
Variational Inference in Non-negative Factorial Hidden Markov
Models for Efficient Audio Source Separation

Gautham J. Mysore gmysore@adobe.com
Advanced Technology Labs, Adobe Systems Inc., San Francisco, CA 94103, USA

Maneesh Sahani maneesh@gatsby.ucl.ac.uk
Gatsby Computational Neuroscience Unit, University College London, WC1N 3AR, UK

Abstract

The past decade has seen substantial work
on the use of non-negative matrix factoriza-
tion and its probabilistic counterparts for au-
dio source separation. Although able to cap-
ture audio spectral structure well, these mod-
els neglect the non-stationarity and temporal
dynamics that are important properties of
audio. The recently proposed non-negative
factorial hidden Markov model (N-FHMM)
introduces a temporal dimension and im-
proves source separation performance. How-
ever, the factorial nature of this model makes
the complexity of inference exponential in the
number of sound sources. Here, we present a
Bayesian variant of the N-FHMM suited to
an efficient variational inference algorithm,
whose complexity is linear in the number of
sound sources. Our algorithm performs com-
parably to exact inference in the original N-
FHMM but is significantly faster. In typical
configurations of the N-FHMM, our method
achieves around a 30x increase in speed.

1. Introduction

Spectrograms reveal a great deal of acoustic structure
and are therefore often the representation of choice for
modeling sounds. A spectrogram is the magnitude of
the short-time Fourier transform (STFT) of a signal
and is therefore a non-negative matrix. This has led
to the popularity of using non-negative matrix factor-
ization (NMF) (Lee & Seung, 2001) to model audio
(Smaragdis & Brown, 2003).
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Figure 1. Conceptual model of a single sound source using
non-negative matrix factorization. A single dictionary is
used to explain the entire sound source.

Figure 2. Conceptual model of a single sound source using
the non-negative hidden Markov model. Multiple dictio-
naries account for non-stationarity and the Markov chain
accounts for temporal dynamics.

Conceptually, NMF models each time frame (column)
of an audio spectrogram as a linear combination of
non-negative dictionary elements. Given the spectro-
gram of a sound source, we can use NMF to learn
a dictionary (Figure 1) that serves as a model for the
range of different short-term spectra generated by that
source. While potentially a powerful spectral model,
NMF provides no generative account of the temporal
dynamics linking these short-term spectra, nor of any
spectral non-stationaries: two essential ingredients of
real audio signals.

A recent proposal, the non-negative hidden Markov
model (N-HMM) (Mysore et al., 2010), deals with this
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Figure 3. Combining dictionaries of two sources to model
a mixture using non-negative matrix factorization.

failing of NMF by modeling a sound source with mul-
tiple dictionaries (Figure 2) such that each time frame
of the spectrogram is modeled by a linear combination
of the elements of any one of its many dictionaries,
essentially allowing different sub-models for spectra at
different time frames. Moreover, transitions between
these component dictionaries from one time frame to
the next are governed by a Markov chain, thus captur-
ing the temporal dynamics of the source. The model
is described more completely in Section 2.1.

NMF and its probabilistic counterparts have been
used extensively for audio source separation (Virtanen,
2007; Smaragdis et al., 2007). The basic idea is to first
learn a dictionary for each source from isolated train-
ing data. The mixture is then modeled by a dictionary
formed from the concatenation the dictionaries of the
two1 sources (Figure 3). The goal is then to estimate
mixture weights over all dictionary elements at each
time frame. Using these mixture weights, we can re-
construct the contribution of each source at each time
frame, obtaining the separated spectrogram of each
source. The phase of the original mixture STFT is
typically then used to obtain time-domain audio sig-
nals from these separated spectrograms.

