (B.E., unpublished results). Given a model class,
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its true predictive power is therefore to be found between the insample and the

crossvalidation estimate.

When evaluating model performance one faces two tasks: attributing a perfor-

mance to individual cells and attributing a performance to the considered

population of cells. Consider first the latter task: An approach taken by Sahani

and Linden (2003b) and Ahrens et al. (2008a) is to depict � as a function of noise

power and extrapolate (linearly or nonlinearly) to zero noise power. This

extrapolation is performed separately for crossvalidation and insample predictions

yielding lower and upper bounds of � respectively (examples of this extrapolation

are shown in Fig. 5(A–D)). These bounds would then be assumed to quantify the

level to which the given model can account for the investigated stimulus-response

mapping. This, however, assumes that all instances, i.e. cells, are similarly well

described by the applied models. If this assumption is severely violated, these

extrapolations can give erroneous results, since the population properties dominate

the noise dependence. Fig. 5(A–D) exemplifies this problem since the predictive

power of the crossvalidation fits (gray) increase with noise power. At the same time

the differences between the insample and the crossvalidation estimation for

individual cells are mostly small, especially compared to the range of predictive

powers in the population. Quantitatively, the average difference between insample

(IS) and crossvalidation (CV) predictive powers was only 7% of the average

difference of predictive powers between cells for any of the models estimated

(measured as the S.D. of the differences for the input nonlinearity model, 0.8% vs.

12.7%). As theoretically predicted, the differences do increase as a function of noise

power (r¼ 0.7, data not shown).

Therefore the population predictive power had to be estimated differently. First,

the single cell predictive power was estimated by taking the average between the

insample and crossvalidation predictive power. Since ASD-regularized estimates

were obtained in both cases, the divergence rates for increasing noise should be

similar (see Appendix A for a semianalytic proof of this claim). If this holds, the

average should be a reasonable estimate of the true predictive power. A model’s

predictive power on the entire dataset was then defined as the median of these

averages since their distribution across the population was skewed towards higher

predictive powers. Using only regularized estimates might underestimate the

model’s performance for a given dataset. Regularized estimates avoid counterintu-

itive values of � (�41, �50) and provide smoother kernel estimates for the

insample estimates. Note, that Sahani and Linden (2003b) used unregularized

insample estimates to gauge the full potential of STRFs for explaining the data.

In cell-by-cell comparisons for two models or conditions, the average between the

insample predictive power and the crossvalidation predictive power is used. In

histograms the average insample predictive power is compared to the average

crossvalidation predictive power, thus providing a measure of the margin between

them (Predictive powers for all cells and tested models) are provided on the web

(http://www.mis.mpg.de/jjost/neuro/englitz/ ).

Model analysis. Assigning significance to certain regions in the estimated kernels

requires estimating their distribution. Under the assumption of a normal distribu-

tion, estimating the standard deviation suffices. Using bootstrap resamples (Efron

and Tibshirani, 1993) these standard deviations were estimated pointwise for each
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model and cell (10 resamples). Deviations from zero were considered significant if

they exceeded 3 standard deviations, corresponding approx. to a p50.01 criterion.

Kernels were oversampled by a factor or four before analysis (using Matlab

function: interp1 and interp2). Contours were extracted (Matlab function: contourc)

for each region of significant deviation and quantified in several dimensions,

including spectral and temporal position and bandwidth, size, and weight. All

spectrotemporal positions were measured at their peak. For suppressive regions the

spectral and temporal location was further measured relative to the main excitatory

region.

Results

We analyzed extracellular recordings from 96MNTB principal cells of the

Mongolian gerbil. For each cell we collected 20 or more trials in response to a

broadband, noise-like stimulus (Fig. 2(A1)). For comparability the same number of

trials (20) was used to construct the PSTH which went into estimating the models.

The first 50ms of the response were excluded from the fitting procedure to avoid

onset effects. The first trial was not excluded, since no difference in predictive

power or receptive field structure was apparent.

An example of a neuronal response is shown in Fig. 2(A2). The spiking pattern

varies rapidly in response to the temporal modulations in the stimulus (Fig. 2(A3),

(A4)), consistent with the frequency range of rate comodulation of MNTB neurons

( Joris and Yin, 1998; Tolnai et al., 2008). Many cells exhibited episodes of highly
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Figure 2. Single cell responses vary in temporal precision over time and across trials. The
spectrotemporal stimulus (A1) elicits a neuronal response (A2). At least 20 trials (A3) were
collected for each cell, yielding the PSTH (A4). The reliability of the response is strongly
modulated over time with intermediate phases of high temporal precision. (B) The firing rate
varied across cells, but was uncorrelated to the normalized noise power. (C) The signal
powers of all cells were significantly greater than 0 (error bars do not include 0) and exhibited
only weak correlation with noise power. (D) The normalized noise power decreases with CF
corresponding to an increase in signal to noise ratio with CF.
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reliable, precisely timed (0.5–1ms) responses in firing rate, containing a spike in the

corresponding bin of most trials.

Individual neurons discharged at a range of average firing rates, depending on

their tuning and internal properties. Not all cells could be driven up to the same

firing rate. Interestingly, firing rate was not predictive of a cell’s overall reliability of

discharge. This relationship is shown in Fig. 2(B), where the noise power P(�)

normalized by the power of the systematic response P(�), denoted as P�(�), serves

as an inverse measure of reliability, i.e. responses are perfectly reliable at zero noise

power and become more unreliable for higher noise powers. In general, the

reliability of spike timing varied strongly across cells and as a function of peri-

stimulus time within a given cell.

While P(�) always exceeded P(�) (Fig. 2(C)), the estimated variances of P(�)

indicate that all cells modulated their firing rate significantly in response to the

stimulus. The criterion for significant modulation was that zero was not within 2 S.D.

of the estimated P(�). Hence, no cells needed to be excluded based on this criterion.

