
Generalized Softmax Networks
for Non-linear Component Extraction

Jörg Lücke and Maneesh Sahani

Gatsby Computational Neuroscience Unit, UCL, London WC1N 3AR, UK

Abstract. We develop a probabilistic interpretation of non-linear component ex-
traction in neural networks that activate their hidden units according to a softmax-
like mechanism. On the basis of a generative model that combines hidden causes
using the max-function, we show how the extraction of input components in
such networks can be interpreted as maximum likelihood parameter optimization.
A simple and neurally plausible Hebbian Δ-rule is derived. For approximately-
optimal learning, the activity of the hidden neural units is described by a gen-
eralized softmax function and the classical softmax is recovered for very sparse
input. We use the bars benchmark test to numerically verify our analytical results
and to show competitiveness of the derived learning algorithms.

1 Introduction

Neural network models that can be applied to unsupervised data classification, i.e. clus-
tering, have been well understood in terms of generative models. For mixture models
[1], the learning rule was shown to involve the softmax (see, e.g., [2] for an overview)
as activation function for the hidden units. Other than clustering, recent neural network
models have been shown to be competitive in extracting input components. These net-
works, e.g. [3,4,5], also use softmax-like mechanisms but a probabilistic understanding
in terms of multiple causes models has not yet been developed. In this paper we will
show how and under which conditions learning in feed-forward networks with Hebbian
plasticity can be understood as maximization of the data likelihood under a non-linear
generative model.

2 The Neural Network Model

Consider the network of Fig. 1 which consists of D input units with values y1, . . . , yD

and H hidden units with values g1, . . . , gH . An input y to the system is represented by
activities of input units. Via connections between the input and hidden layer that are
parameterized by (Wid) the input unit activities determine the activities of the hidden
units, gi = gi(y, W). The parameters (Wid) will be called weights.

Given a set of input patterns we want to adjust the weights W such that the activities
of the hidden units appropriately represent the input patterns. Learning will thus depend
on the distribution of input patterns. A standard approach in neural network modeling is
to use a Δ-rule with divisive normalization. In the case of Hebbian learning the Δ-rule
reads:

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 657–667, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

658 J. Lücke and M. Sahani

Wid

yd

gi(W, y)

Fig. 1. Architecture of a two layer neural network. Input is represented by values y1 to yD of D
input units (small black circles). Depending on the input and on the parameters W the activities
of the hidden units g1 to gH (big black circles) are computed. The dotted horizontal arrows
symbolize lateral information exchange that is in general required to compute the functions g1 to
gH . After the gi are computed the parameters (Wid) are modified using a Δ-rule.

ΔWid = ε gi(y, W) yd and W new
id = C

W ′
id + ΔWid∑

d′(W ′
id′ + ΔWid′)

, (1)

where W ′
id denote the old values. Divisive normalization (right-hand-side equation)

prevents the weights from growing infinitely and represents the most commonly used
constraint for learning in artificial neural networks. The learning rule (1) can directly
be associated with Hebbian learning between neural units g1 to gH and input units y1
to yD. The dotted horizontal arrows in Fig. 1 symbolize lateral information transfer that
is generally required to compute the activities gi(y, W). Neural networks that fit into
the framework of Fig. 1 and use a learning rule like (1) or similar are frequently found
in the literature and their application domains typically lie in the fields of clustering
and component extraction [2,3,4,5,6]. Especially since generative models are used to
study unsupervised learning, the class of neural network models that perform cluster-
ing could be embedded into a probabilistic framework. Learning in these networks can
be regarded as optimization of the data likelihood under a generative model. This re-
lationship in turn determines the function gi(y, W) in (1) which has to be used for
optimal learning. For clustering tasks the related generative models are mixture models
and the function gi(y, W) is the softmax operation, see e.g. [1,2]. A limit case of the
softmax is a winner-take-all mechanisms which is likewise frequently applied to clus-
tering tasks [2]. For networks such as [3,4] that extract input components, the situation
is different. Linear systems such as independent (ICA) or principal component analysis
(PCA) do not seem to represent the right correlates. ICA and PCA have been shown
to fail in non-linear tasks, see [7], in which neural network models consistent with the
above framework, e.g. [3,4,5], succeed in extracting the elementary input components.
The learning dynamics used in these networks are manifold and comparison with other
component extraction systems is usually only possible on the basis of benchmark tests.
A probabilistic understanding similar to that for mixture models has not yet been de-
veloped. Furthermore, some network models perform clustering if data is generated by
single causes, and component extraction if input consists of combinations of compo-
nents, e.g. [3,4]. From the generative point of view this seems contradictory.