The N-HMM has been extended to the non-negative
factorial hidden Markov model (N-FHMM) to model
sound mixtures and has been used for source separa-
tion (Mysore et al., 2010). Each time frame of the
spectrogram is modeled by one of the combinatorially
many concatenations of dictionaries of the two sources
as illustrated in Figure 4. When used for source sep-

1It is straightforward to extend this and other methods
described in the paper to more than two sources.
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Figure 4. Combining dictionaries of two sources to model
a mixture using the non-negative factorial hidden Markov
model. In this simple example, each source has two dic-
tionaries so there are a total of four ways of combining
them.

aration, the goal is to estimate the posterior proba-
bilities of using each pair of dictionaries at each time
frame as well as the mixture weights for each of these
dictionary pairs. Using these estimates, we can recon-
struct the separated spectrograms and perform source
separation in the same way as described above.

The N-FHMM has been shown to achieve much better
source separation accuracy than simple NMF (Mysore
et al., 2010). However, the combinatorial nature of
the N-FHMM makes the complexity of exact inference
exponential in the number of sound sources, which is
often intractable. Specifically, if each source has N
states and there are S sources, then we must evaluate
the posterior probabilities of NS state configurations
per time frame.

It would therefore be useful to be able to use an
approximate inference technique for the N-FHMM.
Structured variational inference (Ghahramani & Jor-
dan, 1997) is an attractive approach for factorial hid-
den Markov models (FHMM) in general. However, the
natural extension of this idea to the N-FHMM has cer-
tain limitations, which make it a poor approximation
(Section 3.1). In this paper, we propose a Bayesian
variant of the N-FHMM (Section 2.2) that makes it
more amenable to variational inference, and then de-
velop a suitable factored approximation to the poste-
rior distribution deriving the corresponding variational
inference algorithm (Section 3.2).

Experiments (Section 5) show that our algorithm
achieves accuracy comparable to that of exact infer-
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Figure 5. Graphical model of the non-negative hidden
Markov model.

ence, but is about 30 times faster on the configurations
of the N-FHMM that achieve the the highest-quality
source separation results.

2. Probabilistic Models

In this section, we first describe the probabilistic model
of the N-HMM (Mysore et al., 2010) for single sources
as it forms the foundation for the N-FHMM. We
then describe the probabilistic model of the proposed
Bayesian variant of the N-FHMM. In these models,
each time frame of the spectrogram is viewed as a his-
togram of “sound quanta” in the same way that a docu-
ment is viewed as a histogram of words in topic models
(Hofmann, 1999; Blei et al., 2003).

2.1. Non-negative Hidden Markov Model

The graphical model is shown in Figure 5. The random
variables D1...T form a Markov chain, and the spectra
in each time frame are independent given these vari-
ables. Each possible value of Dt identifies a spectral
dictionary. Each dictionary contains a set of dictionary
elements (analogous to topics), one of which is selected
for each sound quantum by the random variable Zt.
Each dictionary element is a normalized vector over
frequencies (analogous to a distribution of words). The
frequency associated with a particular quantum is se-
lected by Ft.

The generative process at time frame t is thus:

1. Choose state Dt|Dt−1 ∼ Discr [ρ(Dt−1)]

2. Repeat for each of vt quanta:
– Choose dictionary element Zt ∼ Discr [θt(Dt)]
– Choose frequency Ft ∼ Discr [β(Dt, Zt)]

Here, Discr [] represents the discrete distribution; ρ(d)
is the column of the Markov transition matrix repre-
senting transitions from state d; θt(d) is a vector of nor-
malized mixture weights for dictionary d in time frame
t; and β(d, z) is the normalized dictionary element z of
dictionary d. Given the spectrogram of a sound source,

Figure 6. Non-negative hidden Markov model dictionaries
that were learned from speech data. Each dictionary con-
tains 10 dictionary elements that are stacked right next to
each other. We show a subset of the 40 dictionaries that
were learned in this example. We see that these dictionar-
ies roughly correspond to subunits of speech and some are
harmonic while others are noise like.

maximum–likelihood (ML) values of all these param-
eters may be found by the EM algorithm. The dictio-
naries and the transition matrix define the model of
the sound source, whereas the mixture weights (which
depend on t) are nuisance parameters unique to the
particular instance of the sound source used for train-
ing. A sample of the dictionaries learned from real
speech data is shown in Figure 6.