Interestingly, P�(�) decreased significantly as a function of characteristic

frequency (CF, p510�6, Pearson correlation coefficient, Fig. 2(D)), corresponding

to a relative increase in signal to noise ratio as a function of CF. This dependence

was based on an increase of P(�) as a function of CF (p510�6), while P(�) was

uncorrelated to CF (p¼ 0.3).

For the following analysis we considered the firing rate as the stimulus dependent,

deterministic variable, and the spike timing variations as stimulus-unrelated noise.

Parameter and model selection

We systematically optimized the sampling rate and the stimulus representation, as

described in the following two sections. The subsequent three sections are dedicated

to our choices of model structure.

Submillisecond sampling rate provides best performance

The sampling rate of the model was chosen to optimize the predictive performance.

Sampling rates between 1 and 5 kHz were tested. The choice of the lower bound was

guided by knowledge about the modulation properties of MNTB cells (up to 1 kHz,

Tolnai et al. (2008)). The upper bound was restricted by the memory resources

required to estimate the available models, especially the full context model (with a

7-dim. Q). In this section and the next, the simple STRF model with the linearly

scaled Prescription stimulus and unregularized regression was used since this setting

was least time consuming. Results with other models and estimation methods were

similar.

The choice of sampling rate influences the coarseness of the stimulus (Fig. 3(A))

and the response representation (Fig. 3(B)). At high sampling rates, the available

number of trials can be too low to provide useful firing rate estimates, and further

the models are prone to overparametrization. At low sampling rates estimates

become cleaner but might miss details in both stimulus and response. For the

considered range, both the fraction of explained variance fVE and the predictive

power � assumed a local maximum at 1.5 kHz and 2.2 kHz, respectively (Fig. 3(C)).
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Since � assumes a plateau starting at �1.6 kHz, we additionally collected a

histogram of sampling rates providing best � and fVE for individual cells (Fig. 3(D)).

As argued before, � provides a better estimate of the predictive quality than fVE we

chose its optimal firing rate (2.2 kHz) as the standard sampling rate for all further

models. Note that this optimum could be dependent on the available stimulus set

and might be different for other sets.

Cochlea-like stimulus representation provides best performance

The stimulus representation corresponds to a linear or nonlinear preprocessing of the

stimulus and can reshape the stimulus to be better adapted to the subsequent model

stages. We compared three spectrotemporal stimulus representations, the descrip-

tion used in designing the stimulus (‘Prescription’, Fig. 4(A)), a classical short-term

Fourier transform based spectrogram (Fig. 4(B)) and a �-tone based, cochlea-like

representation (Fig. 4(C)). The choice of representation and its scaling, either

logarithmic (corresponding to dBs, Fig. 4(A1–C1)) or linear (corresponding to

sound pressure) scaling significantly influenced the predictive power of the model.

The linearly scaled �-tone representation (Fig. 4C2) led to the best performance

among the tested alternatives. Compared to the Prescription representation the

difference was 8.6% on average with improved performance essentially across the

entire population (Fig. 4(D)). The STFT representation led to an average

improvement of 6.3% with respect to the Prescription representation, thus 2.3%

less than the �-tone representation (Fig. 4(E)). For the �-tone representation the

linear scaling compared favorably with the logarithmic scaling at a quantitative

advantage of 1.8% (Fig. 4(F)). In these comparisons the improvements were highly

4.88 kHz
F

. 
[o

c
t]

(A1)

0 10 20 30 40 50
0
1
2
3

0 10 20 30 40 50
0

1

2

F
R

 [
k
H

z
]

Time [ms]

(B1)

2.17 kHz(A2)

0 10 20 30 40 50
0
1
2
3

0 10 20 30 40 50
0

1

2

Time [ms]

(B2)

0.977 kHz(A3)

P
o

w
e

r

0 10 20 30 40 50
0
1
2
3

0

max

0 10 20 30 40 50
0

1

2

Time [ms]

(B3)

1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

SR [kHz]

f V
E

 &
 β

 

(C)

1 1.5 2 2.5 3 3.5 4 4.5
0

10

20

30

SR [kHz]

#
 M

a
x
im

a

f
VE

β

(D)

Figure 3. The sampling rate influences the model performance. Stimuli (A1–A3) and PSTHs
(B1–B3) for three of the sampling rates (SRs) ranging from 1 to 4.9 kHz are depicted. The
fraction of explained variance fVE (black) and the predictive power � (gray) depend on SR
(C). The average of fVE peaks around 1.5 kHz, whereas � reaches a plateau above �1.6 kHz
with a shallow peak at 2.17 kHz. This peak coincides with the maximum number of �-optimal
SRs in the population (D). The model was an STRF with output nonlinearity based on the
Prescription stimulus.
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significant (p50.001). Significance was assessed with the Wilcoxon signed rank test

for a nonzero median on the differences between the two conditions. Stars in the

upper left corner of this and the following figures indicate significance, with ?, ??,

and ???, corresponding to p50.05, p50.01, and p50.001, respectively.

The histograms in Fig. 4(G) show both the average crossvalidation (black bar)

and the insample (white bar) performance for linear scaling. Since both perfor-

mances lie above the respective performances of the other representations, the �-

tone representation can be considered the better choice. In all further models this

combination of representation and scaling was used.

This choice of representation is consistent with the result obtained by Gill et al.

(2006), where a cochlear model (Lyon, 1982) provided the best performance.

Concerning the scaling the results differ as dB-scaled spectrograms led to better

predictive power in the aforementioned studies. A direct comparison is nontrivial

since Gill et al. (2006) recorded from neurons of the avian mid- and forebrain.