For a probabilistic analysis of networks (1), a generative model will be defined whose
parameter update rules for likelihood maximization can be related to the delta rule in

Generalized Softmax Networks for Non-linear Component Extraction 659

(1). Before we define a generative model in the next section let us express the on-
line update rule (1) in terms of a batch mode update for a set of N input patterns
y(1), . . . , y(N). By repeatedly applying (1) we get for slowly changing W :

Wid ≈ W ′
id + ε

∑
n gi(W, y(n)) y

(n)
d

1
C

∑
d′

(
W ′

id′ + ε
∑

n gi(W, y(n)) y
(n)
d′

) ≈ C

∑
n gi(W, y(n)) y

(n)
d

∑
d′

∑
n gi(W, y(n)) y

(n)
d′

. (2)

The smaller the change of W the better the Δ-rule (1) is approximating (2).

3 A Non-linear Generative Model

Consider a generative model with D input units y1, . . . , yD and H hidden units
s1, . . . , sh. The model is parameterized by Θ = (π, W). The scalar π parameterizes
the distributions of the hidden units which are assumed to be independent and Bernoulli
distributed:

p(s | π) =
∏

h p(sh | π), where p(sh | π) = πsh (1 − π)1−sh . (3)

For given s we take the activities of the input units to be independent. The parameters
W determine the influence of a particular s on the distributions of the input units. The
values of yd we take to be independent given s and distributed according to a Poisson
distributions:

p(y | s, W) =
∏

d p(yd | W d(s, W)), where p(yd | w) = e−w wyd

yd! . (4)

The Poisson distribution is a natural choice for non-negative and noisy input. E.g., if we
take the causes to be objects with gray values Wid, all input patterns are non-negative.
Furthermore, in the context of neural networks and Hebbian learning (1), a represen-
tation of non-negative values is straightforward. For the function W d in (4) the most
common choice is a linear superposition of the weights multiplied by the activities of
the hidden units, W d(s, W) =

∑
h sh Whd. Algebraically, this kind of superposition

is advantageous for the computation of derivatives of p(y | s, W) as required for opti-
mization methods. However, for many applications linear superposition is difficult to
motivate. E.g., for visual input it does not seem natural to assume linearity because
occlusion is not modeled appropriately. For instance, if the causes are objects with the
same gray value, linear superposition results in an error in the region where the objects
overlap. Alternatively, the maximum function would represent the right model in this
case and seems to be a better approximation for occlusion-like scenarios in general.
Neural network models that fit into the framework (1) have been shown to be compet-
itive in occlusion-like scenarios [3,4,5]. For our purposes the max-operation therefore
seems to be preferable to linear superposition and we use as function W d in (4):

W d(s, W) := maxh{shWhd} . (5)

660 J. Lücke and M. Sahani

Using the equality W d(s, W) = lim
ρ→∞ W

ρ

d(s, W) = lim
ρ→∞ (

∑

h

(shWhd)ρ)
1
ρ we define:

Aid(s, W) := lim
ρ→∞

(
∂

∂Wid
W

ρ

d(s, W)
)

= lim
ρ→∞

si (Wid)ρ

∑
h sh(Whd)ρ , (6)

which implies: Aid(s, W) f(W d(s, W)) = Aid(s, W) f(Wid) . (7)

f can be any well-behaved function. Equation (7) holds because both sides are zero
whenever W d(s, W) �= Wid.

4 Maximum Likelihood

Given a set of data Y = {y(n)}n=1,...,N we want to find the set of parameters W that
maximizes the likelihood of the data under the above generative model. Finding the
optimal π is straightforward but for the purposes of this paper we will concentrate on
the difficult part of optimizing the parameters W . Following the EM procedure, this
amounts to maximizing the lower bound Q(W, W ′):

Q(W, W ′) =
∑N

n=1
∑

s p(s | y(n), Θ′) log
(
p(y(n) | s, W) p(s | W)

)
, (8)

where Θ′ are the old parameters and where
∑

s is the sum over all binary vectors of
length H . Using Bayes’ rule the posterior probabilities are given by:

p(s | y(n), Θ′) =
p(s | π) p(y(n) | s, W ′)

∑
s̃ p(s̃ | π) p(y(n) | s̃, W ′)

(E-step) , (9)

where p(s | π) and p(y(n) | s, W ′) are given by (3) and (4), respectively. To account for
divisive normalization we use constraint optimization of Q(W):