2.2. Non-negative Factorial Hidden Markov
Model

The original N-FHMM introduced an independent
Markov chain D

(s)
1...T for each source s, and time-

dependent mixing weights that selected elements from
a combined state-dependent dictionary θt(d

(1), d(2)).
Here, we extend this model in two ways. First, θt and
Zt will range over all dictionary elements of all sources.
Thus the selection of a dictionary based on the state
D

(s)
t becomes probabilistic, and elements from more

than one dictionary may appear in principle. Second,
we treat θt as a Dirichlet-distributed latent variable,
rather than as a parameter. Separating the mixture
requires estimation of θt: the older N-FHMM formu-
lation used ML estimates; here we use a variational
posterior.

The generative process (Figure 7) at time frame t is
thus:

1. Choose states for each source:
D

(s)
t |D

(s)
t−1 ∼ Discr

[
ρ(s)(D

(s)
t−1)

]
2. Choose mixture weights:

θt ∼ Dirich
[
α(D

(1)
t , D

(2)
t )
]

3. Repeat for each of vt quanta:
–Choose dictionary element: Zt ∼ Discr [θt]
–Choose frequency: Ft ∼ Discr [β(Zt)]
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Figure 7. Graphical model of the proposed Bayesian vari-
ant of the non-negative factorial hidden Markov model.

The function α gives the Dirichlet parameters for the
mixing weights, and thus specifies the dictionary el-
ements available given each pair of source Markov
states. It can most easily be written by introducing
indicator variables δ(s)t,n = 1 if D(s)

t = n and 0 other-
wise; as well as a binary mask array B, with Bsnk = 1
iff dictionary element k is available when the Markov
chain associated with source s is in state n. Then
the kth generative Dirichlet parameter for θt can be
written αk(D

(1)
t , D

(2)
t ) = 1 + γ

∑
s

∑
n δ

(s)
t,nBsnk. Pro-

vided the two sources do not share dictionary elements,
the sum in this expression evaluates to either 0 or 1.
Thus the distribution on θt has parameters of 1 + γ
corresponding to the elements selected by the current
Markov states, and 1 otherwise. The hyperparame-
ter γ sets the concentration of the Dirichlet; we took
γ = 1. Thus, we can write the distribution on mixing
weights:

P (θt|D(1)
t , D

(2)
t ) ∝

∏
k

(∏
s

∏
n

θ
δ
(s)
t,nBsnk

t,k

)
. (1)

This formulation does not make exact inference any
easier because the number of such distributions that
we have to consider is still exponential in the number
of sources. However, we will see in Section 3.2 that this
is important for our variational inference derivation.

The remaining parameters are much as before: β(z) is
the zth normalized dictionary element; ρ(1) and ρ(2)

are the transition matrices of the two sources. We also
need parameters for the initial state probabilities, for
which we write π(1) and π(2). The number of quanta
at each time frame vt could be modeled as a draw
from (say) a Poisson distribution. However, it is inde-
pendent of the other generative variables and (in our
applications) is observed, so we do not model it as a
random variable.

Without the temporal dynamics, our formulation is
similar to that of latent Dirichlet allocation LDA (Blei

et al., 2003). The main difference is that the Dirichlet
distribution in a given time frame is a function of the
Markov states of the sources rather than being con-
stant for all time frames.

3. Variational Inference

The parameters describing each source N-HMM are
learned from isolated training data of that source.
Thus, the goal of inference in the N-FHMM is only
to resolve the mixture; specifically, to estimate the
marginalized posterior distribution of the mixture
weights P (θt|f) at each time frame. Once this distribu-
tion is found, we can reconstruct the individual sources
and therefore perform source separation. The full
posterior distribution is given by P (Z, θ,D(1),D(2)|f),
where θ, D(1), and D(2) represent θt, D

(1)
t , and D

(2)
t

at all time frames and Z represents all draws of Zt at
all time frames. f represents the observed values of Ft
at all time frames. The computational cost of finding
the posterior distribution is exponential in the num-
ber of sources due to the coupling of the states of the
individual N-HMMs. Exact inference in N-FHMMs is
therefore intractable so we resort to approximation.