Grouping dimensions improves performance

After fixing the sampling rate and stimulus representation, we step through the

family of multilinear models. First, we consider variants of the input nonlinearity

model based on the three stimulus dimensions time, frequency, and sound level, by

grouping pairs of dimensions. While this procedure increases the number of model

parameters, it allows modeling inseparabilities between the dimensions.
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Figure 4. Comparison of different stimulus representations. Examples of each representation
are shown in (A–C) in linear (A1–C1) and logarithmic scaling (A2–C2). The predictive
power from STRF models was highest for the linear �-tone representation. In comparison
with the linear Prescription representation the increase was 8.6% in (D), compared to only
2.3% in comparison to the STFT in (E). (F) Linear scaling outperformed logarithmic scaling
by 1.8% on average. (G) Bar plots for the crossvalidation (black) and insample (white)
performance indicate that the �-tone representation also provides more consistent
performance than the STFT.
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The population differences in predictive power usually exceeded the differences

between the values for insample and crossvalidation for individual cells

(Fig. 5(A–D)). In the input nonlinearity model with separated dimensions the

latter differences remain small over the whole range of noise powers.

Correspondingly, the extrapolations for insample and crossvalidation predictive

powers stay close and both increase as a function of noise power (see Methods). The

time-frequency grouped model displays substantially larger noise dependent

deviation between the two estimates than the other two model variants (compare

Fig. 5(B) with Fig. 5(C&D)). This seems surprising given the number of free

parameters of each variant (tf� i: 522, fi� t: 822, ti� f: 447). However, since the

ASD regularization for intensity usually extended over many more bins than either

of the other two dimensions, the effective number of free parameters is lower in the

latter two variants, where intensity is part of the two dimensional kernel.

Considering the best performance over all grouped models brings an average

increase in predictive power of 3.3% over the fully separated model. This increase is

fairly homogeneous over the entire population (Fig. 5(E)). Separated by model

variant (Fig. 5(F)), the time-frequency grouped model performs better than the

other models in 58% of the cells, followed by the time-intensity grouped model at

30%, and the frequency-intensity grouped model at 11%. The fully separated model

never performed best, even for crossvalidation estimates. Histograms for insample
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Figure 5. Insample (black) and crossvalidation (gray) results of the individual models vary less
than population results. (A–D) shows the results for the fully separated (A) and two
dimensions grouped input nonlinearity models (B–D). The insample and crossvalidation
regressions reflect the population trend rather than the expected noise-performance relation.
(E) Fusing dimensions improves model performance with the best of the three grouped
models performing 3.3% (on average) better than the separated model. (F) In 58% of the
cells fusing time and frequency performed better than fusing time and intensity (30%) or
frequency and intensity (11%). (G) Despite the dominance of the time-frequency model for
individual cells, the averages are close (insample: white, crossvalidated: gray levels). The
time-frequency model exhibits the highest population variance. Interestingly, the time-
intensity grouped model has the best crossvalidation performance.
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(white) and crossvalidation power (colored, Fig. 5(G)) reflect differences in noise

dependence observed in Fig. 5(A–D), but also show that the average differences

between the three grouped models are only minor.

Effects on performance of input nonlinearity and output nonlinearity

Estimating a static, nonlinear rescaling of either stimulus level or neuronal response

(or conversely the prediction) improves the representational capabilities of the

multilinear models. While the nonlinearity after the multilinear model (output

nonlinearity, ON) is estimated between the multilinear prediction and the data, the

nonlinearity on stimulus level is directly estimated within the multilinear framework

(Ahrens et al., 2008a). Hence, both the difference in location and in estimation

could lead to differences in predictive performance.

As output nonlinearity we estimated the double exponential sigmoid s2 with 6 free

parameters (see Fig. 6(A) and Methods). In the depicted example the nonlinearity

maps predictions below the diagonal closer to the diagonal, thus improving the

predictions. On the population level, adding an output nonlinearity (Fig. 6(D)) or

adding an input nonlinearity (Fig. 6(E)) to an STRF model improves performance

(probably coindicentally) by a similar percentage (4.8% and 4.1% respectively), in

both cases consistently across the population. Different cells benefit relatively more

from one or the other nonlinearity, as illustrated by Fig. 6(F). The cell dependence

suggests combining the two nonlinearities: this provides a substantial (5.4%) and

consistent increase over the STRF model (Fig. 6(G)), thus emphasizing the need for

nonlinear scaling at different stages of the models.
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Figure 6. Input and output nonlinearity account for similar effects. (A) In the case of a STRF
model the relationship between the linear prediction and the observed firing rates appears to
be a sigmoidal nonlinearity, modeled here by a biexponential sigmoid (see Methods). (B) and
(C) show the same data as A as density plots (normalized vertically), where the effect of the
nonlinear rescaling is shown in C, moving the density closer to the diagonal. For the
population the predictive power of STRF models increased by 4.8% with an additional
output nonlinearity (D) and by 4.1% with the input nonlinearity (E). The performance of the
STRF models with a nonlinearity either at the input or at the output were nearly identical
(f, 0.6%). Combining the two nonlinearities provides the strongest increase (g, 5.4%).
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CRF systematically improves performance

The context model adds a second level of kernels of the same dimensions (time,

frequency and level), as the input nonlinearity model and combines them

multiplicatively with the first. We here compare it with the time-frequency grouped

input nonlinearity model. Predictions and model kernels of both models are shown

for four cells in Fig. 7 (left column).

The context model without nonlinear scaling improves the performance by 2.8%

(Fig. 8(A)); including the nonlinear stimulus scaling improves it by another 0.4%

(Fig. 8(B)). Importantly, this increase is also present when considering only the

crossvalidation results (Fig. 8(C)). The improvements due to the added context

suggest that multiplicative interactions are relevant when modeling the present

neuronal responses.