∂
∂Wid′

Q(W, W ′) +
∑H

h=1 λh
∂

∂Wid′
Gh(W) != 0 , (10)

where Gh(W) :=
∑D

d=1 Whd − C = 0 is a constraint that keeps the sum over the
weights for each hidden unit h constant. If we insert (8) with (4) into (10), we obtain by
using (6) and (7):

∑

n

∑

s

p(s | y(n), Θ′) Aid′(s, W)
y
(n)
d′ − Wid′

Wid′
+ λi = 0 . (11)

Equations (11) can be solved for the Lagrange multipliers by summing over d′ and
by using

∑
d Whd = C. Applying some straightforward algebra, we obtain a set of

non-linear equations for the parameter update:

(12)

Wid =

�
n

〈Aid(s, W)〉 y
(n)
d

1
C

�
n,d′

〈Aid(s, W)〉 y
(n)
d′ −

�
n

�
(
�
d′

〈Aid′(s, W)〉 Wid′

C
) − 〈Aid(s, W)〉

� ,

where 〈Aid(s, W)〉 =
∑

s p(s | y(n), Θ′) Aid(s, W). (13)

Generalized Softmax Networks for Non-linear Component Extraction 661

Equation (12) can be simplified if we assume that the hidden causes are relatively ho-
mogeneously covering the input space. More precisely, if we parameterize the actually
generating causes by W gen, let us assume that all W gen

id > 0 of cause i can be covered
by the same number of W gen

cd ≥ W gen
id :

W gen
id > 0 ⇒

∑
c �=i H(W gen

cd − W gen
id) ≈ bi , (14)

where H is the Heaviside function. bi is the number of causes that can cover cause i.
Fig. 2C,D illustrate this condition. For both examples condition (14) is fulfilled. E.g. for
Fig. 2D bi = 0 for all horizontal causes and bi = 1 for the vertically oriented cause. If
the model parameters W satisfy condition (14), which can be expected at least close to
the maximum likelihood solution, we obtain with (12) and after rearranging terms:

Wid = C

∑
n 〈Aid(s, W)〉 y

(n)
d

∑
d′

∑
n 〈Aid′(s, W)〉 y

(n)
d′

(M-step). (15)

Equation (15) can be used as a fixed point equation. Inserting the old values of W on the
right-hand-side to obtain new values of W , approaches the right solution in numerical
simulations.

5 E-Step Approximation

The M-step (15) together with expectations (13) represent an optimization algorithm
for the generative model (3) to (5). However, for practical applications we are still con-
fronted with the problem of an exponential cost for computing the sufficient statistics
(13). For our model let us assume that most inputs have been generated by just few
hidden causes. To approximate for sparse input we first group terms in (13) according
to the number of active hidden units:

〈Aid(s, W)〉 =
∑

s

p(s | y(n), Θ′)Aid(s, W) (16)

=
∑

h

p(sh | y(n), Θ′)Aid(sh, W) +
∑

a, b
a < b

p(sab | y(n), Θ′)Aid(sab, W) +
∑

a, b, c
a < b < c

. . . , (17)

where sh := (0, . . . , 0, 1, 0, . . . , 0) 1 at h’s position,

sab := (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) 1 at a’s and b’s position a �= b ,

and analogously for sabc etc. Note that Aid(0, W) = 0 because of (6). Each of the
posterior probabilities p(s | y(n), Θ′) above implicitly contains a similar sum over s for
normalization whose terms may be grouped in the same way:

p(s | y(n), Θ′) =
p(s, y(n) | Θ′)

∑

a

p(sa, y(n) | Θ′) +
∑

a, b
a < b

p(sab, y
(n) | Θ′) +

∑

a, b, c
a < b < c

. . .
, (18)

662 J. Lücke and M. Sahani

where we have used that fact that the update rule (15) remains unchanged if we remove
all inputs equal to zero, i.e., all inputs with

∑
d y

(n)
d = 0. Combining (16) and (18) yields:

〈Aid(s, W)〉 = (19)
∑

a p(sa, y(n) | Θ′)Aid(sa, W) +
∑

a,b
a<b

p(sab, y
(n) | Θ′)Aid(sab, W) + . . .

∑
a p(sa, y(n) | Θ′) +

∑
a,b
a<b

p(sab, y(n) | Θ′) + . . .
.