Variational inference (Jordan et al., 1999) refers to
a class of techniques that are used to approximate
an intractable posterior distribution with a simpler
(typically factorized) distribution. By minimizing the
KL divergence between the two distributions, a lower
bound on the log-likelihood is maximized. This is the
class of approximations that we employ.

A natural variational approximation to the N-FHMM
would be to decouple from each other the sets latent
variables that correspond to each component N-HMM,
but to retain the structured posterior over each sepa-
rate source. This scheme is analogous to the structured
variational approximation for FHMMs (Ghahramani
& Jordan, 1997). Unfortunately, however, it performs
poorly for the N-FHMM of (Mysore et al., 2010). We
first briefly sketch the approach and explain why it
seems to fail, before moving to the new variant of the
N-FHMM to derive a more successful variational in-
ference algorithm.

3.1. Difficulties with Decoupling

Decoupling the variational posteriors for each sound
source requires that it be possible to group latent vari-
ables according to the generative source. This is easy
for D(s). However, the latent variables Z identify ele-
ments from a combined dictionary over both sources.
Thus, to proceed we introduce a new latent variable St
to indicate the proportions of quanta drawn from each
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source at time t, and then separately generate Z(1)

and Z(2), each ranging over the dictionary of a sin-
gle source. In this parameterization, the posterior is
P (Z(1), D(1),Z(2), D(2), S|f), which might be approxi-
mated by the decoupled variational distribution:

q(Z(1), D(1))q(Z(2), D(2))
∏
t

q(St).

In this form, the two components q(Z(1), D(1)) and
q(Z(2), D(2)) do indeed correspond to structured pos-
teriors within the two N-HMMs describing the sound
sources, while the factor q(St) corresponds to the mix-
ing proportions of the two sources at time frame t. The
variational iterations then update each individual N-
HMM posterior using the forward–backward algorithm
(Rabiner, 1989) while keeping the contribution of the
other N-HMM fixed; and then revise the mixing pro-
portions of the sources. While certainly plausible, this
algorithm proves to be very prone to sticking in local
optima and in experiments performs more poorly than
even basic NMF (implemented in a probabilistic form,
see Section 5). Here we provide an intuitive sketch of
what we see as the source of the difficulty.

In many applications, the sound sources to be sep-
arated may have some spectrally similar aspects, so
that some or all of the dictionary elements in their in-
dividual N-HMMs may have similar forms. This is the
case when the sound sources are, for example, speech
from different speakers. In such a situation, the dictio-
nary elements of one source may be able to provide a
reasonable fit to sounds generated by the other source.

Consider an example of a single time frame in a speech
mixture in which the first source contributed a har-
monic spectrum (say a vowel) while the second source
produced a noise-like spectrum as might be associated
with a fricative. Both source models are likely to con-
tain spectral dictionary elements to account for both
vowels and fricatives, although these elements might
belong to different dictionaries within each source
model. Thus, if at an early stage the harmonic struc-
ture is incorrectly assigned to source 2 and the noise-
like component to source 1, the inferred Markov states
for the two components will be incorrect. We find that
it is then very unlikely that further iterations will re-
solve the error, indeed they seem to make it worse. As
the incorrect assignments reinforce each other in the
two models, the posterior over Markov states becomes
very sharp. Thus, the two sources are confused. This
reflects a local optimum: it could very well be that the
variational free energy would be larger for the correct
assignment, but the hill-climbing form of the iterative
algorithm makes it unable to discover that fact.

In experiments, we found that this situation appeared
with some frequency, despite the fact that the tempo-
ral structure of the underlying Markov process biased
solutions away from such confusions to an extent.