In summary, while the individual improvements in the previous sections were

small, appropriate choices of sampling rate, stimulus representation, and several

aspects of model structure improved the performance in total by �20%. Starting

from about 55% (STRF, Prescription, low sampling rate, no output nonlinearity) to
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Figure 7. Predictions and kernels for individual cells and models. The left column depicts the
PSTH (grey) and the respective predictions of the separated (red, t� f� l), the time-
frequency grouped (blue, tf� i) and the full context model (cyan, tf� l� s/� k). The right
hand side depicts the kernels of the time-frequency grouped model on top and the kernels of
the context model on the bottom (respectively for each cell). (A) While the depicted cell was
least predictable, it is an interesting example for a transfer of structures from the time-
frequency kernel to the context field, keeping its tilt and relative location to the main
excitatory field. (B) Substantial improvement can be achieved in a number of cells by
grouping the time-frequency dimensions, here amounting to ?30% and almost 40% when the
context field was included. The cases in (C) & (D) are characteristic for the majority of cells
in the sample, where grouping of dimensions and adding the CRF lead to a consistent, yet,
smaller increase in predictive power �.
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more than 75% (context model, �-tone, intermediate sampling rate, input or output

nonlinearity), this increase corresponded to a relative increase of more than 35% in

predictive power. Relative to a similarly optimized STRF model (STFT, interme-

diate sampling rate, output nonlinearity) the improvement by the multilinear model

was 8%.

Physiological interpretation of model properties

The model parameters allow a natural interpretation in terms of classical temporal

and spectral quantities, i.e. as (relative) latencies, preferred frequency as well as

temporal and spectral bandwidth. We measure and attribute these quantities to

parameters which are significantly different from 0, assessed by the S.D. obtained

from bootstrap resampling. Neighboring parameters of same polarity are treated as a

field or region.

Time-frequency kernel. An example of a PRF (from an input nonlinearity model)

with an overlay of the significance boundaries of each field is depicted in Fig. 9(A).

PRFs usually had only one excitatory (red) and a number of inhibitory (blue)

regions. For further analysis, we subdivided the inhibitory regions into 4 classes:

(i) LF¼ below CF, (ii) HF¼ above CF, (iii) CF(L)¼ at CF with lower latencies

than the excitation and (iv) CF(H)¼ at CF with higher latency than excitation.

While the LF and HF regions probably indicate cochlear processing or neuronal

inputs, the CF regions could also correspond to internal dynamics (e.g. adaptation)

or network dynamics.

The excitatory and inhibitory fields of the present neuronal sample cover

essentially (up to the high frequency limit determined by speaker calibration range)

the entire range of auditory frequencies audible by the gerbil (Fig. 9(B)). The

excitatory fields’ latencies are not strongly dependent on CF consistent with

previous findings in the auditory nerve for CFs above 2 kHz (Recio-Spinoso et al.,

2005). Inhibitory fields broaden temporally with CF and extend up to 6–8ms.
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Figure 8. Including the context part systematically improves predictive performance. (A) The
context model without nonlinear input scaling performs 2.8% better than the input
nonlinearity model, both with grouped time-frequency kernel. (B) The context model with
input nonlinearity performs only slightly better (0.4%). (C). While the variances of the
context models exceed that of the input nonlinearity, they still provide better crossvalidation
performance (black).
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Some of the CF inhibitory fields prior to the excitatory field seem to occur at

unphysiologically low latencies. They probably correspond to temporal correlations

in the response which reappear as temporal correlations in wtf, e.g. due to the

refractory period in between spike sequences.

Histograms of spectral and temporal location and width as well as total weight are

shown in Fig. 9(C). The excitatory latencies are quite constrained around an

average of 2.6ms (The average latency is slightly smaller (�0.3ms) than usual

estimates, probably due to phase delays generated by the �-tone filtering.). The CF

distribution is skewed towards higher frequencies, corresponding to the CF

Figure 9. Spectrotemporal properties of the principal receptive field (PRF) for the input
nonlinearity model (A–C) and comparison with the context model (D–F). (A) Example of an
oversampled PRF with contours delimiting regions of significant deviation. In all graphs red
lines indicate excitatory and blue lines inhibitory regions. Inhibitory regions were subdivided
into 4 classes: (i) LF¼ below CF, (ii) HF¼ above CF, (iii) CF(L)¼ at CF with lower latency
and (iv) CF(H)¼ at CF with higher latency. (B) Shape and absolute spectrotemporal position
of main excitatory (left) and inhibitory (right) fields for the entire population.
(C) Distribution of a range of spectral and temporal properties of excitatory (top) and
inhibitory (bottom) regions. Inhibitory latencies and spectral positions are relative to the main
excitation’s location (see text for details). (D) The reduction in the high frequency sideband
(relative to main excitatory field) coincides with the spectral position of the suppressive field
in the context model. (E) The average context receptive field (CRF) exhibits a neighborhood
of inhibition around the reference frequency and decays for further distances. (F) While all
inhibitory sidebands in the PRF are reduced by adding a CRF to the model (different blues)
when compared to the PRF in the input nonlinearity model (white bars), the high frequency
(HF, �41%) and post CF (CF (H), �44%) fields show the strongest reduction, followed by
the low frequency field (LF, �31%). Positive values were set to 0.
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distribution in the MNTB (Tolnai et al., 2008). Inhibitory regions usually stay close

to the excitatory region both in the spectral and the temporal direction (latency and

best frequency subplots). While the temporal bandwidth (TBW, middle subplots) of

the excitatory regions is tightly distributed between 0.5 and 1.3ms, the TBW of

inhibitory regions depends on their location. LF and HF fields have similar TBW

distributions ranging between 0.5 and 2ms, exceeding the very brief CF(L) fields

(0.5–1.2ms), but staying far below the broad distribution for CF(H) of 1–4ms. The

distributions of spectral bandwidths are quite similar across all fields, excitatory and

inhibitory. Finally, the weights of the inhibitory fields indicate that the CF(H) field

usually has the greatest influence on the neuronal response, followed by the HF

field. The LF and CF(L) fields are usually least influential.

Context model. Aside from the increased predictive quality provided by the full

context model, it also provides insight into the structures underlying auditory

processing. Here we address whether adding the context reduces inhibitory fields in

the PRF. The depicted context model included nonlinear scaling on the input

(kernels not shown).