If we assume that the significant posterior probability mass will concentrate on vectors,
s, with only a limited number of non-zero entries, the expanded sums in both numer-
ator and denominator of (19) may be truncated without significant loss. We will use
an approximation of 〈Aid(s, W)〉 that corresponds to a truncation of (19) after terms
of order two in the denominator and first order terms in the numerator. As numerical
simulations show, this is the approximation of lowest possible order which still results
in a system that can be used for component extraction. After inserting (3) to (5) into
(19) and by using Aid(sh, W) = δih the approximation reads:

〈Aid(s, W)〉 ≈ exp(I(n)
i)

∑

h

exp(I(n)
h) + π

2

∑
a, b

a �= b

exp(I(n)
ab)

, π :=
(

π

1 − π

)β

, (20)

I
(n)
i = β

∑

d

(
log(Wid) y

(n)
d − Wid

)
, I

(n)
ab = β

∑

d

(
log(W̃ ab

d) y
(n)
d − W̃ ab

d

)

(21)

where W̃ ab
d = max(Wad, Wbd).The parameter β has been introduced to implement an

annealing procedure [8] in later simulations. The M-step (15) together with the approx-
imate E-step (20) is a learning algorithm that we will refer to as approximate EM.

If we now compare (15) with (2), we find that a neural network (1) can be used for
parameter optimization by choosing gi(W, y(n)) = 〈Aid(s, W)〉. Note that in general
gi would have to depend on d. However, if we use approximation (20), 〈Aid(s, W)〉
only depends on i. For the neural network this implies that the change of the weight
Wid only depends on the activities of the pre- and post-synaptic units:

ΔWid = ε gi yd with gi =
exp(Ii)

∑

h

exp(Ih) + π
2

∑

a, b
a �= b

exp(Iab)
(22)

and divisive normalization (
∑

d Wid = C). Note that the function gi in (22) is similar to
the classical softmax [2] but has an additional term in the denominator. For very sparse
input, i.e. π � 1, the classical softmax is recovered.

The intuition for the learning rule is as follows: The system tries to explain a given
input pattern using its current state of the model parameters W . If one hidden unit
explains the input better than any combination of two units, this unit is modified. If the
input is better explained by a combination of two units, learning is penalized. Eqns. (22)
describe an easy and computationally efficient method to maximize the data likelihood
under the generative model (3) to (5).

Generalized Softmax Networks for Non-linear Component Extraction 663

6 Simulations

It remains to be shown that the approximations we have introduced result in parameter
updates that indeed approximately maximize the data likelihood. That the likelihood is
always increased is only guaranteed if we use the exact M-step (12) and the exact suf-
ficient statistics (13). Although our approximations are derived from the exact M- and
E-steps there is no guarantee that they always result in an increase of the likelihood.
Furthermore, even in the case of exact EM, learning can converge to local optima. To

W5dW4dW3dW2dW1dB

A C

D
10

40

75

W9d W10dW8dW7dW6d

patterns
103

0

Input patterns

Fig. 2. Bars test with 5x5 pixels, 10 bars, and π = 2
10 . A 12 input patterns from the set of

N = 500 input patterns used. B Update of the parameters W using the neural network NNslow .
C Sketch of the hidden causes of a bars test with 8 bars. The black squares symbolize the pixels.
The bars test satisfies condition (14). D Exemplarily another distribution of hidden causes that
satisfies the condition.

verify that the derived approximate EM and neural networks with Δ-rule (22) are indeed
able to extract hidden causes, we use the bars benchmark test for component extraction
[3,4,5,6]. In the bars test a bar appears with fixed probability at one of, e.g., 10 posi-
tions. To test the algorithms we use generative parameters W gen in the form of H = 10
horizontal and vertical bars. Values W gen

id that correspond to a bar are set to W gen
id = 10,

values that correspond to the background are zero, W gen
id = 0. We generate N = 500

input patterns according to the generative model (3) to (5) with π = 2
10 . A subset of

the resulting input patterns is displayed in Fig. 2A. The Poisson distribution (4) results
in noisy bars. In Fig. 2B the parameters W are displayed in the case of using a neu-
ral network (22) with ε = 0.1, which we will refer to as NNslow. As can be seen, the
system’s parameters W converge from randomly initialized values to values similar to
those of the generating parameters W gen. In Fig. 2B learning time is measured in terms
of the number of patterns that are randomly drawn from a set of N = 500. For the same
bars test settings, the development of the data likelihood is plotted in Fig. 3 for ten trials
with NNslow(back lines). Note that for the likelihood plots we have used the same set of
N = 500 input patterns for all trials. In all other simulations we use a newly generated
set of 500 patterns for each trial. In Fig. 3 it can be observed that the network increases
the likelihood up to a value that closely corresponds to the likelihood of the generating
weights W gen. The likelihoods of ten trials using approximate EM, (15) and (20), are