3.2. Proposed Variational Approximation

In the proposed variant of the N-FHMM, the link be-
tween Markov state and dictionary element is less ab-
solute. Also, we estimate a full posterior over the mix-
ing proportions θt over all dictionary elements, rather
than obtaining an ML point estimate—this reduces the
risk of zeros (or very small values) in the point esti-
mate, which would have created a similar barrier to
exploration. Thus both sources are able to explore the
full range of possible dictionary elements and settle on
the correct apportionment of the mixture spectrum,
while the interaction between Markov state variables
and prior on θt strongly favors explanations that con-
centrate on a single dictionary per source.

To develop the variational algorithm for this
model, we approximate the posterior distribution
P (Z, θ,D(1),D(2)|f) with the following factored form:(∏

t

q(θt)

)(∏
t

∏
v

q(Zt,v)

)
q(D(1))q(D(2)) .

Note that for a given time frame, the index k for θt
is over all dictionary elements of all dictionaries of all
sources. The mixture weights for a given time frame
t are therefore in a single factor q(θt). Moreover, this
factor is independent of D(1)

t and D
(2)
t so we do not

have the combinatorial problem.

However, the distribution over the states of all time
frames of a given sound source q(D(1)) and q(D(2))
are each a single factor. This is because we would
still like to make use of the structure of the temporal
dynamics in each individual source and exact inference
is efficient using the forward–backward algorithm.

By minimizing the KL divergence between the true
posterior distribution and the factorized distribution,
we obtain the following variational inference solution
(Jordan et al., 1999) for each of the factors:

q(θt) ∝ exp
〈

logP (Z, θ,D(1),D(2), f)
〉
q1
, (2)

q(Zt,v) ∝ exp
〈

logP (Z, θ,D(1),D(2), f)
〉
q2
, (3)

q(D(1)) ∝ exp
〈

logP (Z, θ,D(1),D(2), f)
〉
q3
, (4)

q(D(2)) ∝ exp
〈

logP (Z, θ,D(1),D(2), f)
〉
q4
, (5)

where q1 refers to the product of all of the factors ex-
cept q(θt) (and similarly for the other factors). We
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use proportionality rather than equality to simply in-
dicate that the quantities are unnormalized. Solving
these equations, we find that q(θt) is a Dirichlet dis-
tribution, which we parameterize by α̂t,k; q(D(1)) and
q(D(2)) are each a set of discrete distributions, with
marginal probabilities d̂(1)t,n and d̂

(2)
t,n at time frame t.

The distribution q(Zt,v) is also discrete, and at any
time frame the parameters for all Zt,v whose corre-
sponding observed frequencies ft,v are equal, will be
identical. Thus, we write these parameters as ẑt,l,k,
where l indexes frequency (in place of v), and k iden-
tifies a dictionary element.

On simplification of Eq.2, we obtain following update
equation for the parameters of q(θt):

α̂t,k =
∑
v

ẑt,ft,v,k + γ
∑
s

∑
n

d̂
(s)
t,nBsnk + 1 .

Note that as d̂(s)t,n are defined to be marginal probabil-
ities, they are exactly the expected values under q of
δ
(s)
t,n. The index ft,v is the observed frequency of quan-
tum v at time t. We can group all quanta for which
ft,v is equal, to obtain:

α̂t,k =
∑
l

Vltẑt,l,k + γ
∑
s

∑
n

d̂
(s)
t,nBsnk + 1 , (6)

where Vlt is the value of the spectrogram (i.e., the
number of quanta) at frequency l and time frame t.

On simplification of Eq.3, we obtain estimates of the
parameters of q(Zt,v):

log ẑt,l,k = log βl(k)+ψ(α̂t,k)−ψ
(∑

k

α̂t,k

)
−κ , (7)

where ψ() is the digamma function; κ is a log normal-
izer; and βl(k) is the value of dictionary element k at
frequency l. The digamma terms arise from the nor-
malizing Γ-functions of the Dirichlet distribution (Blei
et al., 2003).