In the example shown in Fig. 9(D), the HF inhibitory region is strongly reduced

(left: compare PRFs on top and bottom above the CF) while a damping field is

present in the CRF (bottom right). The frequency separation from the center in the

context corresponds to the relative distance between the HF field and CF in the

PRF. The average CRF for the present population had damping fields surrounding

the center frequency and very little activation outside a range of 1ms and 0.2 octaves

(Fig. 9(E)). Correspondingly, the strongest reductions are observed for the HF

(�41%) and CF(H) fields (�44%, Fig. 9(F)), followed by the LF field (�31%).

These reductions were highly significant (Wilcoxon Rank Sum test, p510�9), while

the reduction of the CF(L) field by 10% was only barely significant (p¼ 0.041).

This mild reduction could be a consequence of using a CRF which only extends

towards the past.

Further examples of changes in the PRF when adding the CRF are shown for four

individual cells in Fig. 7 (right side, see caption for details).

Discussion

We investigated the stimulus representation in the MNTB on a quantitative level

using an array of phenomenological, multilinear models. Best overall performance

was achieved by the context model with nonlinear input scaling based on a cochlea-

like stimulus representation and at sampling rates around 2 kHz. Further, static

nonlinear scaling of either stimulus level or predicted rate led to significant

improvements in performance, bringing the overall model to capture 75% of the

explainable variance.

Comparison with other modeling approaches

A quantitative comparison with other modeling approaches is difficult,

since responses of the MNTB have to our knowledge not been modeled before.
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However, MNTB responses share many properties with cells from the cochlear

nucleus (especially globular bushy cells of the AVCN) and auditory nerve fibers

(ANF). We therefore provide a broader perspective on some of the recent modeling

approaches.

What is the purpose of models for neuronal responses? An accurate model can be

used to simulate the time-varying response of a given brain area to other complex

stimuli, which can be useful for predicting the effect of this brain area in overall

processing. At the same time, a model can provide insight into structural aspects of

the investigated system. Different models will allow different degrees of insight.

Predictive power and structural understanding are the dimensions around which the

following comparison is developed.

Several types of phenomenological models have been used for modeling auditory

responses. The earliest models are probably the revcor models of ANFs by De Boer

and De Jongh (1978), closely followed by the introduction of the STRF by Aertsen

and colleagues (Aertsen et al., 1981a, 1980, 1981b). Generally, these models differ

in the stimulus representation: revcor models are based on the sound pressure

waveform and particularly effective in modeling low-frequency units which phase-

lock to the fine structure of the sound pressure wave. However, for high-frequency

units revcors are typically flat. In recent studies Recio-Spinoso et al. (2005),

Temchin et al. (2005), and Lewis et al. (2002) have extended revcor models to

second order Wiener series and demonstrated their ability to provide good

predictions for white noise stimuli Temchin et al. (2005). Quantitatively these

predictions are of similar quality as the present predictions. Temchin et al. (2005)

measured model performance by the fraction of explained variance. The difference

to the predictive power should, however, be small since the average was obtained

from a large number of repetitions. Structurally, sound pressure based models

present both insights and hurdles. The revcor can be attributed to the impulse

response of the basilar membrane for low CFs. The two-point temporal correlations

in the second order Wiener kernel are harder to interpret. Usually, further

transformations are required to extract characteristic properties. For example the

CF can be extracted from the first singular value of the second order kernel and

provides an estimator over the whole frequency range (Recio-Spinoso et al., 2005;

Temchin et al., 2005).

STRFs are based on a stimulus spectrogram. They have been used in studies of

ANFs (Kim and Young, 1994) and different cell types of the cochlear nucleus

(Backoff and Clopton, 1991; Clopton and Backoff, 1991). Predictive performance

was not addressed in these studies. The present results indicate that STRFs and

especially their multilinear extensions provide reliable quantitative predictions for

principal cells in the MNTB. Based on the assumption of increasing complexity in

stimulus transformation, one might speculate these models would exhibit equal or

better performance for neurons in the AVCN or ANFs. The similarity in

performance with the second order Wiener models discussed above is partly

implied by the correspondence between the STRF and the Fourier transform of the

second order Wiener kernel (Klein et al., 2000). Due to the phaseless representation

of the stimulus, the performance of spectrotemporal models is usually reduced for

low CFs (for the few low CF units in the present study such a trend was present;

data not shown). Structurally, spectrogram based models are easier to interpret, yet

harder to link to underlying structures. STRFs usually exhibit a dominant excitatory

114 B. Englitz et al.



field with neighboring suppressive fields. Their interpretation is guided by the easily

extractable spectrotemporal properties. While these allow the selection of candidate

mechanisms, their link to actual biological structures is weaker than for the revcor.

Yu and Young (2000) introduced another variant of a second-order Wiener

model which aims to predict the average response over several hundred

milliseconds. Correspondingly, the stimuli are defined by their spectrum over this

period. Their spectrum is normally distributed around a chosen reference level. By

ignoring the temporal dimension these so-called Random Spectral Shape (RSS)

stimuli are only one dimensional. This approach is motivated by the separability of

the corresponding STRFs. It therefore becomes possible to fit a second order,

memoryless Wiener model which predicts the average rate from the stimulus

spectrum (Yu and Young (2000) call it quadratic model). It has been applied to

ANFs (Young and Calhoun, 2005) and neurons from the ventral and dorsal

cochlear nucleus (Yu and Young, 2000; Bandyopadhyay et al., 2007).

Quantitatively, model performance is in a similar range as for the present model.

However, excluding the temporal dimension reduces the complexity of the problem.

Conversely, a time-resolved model could also be used to predict the average rate by

suitable averaging. Based on the present data and models we would predict that

average rate predictions from time-resolved models should be more precise than

predictions of the quadratic model at least for the ANF-AVCN-MNTB pathway.

Structurally, RSS based models are probably hardest to interpret. Leaving out

temporal aspects strongly reduces the possibility to attribute model properties to

underlying structures.