664 J. Lücke and M. Sahani

-30
-40
-50

-40

-30

-20

L(Θ)
103

-50

20 40 600

W gen approx. EM NNslow

patterns
103

1 20

L(Θ)
103

no noise

added noise

NNfast

patterns
103

Fig. 3. Development of log-likelihood values during learning for the same bars test as in Fig. 2.
Time courses for approximate EM (broad grey lines) and NNslow (black lines) approach the
likelhood value of the actually generating weights W gen (dashed line). Note that one EM iteration
corresponds to N = 500 patterns. The small plot shows log-likelihood values for NNfast (black).
Likelihoods for NNfast without Gaussian noise on the weights is plotted for comparison (gray).
The table shows the probability of each system to extract all bars in a given trial, i.e., its reliability.
Values are given for bars with Poisson noise and without noise.

plotted for comparison (broad gray lines). Note that EM and NNslow essentially behave
in the same way as could be expected on the basis of our analytical results. NNslow
updates W after every pattern presentation whereas EM uses all N = 500 patterns for
each update. In Fig. 3, N = 500 patterns therefore correspond to one EM iteration. For
NNslow the online update introduces stochasticity. This effects learning only marginally,
however. Compared to approx. EM, the likelihoods are slightly noisier and convergence
times seem to vary less.

For learning we use an annealing proceedure, i.e., we use β < 1 in (21) and in-
crease β to one in the course of learning. For EM and NNslow we use the same cooling
schedule, which remains unchanged throughout this paper. We increase β in (21) by de-
creasing a ‘temperature’ T using β = 1

T . We use T1 = 18 for the first 50 iterations and
linearly cool to T = 1 in the subsequent 100 iterations1. For later comparison we in-
troduce another neural network version based on (22). Instead of a cooling schedule we
use a fixed temperature T = 16 and add Gaussian noise for each weight at each update:
ΔWid = ε gi yd + σ η. Using ε = 1.0 and σ = 0.02 we obtain a neural network that
requires relatively few pattern presentations for learning (< 1, 000). We therefore refer
to the network as NNfast. Ten time-courses of likelihood values are shown for NNfast in
Fig. 3 (small plot, black lines). Because of the additional noise the final likelihood val-
ues are somewhat lower than those of the generating weights. If a network with the same

1 For NNslow this translates to: 25 × 103 pattern presentations with T1 = 18 and linear cooling
to T = 1 within the next 50 × 103 patterns.

Generalized Softmax Networks for Non-linear Component Extraction 665

Input CausesA Input patternsB Learned WC

Fig. 4. Bars test with different bar intesities and widths. A Scematic visualization of the six bars.
B 12 examples of the N = 500 input patterns used. C Learned parameters W using NNslow

(from black for Wid = 0 to white for Wid = 10). Note that
�

d Wid = 50 for all weights.

parameters as NNfast but without added noise (σ = 0) is used, likelihood values are
higher (small plot, gray lines) but the system converges to local optima relatively often.

For comparison with other systems in the literature we will use the same bars test
as above but instead of bars with Poisson noise we use non-noisy bars. In the bars
test, a very prominent criterion for comparison is the so called reliablity of the sys-
tem [3,4,5,6,9,10]. It is defined as the probability to find all bars in a given trial. If a
system tends to converge to local optima, its reliability is low. The table in Fig. 3 sum-
marizes the reliability values for approx. EM, NNslow, and NNfast for bars with and
without Poisson noise. Each reliability value was computed on the basis of 100 trials
and each trail starts with a different randomly initialized W . For both bars test versions
the same algorithms and the same cooling schedule were used (the same fixed T in the
case of NNfast). Using the criterion of reliability, NNfast shows the best performance.
The reason is the additional Gaussian noise and noise introduced by updating online.
The combination of both sources of noise drives the system out of shallow optima.
Furthermore, NNfast is the fastest system in terms of required pattern presentations. It
needs less than 1, 000 patterns to find all bars in the majority of 100 simulations2. Note,
however, that in some trials learning time is much longer. In terms of likelihood values,
approx. EM and NNslow are to be preferred. These system also have the advantage of a
well defined stopping criterion.