On simplification of Eq.4 and 5, we first obtain surro-
gate “likelihood” terms, which we subsequently use in
the forward–backward algorithm to obtain the distri-
bution parameters. This likelihood term at time frame
t for state n of source s is given by:

φ̂
(s)
t,n =

∑
k

Bsnk

(
ψ(α̂t,k)− ψ

(∑
k

α̂t,k

))
. (8)

The forward–backward algorithm then finds estimates
of the marginals d̂(s)t,n of q(D(s)).

We iterate over Eqs.6,7,8, and the forward–backward
algorithm for each source. The resulting solution pro-

vides estimates of the parameters α̂t,k of the distri-
bution q(θt), indicating the distribution of mixture
weights.

4. Source Separation

We reconstruct the spectrograms of the individual
sources by taking linear combinations of the dictionary
elements of all dictionaries of each individual source
according to the estimated mixture weights α̂t,k, at
each time frame. This gives us estimates of the sepa-
rated spectrograms of each source V̂ (s)

lt . We can simply
go back to the time domain with these estimates using
the phase of the original mixture. However, a common
source separation practice to first obtain more refined
spectrogram estimates by applying the following mask-
ing strategy:

V
∗(s)
lt = Vlt

V̂
(s)
lt∑

s′ V̂
(s′)
lt

,

where Vlt is the original mixture spectrogram. The
final estimated spectrogram for each source is therefore
V

∗(s)
lt . We employ this strategy in our experiments.

5. Experimental Results

To validate our proposed variational inference algo-
rithm, we performed source separation experiments on
speech mixtures and compared our results to those of
exact inference within the N-FHMM of (Mysore et al.,
2010). As the proposed algorithm has much lower com-
putational complexity, our goal was to try to achieve
source separation performance that came close to that
of exact inference. Additionally, we compared to the
performance of the decoupled variational approxima-
tion (Section 3.1), and to the performance of proba-
bilistic latent component analysis (PLCA) (Smaragdis
et al., 2007), this being the baseline comparison used
in (Mysore et al., 2010). PLCA is a probabilistic audio
interpretation of NMF (up to a column-wise normal-
ization). It therefore serves as an baseline equivalent
to NMF.

We performed experiments with 50 different speech
mixtures and report the mean of the results. Data were
taken from TIMIT, a commonly used corpus for speech
processing and speech recognition tasks. It comprises
numerous sentences from multiple speakers.

We performed each of the 50 experiments as follows.
We first randomly chose one male and one female
speaker. For each speaker, we assigned nine sentences
as training data and one sentence as test data. We
then concatenated the training data sentences and ob-
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Figure 8. Source separation metrics for different configura-
tions of the proposed method. N represents the number of
dictionaries and K represents the number of elements per
dictionary.

tained a spectrogram with a window size of 64ms and
a hop size of 16ms (the sampling rate was 16KHz).
Next, we learned an N-HMM (with an ergodic Markov
chain) from the training data of each speaker, yield-
ing a set of dictionaries and a transition matrix for
each speaker. The next step was to mix the two test
sentences (one from each speaker) at 0dB and obtain
the spectrogram using the above window size and hop
size. We then combined the dictionaries and transition
matrices of the two speakers into either a joint PLCA
or an N-FHMM model, performed inference using the
various methods, and separated the sources.

We used the standard BSS-EVAL suite of metrics
(Vincent et al., 2006) to evaluate the source separa-
tion performance. This suite consists of three signal
to noise ratio (SNR) type metrics (in dB). Source to
Interference Ratio (SIR) evaluates the suppression of
the unwanted source. Source to Artifacts Ratio (SAR)
evaluates the amount of artifacts introduced by the
separation process (with larger numbers reflecting less
artifacts). Source to Distortion Ratio (SDR) gives us
an overall source separation score that takes both the
suppression capability as well as the introduced arti-
facts into account. We computed these metrics on each
of our 100 sources separated from 50 mixtures.