Recently, Bandyopadhyay et al. (2007) introduced another RSS based model

which explicitly accounts for level-dependencies in each frequency channel (level-

dependent weighting model, LDWM). For stimuli with larger spectral contrast

(12 dB) the LDWM outperformed the quadratic model which in comparison seems

to be better matched for interactions between frequencies at low contrast.

Interestingly, the LDWM is contained within the presently considered class of

multilinear models if the time dimension is removed in a context model with the

frequency-level grouped and a minimal (just the frequency bin itself ), linear CRF.

From this perspective both a transition to a temporally resolved model and the use

of the multilinear estimation and advanced regularization methods would be a

natural step.

For both the spectrogram and RSS based approaches, a complete model will

always need to include a representation of the transformation from the sound

pressure wave to the spectral or spectrotemporal representation. From this

perspective, the present comparison of stimulus representations should be

attributed to the model rather than the stimulus.

While we demonstrate that about 75% of the variance is explainable based on the

stimulus spectrogram, we have noticed certain influences of the stimulus fine-

structure on the response. Presenting the same TORC profile with different carrier

phases led to characteristic differences in the responses. These appeared to be local

modulations of the spike timing, possibly induced by spurious, brief correlations

between carrier frequencies. Due to the importance of spike-timing for sound

localization, a focus of future models could be on the interplay between spectrum

and fine structure. Further, it would be of interest to know whether the

assumption of a random process characterized by the firing rate is valid or whether
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the trial-to-trial variability can be explained by neuronal models which include the

spiking history (Ahrens et al., 2008b).

To achieve this fine-structure match, it would probably be wise to integrate

structure based models of early processing, e.g. cochlear processing as in Zhang

et al. (2001) and add phenomenological models only for subsequent stages (the

�-tone stimulus representation could be interpreted along these lines). Recio-

Spinoso et al. (2005) provided a simple, yet convincing, structure based account for

the shape of their second order Wiener kernels. Besides a more direct

correspondence between the model and modeled system, this approach usually

results in a reduction in the number of free parameters. However, phenomen-

ological models are likely to keep their importance as the numerous and recurrent

stages of the auditory system might resist a completely structural model.

Physiological interpretation of model parameters

The orderly organization of the kernel parameters along stimulus dimensions

facilitates extracting meaningful properties of the encoding machinery. The

spectrotemporal location of excitatory and inhibitory fields can guide the delay

structure in a parametric model. Adding the multiplicative context offers further

insight into the underlying structure: if a nonlinear system is modeled by a linear

system, the estimated linear kernels can be confounded by correlations with

nonlinear terms (Christianson et al., 2008). Introducing nonlinear terms into the

model can help to identify the natural constituents of the system. The quadratic

terms of the context model form an example of such nonlinearities. Including them

in the model enables to estimate their contribution which otherwise would have

erroneously been attributed to the linear parts.

We focus here on the origin of the LF/HF inhibitory fields. It would be desirable

to distinguish cochlear suppression from neuronal inhibition which could be

introduced in the AVCN or presynaptically at the MNTB. Postsynaptic inhibition in

the MNTB of the gerbil is unlikely given recent results (Mc Laughlin et al., 2008;

Englitz et al., 2009). Cochlear suppression is a nonlinear interaction between

neighboring frequency channels (Robles and Ruggero, 2001; Zhang et al., 2001)

and could thus account for the presently observed low and high frequency inhibitory

fields (relative to CF, see Fig. 8(D)). Their strong reduction in the case of the

context model suggests a nonlinear, e.g. multiplicative underlying source, akin to

the response properties obtained in the classical two-tone paradigm used for probing

cochlear suppression in the auditory nerve (Sachs and Kiang, 1968). This

hypothesis is further supported by the tight temporal relationship between the

LF/HF fields and CF (Fig. 9(C)), possibly reflecting the mechanical basis of

cochlear suppression. Further evidence for suppression comes from a study at ANFs

(Kim and Young, 1994), where inhibitory fields were found in STRFs in similar

spectrotemporal relation to the CF (Note that STRFs were estimated in Kim and

Young (1994) based on the Wigner transform of the signal without correction for

stimulus correlations.). To substantiate this possibility, we estimated the present

models for the output of an auditory nerve model (Zhang et al. 2001), obtaining

similar spectrotemporal relationships between LF/HF fields and CF (data not

shown). If on the other hand neuronal inhibition accounted for the LF/HF

inhibitory fields, it would have to be rapid (thus excluding recurrent interactions)
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and probably divisive rather than additive (e.g. in the absence of an excitatory

stimulus, spontaneous rates should not be reducible).

Context models of auditory cortex neurons

The context model was first applied to responses from neurons of primary auditory

areas of the cortex (primary auditory cortex (A1), of rats and mice, and anterior

auditory field of mice).

Predicting cortical responses is clearly a more challenging task which is also

reflected in the greater predictive power obtained in the MNTB (75%) than in

cortex ((Ahrens et al. (2008a): 32–52%, although further improvements were

recently achieved, MBA, MS, Jennifer F. Linden, unpublished results). On a

structural level, it would be desirable to compare the kernels obtained from the

cortical areas and the present nucleus. However, this task is complicated by the

different time-scales (20ms vs. 0.5ms) and stimuli (Dynamic random chord vs.

TORC) used in estimating the models. Despite these differences an interesting

agreement exists for the nature of the suppressive fields: inhibitory fields were also

found to have multiplicative origin (Ahrens et al., 2008a). Whether this observation

has the same basis is debatable as the spectrotemporal profiles in cortex are quite

different. Especially the attribution to cochlear suppression can be made in the

MNTB with greater confidence due to the higher temporal resolution and the

smaller set of alternatives. On the other hand the observed model structure may

reflect general auditory processing mechanisms, reflecting the time-scale invariance

found in the structure of auditory signals (Attias and Schreiner, 1997).