Regarding values of reliability, the systems’ performance is very robust if their pa-
rameter π in (20) or (22) is chosen very different from the actually generating parameter
πgen = 2

10 (note that it was not neccessary to distinguished between π and πgen, so far).
In the beginning of learning the small exponent β ≈ 0.05 in (20) results in π values
close to one for a large range of different π. Close to the end of the cooling schedule, for
β ≈ 1, different π values do likewise only marginally effect learning because the sec-
ond term in the denominator of (20) is either very small or very large compared to the
first. In contrast, the likelihoods are relatively sensitive to different values of π. Using
an EM approach similar to the one for W , the value for π can, however, be infered.

Finally, the reliabilities of the algorithms are found to be robust w.r.t. violations of
assumptions (14) and

∑
d W gen

id = C for the generating weights. An example of a bars
test that violates both assumptions is shown in Fig. 4. NNslow finds all bars with 96%
reliability in this case.

2 The system is taken to have found all bars if each hidden unit represents a different bar. This
is usually already the case for intermediate likelihood values.

666 J. Lücke and M. Sahani

7 Discussion

Generative model and neural network approaches have both been suggested for the ex-
traction of non-linear components. In this paper we have analytically shown that Heb-
bian learning in feed-forward neural networks can correspond to parameter updates in
a generative model using approximate EM. The distinguishing feature of this genera-
tive model is an explicit non-linearity in the form of a max operation.The appropriate
activation rule for the networks turns out to be the generalized softmax rule (20). The
generalization drops back to the classical softmax for very sparse input.

The analytical results were verified in numerical simulations using the bars bench-
mark test. We found that the derived neural networks increase the likelihood under
the generative model and avoid local optima in the great majority of trials. The de-
rived learning algorithm NNfast performs best if learning time and system reliability
are used for comparison. Using a high learning rate and additional noise the network
model NNfast avoids all local optima and needs few pattern presentations for learn-
ing. The same is reported, e.g., for the networks [3,4] which both fit into the frame-
work considered here (Eqn. 1 and Fig. 1). Furthermore, the generalized softmax (20)
offers an explanation of why networks such as [3] and [4] can also be successfully
applied to clustering tasks. In contrast to many neural networks, algorithms that are
based on generative models are by definition well interpretable probabilistically. They
have, however, been criticized [3,4,7] for frequently failing to extract the true causes.
E.g., for the same bars test as used here, the models [9] and [10] find all bars in just
27% and 69% (even though bar overlap is excluded) of trials, respectively. Instead of
treating them as separate or competing approaches, we have in this paper shown that
generative and neural network approaches can come together in the form of competi-
tive learning algorithms that are neurally plausible, reliable, and probabilistically fully
interpretable.

Acknowledgment. This work was funded by the Gatsby Charitable Foundation.

References

1. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, Chichester (2000)
2. Yuille, A.L., Geiger, D.: Winner-take-all networks. In: Arbib, M.A. (ed.) The handbook of

brain theory and neural networks, pp. 1228–1231. MIT Press, Cambridge (2003)
3. Spratling, M.W., Johnson, M.H.: Preintegration lateral inhibition enhances unsupervised

learning. Neural Computation 14, 2157–2179 (2002)
4. Lücke, J., von der Malsburg, C.: Rapid processing and unsupervised learning in a model of

the cortical macrocolumn. Neural Computation 16, 501–533 (2004)
5. Spratling, M.W.: Learning image components for object recognition. Journal of Machine

Learning Research 7, 793–815 (2006)
6. O’Reilly, R.C.: Generalization in interactive networks: The benefits of inhibitory competition

and Hebbian learning. Neural Computation 13, 1199–1241 (2001)

Generalized Softmax Networks for Non-linear Component Extraction 667

7. Hochreiter, S., Schmidhuber, J.: Feature extraction through LOCOCODE. Neural Computa-
tion 11, 679–714 (1999)

8. Ueda, N., Nakano, R.: Deterministic annealing EM algorithm. Neural Networks 11(2), 271–
282 (1998)

9. Saund, E.: A multiple cause mixture model for unsupervised learning. Neural Computation 7,
51–71 (1995)

10. Dayan, P., Zemel, R.S.: Competition and multiple cause models. Neural Computation 7,
565–579 (1995)

	Generalized Softmax Networks for Non-linear Component Extraction
	Introduction
	The Neural Network Model
	A Non-linear Generative Model
	Maximum Likelihood
	E-Step Approximation
	Simulations
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