In order to find the optimal configuration of our model
(the number of dictionaries and number of elements
per dictionary), we repeated these experiments in 30

SDR SIR SAR
PLCA 5.73 9.53 8.78
Exact 7.73 14.05 9.27

Decoupled Variational 2.10 3.40 10.10
Proposed Variational 7.56 11.87 10.22

Proposed Variational Opt. 7.63 12.00 10.24

Table 1. BSS-EVAL source separation performance for var-
ious algorithms. PLCA used a dictionary of 30 elements.
N-FHMM with exact inference, decoupled variational in-
ference, and the proposed variational inference algorithm
all used 20 dictionaries of 30 elements each. The final line
shows the proposed method with 20 dictionaries of 20 ele-
ments each, which was the optimal configuration for that
method.

different configurations. The BSS-EVAL metrics for
all of these configurations are shown in Figure 8. The
optimal configuration (in terms of SDR) was 20 dictio-
naries with 20 elements each. It is evident, however,
that the different configurations yield similar perfor-
mance scores, except for a noticeable drop when using
only 1 element per dictionary. This is encouraging as it
implies that the algorithm is not particularly sensitive
to the specific configuration for this kind of data.

To make comparison to exact inference unbiased, we
also searched for the optimal configuration in that
case. Here, 20 dictionaries with 30 elements each
yielded the best source separation performance (data
not shown), although, as with the proposed variational
inference algorithm, the metrics did not vary substan-
tially with different configurations. Table 1 shows the
results obtained with this configuration as well as the
results of the proposed method and decoupled varia-
tional inference when using the same configuration.

As a baseline, we also experimented with PLCA with
various dictionary sizes, and found that 30 dictionary
elements yielded the optimal source separation per-
formance. The results of using this configuration of
PLCA are are also shown in Table 1.

We see that our algorithm performs almost as well as
exact inference even when using the same configura-
tion (Table 1). The difference in SDR is less than 0.2
dB. There is however a large difference in computa-
tion time. Based on the configuration of each source
having 20 dictionaries of 30 elements each, we empir-
ically found each iteration of the proposed method to
be about 30 times faster than using exact inference.
However, when using the optimal configuration for
the proposed method (20 dictionaries of 20 elements
each), we observed about a 40x speedup. The pro-
posed method generally took about twenty iterations
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Figure 9. Reconstruction cross entropy at each iteration of
the proposed variational inference algorithm for ten differ-
ent source separation experiments. There is usually con-
vergence within the first twenty iterations.

to converge (Figure 9), which is a similar number to
that seen with exact inference.

The SIR of the proposed method is lower than that
of exact inference but the SAR is higher. This can
be understood as follows. Exact inference returns a
higher SIR because it is more constrained. Only one
dictionary from each source may be active in each
time frame. This restriction is relaxed in the pro-
posed method, allowing some interference from ele-
ments of the other dictionaries. This very property
gives the proposed method a higher SAR. In order to
reduce artifacts, it can be helpful to recruit some con-
tribution from dictionary elements that correspond to
non-active Markov states. This can help explain nu-
ances in the spectral time frame that the active dic-
tionary might not capture completely. This is possible
in the proposed method, but not in the rigid exact
N-FHMM model. The proposed method and exact in-
ference therefore have a fairly even SIR/SAR trade off
leading to approximately the same SDR scores.

As shown in Table 1, the proposed method outper-
forms PLCA in all three metrics and the decoupled
variational approximation performs very poorly with
a lower SDR and SIR than even PLCA.

6. Conclusions

We have proposed a Bayesian variant of the N-FHMM
and an efficient variational inference algorithm for the
model. The computational complexity of the algo-
rithm is linear in the number of sources, and it is about
30 times faster than exact inference on an empirically
optimal configuration of the N-FHMM, with compara-
ble source separation accuracy. Although variational
inference in the N-FHMM was demonstrated on the
task of source separation, it is a general model of
sound mixtures and can be used for various other audio
tasks such as concurrent speech recognition of multiple
speakers and automatic music transcription.
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