In future studies it would be desirable to compare the kernels obtained in

different areas in detail to understand the intermediate transformations. To this end

it would be advantageous to use the same stimulus in different areas, e.g. the inferior

colliculus could be compared to the cortical data by stimulating with the dynamic

random chord or to lower brainstem data by stimulating with TORCs.
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Note

[1] For simpler notation we here compare different trials for a given stimulus rather than

different portions of a stimulus.
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Appendix A: Estimating fraction of explained variance from

predictive power

As outlined in Methods (and detailed in Sahani and Linden (2003b)) the predictive

power provides an improved estimate over the explained variance, but has a bias

which varies as a function of noise power and model complexity. This bias can be

(approximately) avoided by considering the average between the insample and

crossvalidation predictive powers. The validity of this approximation will be

demonstrated in the following using analytic and simulation tools.
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Firstly, we derive that the bias depends linearly on the the noise power, if the

underlying and estimated models are both linear. Secondly, we demonstrate that

under these conditions the bias also depends linearly on model complexity with the

same slope for both insample and crossvalidation. Finally, we illustrate these

dependencies in a simple model system and compare it to an analytical correction

proposed by Haefner and Cumming (2008). While this analytical correction would

in principle be preferrable over the present approach it is only valid for

unregularized estimates.

A.1. � as a function of P(�)

For population analysis Sahani and Linden (2003b) and Ahrens et al. (2008a) used

polynomial fits to extrapolate the predictive power of linear and multilinear models

to the noise free condition. We here provide a justification for linear extrapolation in

the case of a linear system.

The underlying system is assumed to be given by r¼X
0
w

0 þ g with normally

distributed errors g, stimulus representation X
0, and kernel w0. w0 is of dimension

M0 � 1, X is T�M0, and r and g are T� 1, with T the number of time steps and M0

the dimension of the linear system.

To estimate w0, we use an extended linear model X w, where X is T�M andw is

M� 1. For the present considerations we will assume MM0 and X
0 to be

contained in X. These conditions mean that our model dimension and stimulus

representation are adequately chosen to estimate the underlying system. Hence, we

can formally express the system by this model via r¼X
0
w

0 þ g¼X wþ g, if w

equals w
0 in the corresponding dimensions of X and X

0 and is 0 otherwise.

Distinguishing the dimensions of system and model is necessary to study the

dependence of � on the dimension of the model.

The maximum likelihood estimate of the kernel ŵ is then given by the normal

equation

ŵ ¼ ðXT
XÞ�1

X
T
r ¼ ðXT

XÞ�1
X

T ðXwþ gÞ ¼ wþ ðXT
XÞ�1

X
Tg ð2Þ

To obtain the dependence of � on P(�) for the insample estimate, we insert ŵ into

the definition of �

�insample ¼
PðrÞ � PðeÞ

P̂ðlÞ
¼

PðXwþ gÞ � Pðr �XŵÞ

P̂ðlÞ

¼
ð2Þ PðXwÞ þ PðgÞ � PðXwþ g�Xw�XðXT

XÞ�1
X

TgÞ

P̂ðlÞ

¼
PðlÞ þ PðgÞ � Pðg�XðXT

XÞ�1
X

TgÞ

P̂ðlÞ

¼ C1 þ
PðgÞ � P g�XðXT

XÞ�1
X

Tg
� �

P̂ðlÞ
ð3Þ

with C1� 1, if P̂ðlÞ is accurate. Analogously, we obtain for the crossvalidation

predictive power (with gk and gu, denoting the noise in the known training and
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unknown test data1, respectively)

�crossval ¼
PðrÞ � PðeÞ

P̂ðlÞ

¼
PðXwþ guÞ � PðXwþ gu �Xw�XðXT

XÞ�1
X

TgkÞ

P̂ðlÞ

¼
PðlÞ þ PðguÞ � PðguÞ � PðXðXT

XÞ�1
X

TgkÞ

P̂ðlÞ

¼ C1 �
PðXðXT

XÞ�1
X

TgkÞ

P̂ðlÞ
ð4Þ

In both relationships the last term is linear in P(g) since a k-fold scaling of g

leads to k
2 scaling of P(g) and P(Ag) for a T�T matrix A. For a given P(l) the

predictive power will hence also be linear in Pl(�).

A.2. � as a function of model complexity

In the insample and the crossvalidation expression the last term quantifies the

model-dependent misestimate: w� :¼ (XT
X)�1

X
Tg is the normal equation if one

takes g as the response. The multiplication Xw� then generates the linear model

prediction. Hence, in the crossvalidation case, the slope is determined by the power

of the prediction based on the training noise. In the insample case, the slope is

determined by the power of the difference between noise and noise-based

prediction.

With X an T�Mmatrix, X(XT
X)�1

X
T has maximally rankM, the dimensionality

of the model. Low dimensional models will have low rank and a shallow slope of

overestimation for insample or underestimation for crossvalidation. High dimen-

sional models correspondingly have high slopes. This hypothesis is supported in

simulations for X and g drawn from independent, Gaussian distributions and

T¼ 1000 (Fig. 10(A)).

We can extend these results to regularized linear regression. Denoting the

covariance matrix as C, the maximum likelihood estimate of the parameters is

given by

ŵ ¼ ðXT
X þC

�1Þ�1
X

T
r ¼ ðXT

X þC
�1Þ�1

X
T ðXwþ gÞ

For the insample case one similarly obtains

�insample ¼C1þ
PðgÞ�P l�XðXT

XþC
�1Þ�1

X
Tl

� �

�P g�XðXT
XþC

�1Þ�1
X

Tg
� �

P̂ðlÞ

ð5Þ

and for the crossvalidation case

�crossval ¼ C1 �
P l�XðXT

X þ C
�1Þ�1

X
Tl

� �

þ P g�XðXT
X þ C

�1Þ�1
X

Tg
� �

P̂ðlÞ

ð6Þ
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The stimulus dependent power terms again quantify the residuals of the linear

model estimate with respect to l and g. The term containing l occurs as a

consequence of the regularization, accounting for the possibility that the assumed

covariance on the parameters conflicts with the actual covariance. It will always

reduce the predictive power for both insample and crossvalidation results, especially

for low model dimensions. The term containing g will now exhibit a weaker

dependence on M, consistent with the aim of regularisation.

Fig. 10(B) shows the results of numerical simulations for the case of ASD-type

regularization. The values of the scale and smoothing parameters were set to fixed

values rather than being data dependent. The nonlinear dependence observed in

Sahani and Linden (2003b) might be explained by the necessity to estimate the ASD

parameters from the data.

A.3. A simple example

The following example is meant to illustrate the behavior of the various quantities

considered above. An artificial response of length L was created by convolving a

unimodal, positive Gaussian kernel w0 of length Nw with a Gaussian white noise

stimulus S. To simulate the presence of systematic but stimulus unrelated aspects of

the response, a simple sinusoidal modulation was added. The noise model was

chosen to be Gaussian white noise with variance 1 drawn independently between

trials, i.e. ��N(0, 1). Altogether, sets of N responses were given as

frngn¼1...N ¼ w0 	 S þ a sinð2� f tÞ þ 	�n

where 	 denotes convolution. We then used standard linear regression to estimate

models w of different complexity Nw (i.e. corresponding to the length of the kernel

in this one-dimensional setting) under a range of noise strengths (matched to the
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Figure 10. Predictive power as a function of model dimension. (A) For unregularized
estimation the insample and crossvalidation predictive powers depend linearly on model
dimension. (B) For ASD-like regularized estimates the dependence is influenced by two
factors. The g related term in Equations 5 and 6 again has a linear relationship with reduced
slopes due to the regularisation (solid red and blue dots and lines). Taking into account the l
related term, leads to a negative bias on both curves (light red and blue dots). The value of
this bias is shown in the inset. As long as MM0 ¼ 10, the bias remains small. For the
simulations it was assumed P(l)¼ 1, g�N(0, 1), and X�N(0, 1) for all dimensions and
points in time.
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experimentally observed range) and for a number of available data-points L and

repetitions N.

Figure 11 shows the estimates of the relevant quantities both as a function of

normalized noise power (A) and as a function of model size (B). The depicted

quantities are the fraction of explained variance estimated directly from response

and prediction (green), the fraction of explained variance estimated against the

noisefree response (red), the predictive power (for insample & crossvalidation (gray)

and their average (black)) and the corrected fraction of explained variance described

in Haefner and Cumming (2008) (blue). Haefner and Cumming (2008) proposed

a correction which takes both noise and model complexity into account. We

implemented this correction according to Eq. 8 from Haefner and Cumming

(2008). For reference the estimate of the signal power from Sahani and Linden

(2003b) is also shown (cyan). Errorbars indicate S.D. (to indicate the variability we

chose not to use SEM) over 1000 samples.

Both estimation methods provide a good estimate of the true fraction of explained

variance, the analytical estimator with a close, yet slight overestimate, while the

average estimator underestimates the true value by a few percent. As noted above,

the analytical estimator was not applicable to the regularized (multi)linear models in

the main text as it only applies to unregularized linear models.
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Figure 11. Estimators as a function of noise power and model size. (A) The actual fraction of
explained variance (red), the predictive power (grey, insample above and crossvalidation
below 0.7), and the corrected fraction of explained variance (blue) change quite linearly as a
function of noise power with the slope regulated by the model size and almost no offset. The
estimated fraction of explained variance (green) decreases rapidly with noise power and only
weakly depends on the model size. Different shades of a color indicate the different sizes of
the estimated model (saturation decreases with model size; errorbars omitted for clarity, color
legend as in B). (B) The dependence on model size is also approximately linear for the above
mentioned (linear) quantities (here at normalized noise power �50). Both the analytic and
the average (between insample and crossvalidation predictive power) estimators stay
remarkably flat as a function of noise power, rendering both a good estimator for the
actual fraction of explained variance in the noise free case. Further, the estimate of the signal
power (turquoise) is quite accurate in expectation. The actual fraction of explained variance
in the noise free case is �0.7 due to the additional, stimulus independent signal component.
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We have performed the same estimates for data lengths ranging from 1000 to

10000 points and up to 40 repetitions with qualitatively similar results. If the ratio

between the model size (number of parameters) and available data points/samples is

taken as the relevant quantity for convergence, then the numbers depicted in Fig. 11

are approximately in the correct range, since we have more data points (�11000)

but also larger models (100–800 parameters).

Appendix B: Tensor products

The generalized tensor product can be defined as

Mi1, ..., in, j1, ..., jm ¼ Mi1, ..., in �Mj1,...,jm ,

with M
i1, ..., in, j1, ..., jm
i1, ..., in, j1, ..., jm

:¼ M
i1, ..., in
i1, ..., in

M
j1,...,jm
j1,...,jm

for example a 2D kernel can be constructed from two 1D kernels

wtf ¼ wt �wf with wtf
jk ¼ wt

jw
f
k

Further, the generalized inner product is defined by

Mi1,...,ik1 , ik1þmþ1, ..., ik2 ¼ Mi1,...,ik1 , ..., ik1þm 
Mik1þ1, ..., ik1þm, ..., ik2 ,

with M
i1,...,ik1 , ik1þmþ1, ..., ik2
i1,...,ik1 , ik1þmþ1, ..., ik2

:¼
X

ik1þ1

. . .

X

ik1þm

M
i1,...,ik1 , ..., ik1þm

i1,...,ik1 , ..., ik1þm
M

ik1þ1, ..., ik1þm, ..., ik2
ik1þ1, ..., ik1þm, ..., ik2

for example a 2D matrix can be contracted with a 1D kernel to another 1D kernel

Qf ¼ wt 
Mtf with Qf
k ¼

X

j

wt
jM

tf
jk
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