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ABSTRACT

We introduce a new class of efficient estimators based on
score matching for probabilistic point process models. Un-
like discretised likelihood-based estimators, score matching
estimators operate on continuous-time data, with computa-
tional demands that grow with the number of events rather
than with total observation time. Furthermore, estimators for
many common regression models can be obtained in closed
form, rather than by iteration. This new approach to estima-
tion may thus expand the range of tractable models available
for event-based data.

Index Terms— point-process, score matching, estima-
tion, spike train, neural data

1. INTRODUCTION

A point process is a probability law governing the distribution
of a random subset of points drawn from a specified space
[1]. In the most common application, the space is the real
line, and the points define events in time. Such data arise in a
wide range of applications: including neurophysiology, seis-
mology, queuing theory and network traffic analysis. Many
of the principles developed here apply to point processes over
any continuous space; however, for simplicity and compact-
ness we limit the exposition to point processes in time.

We often wish to fit the parameters of a point process
model to one or more observed sets of events. The simplest
point process is the Poisson process, which may be defined by
a parametrised intensity function λθ(t). The log likelihood of
a Poisson process for observed events {t1, t2, . . . } is:

log p(t1, t2, . . . |θ) =
∑
i

log λθ(ti)−
∫ ∞
−∞

dt λθ(t)

For many choices of parametrisation, evaluation of the inte-
gral in this likelihood is intractable. Thus, exact maximum
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likelihood estimation of θ may be computationally challeng-
ing. One common approach is to discretise time, replacing
the integral by a sum (e.g., as in [2]).

Score matching was introduced by Hyvärinen [3] as an al-
ternative estimation approach based on matching the deriva-
tive in the data space of the log-density of the model to the
log-density of the empirical (unknown) distribution. It was
motivated as a way to estimate parameters in distributions for
which the normalising constant is intractable (as the deriva-
tives being matched do not depend on this constant). It might
thus seem plausible that a score matching estimator would
also help to avoid the complications associated with an in-
tractable integral in the likelihood above. This hope will be
borne out.

2. SCORE MATCHING FOR POINT PROCESSES

Consider a point process defined on an interval [0, T ]. A sin-
gle sample-path from the process may be represented as non-
decreasing counting function N : [0, T ]→ Z+, which makes
unit transitions at the event times T = {t1, t2, t3, . . . , tN(T )}
with 0 ≤ t1 < t2 < t3 < . . . tN(T ) ≤ T (we have assumed
that no two events occur at the same time). Note that the
number of events N(T ) is also a random variable. We write
T for the collection of feasible event sets and TN for the col-
lection conditioned on the count N(T ). Let P∗ represent the
true process that generated the sample, and assume that it has
an associated density function p∗(T ). We have a parametric
model process Pθ, with density pθ depending on an unknown
θ which we would like to estimate.

We define the point-process score-matching objective
function to be

J(θ) =
1

2

〈
N∑
i=1

(
∂ti log p

∗(T )− ∂ti log pθ(T )
)2〉

T ∼P∗

(1)
with the score-matching estimate of θ being the value at
which this objective is minimised. This choice of objective
may be related to the original score-matching objective of [3]
in one of two ways. First, it can be seen as the difference in
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variational derivatives of the log-densities taken with respect
to the counting function N(t) defined on [0, T ] (see [1]) and
subject to the constraints that it be non-decreasing and piece-
wise constant with unit steps. Alternatively, we can follow [4]
and introduce hypothetical location parameters {µ1, µ2, . . . }
to define a translated point process based on P∗ with density
pµ({t1 . . . tN}) = p∗({t1 + µ1 . . . tN + µN}). Equation (1)
then follows by matching Fisher score functions with respect
to the parameters µi evaluated at µ1 = µ2 = · · · = µN = 0,
and with derivatives with respect to µN+1, µN+2, . . . all set
to 0.

As in the usual score matching development, this cost
function cannot be minimised directly as it depends on deriva-
tives of an unknown density p∗. The manipulations necessary
to remove this dependence broadly follow the general deriva-
tion of [3], with some complications arising from different
limits of integration. We first expand the square and drop the
terms in (∂ti log p

∗(T ))2, as these do not depend on the para-
metric density and so do not affect the maximum with respect
to the parameters. Examining the cross-terms, conditioned on
the number of events N , we have:〈
∂ti log p

∗(T ) ∂ti log pθ(T )
〉
P∗|N

=

∫
TN

dT p∗(T )∂ti log p∗(T ) ∂ti log pθ(T )

=

∫
TN

dT ∂tip
∗(T )∂ti log pθ(T )

=

∫
TN

dT
(
p∗(T )∂ti log pθ(T )

(
δ(ti+1 − ti)− δ(ti − ti−1)

)
− p∗(T )∂2ti log p

θ(T )
)

where the final step required integration by parts, and we
have used delta-function notation to evaluate the limits ti ∈
(ti−1, ti+1), set by the order constraint on samples, for the
complete portion of the integral. Now, provided that the para-
metric density satisfies the smoothness property

∂ti log p
θ(T )|ti=ti+1

= ∂ti+1
log pθ(T )|ti+1=ti ,

the majority of delta function terms will cancel when sum-
ming over i, leaving〈〈∑

i

∂ti log p
∗(T ) ∂ti log pθ(T )

〉
T ∼P∗|N

〉
N∼P∗

=

〈
∂tN log pθ(T )δ(tN − T )− ∂t1 log pθ(T )δ(t1)

−
∑
i

∂2ti log p
θ(T )

〉
P∗

To construct the final empirical cost we recombine this term
with the remaining model derivatives from (1) and replace

expectations over P∗ with evaluations at the observed event
times. This will eliminate the remaining delta function values
almost surely. Thus we arrive at the empirical point process
score matching objective:

Ĵ(θ) =
∑
i

1

2

(
∂ti log p

θ(T )
)2

+ ∂2ti log p
θ(T ) (2)

3. LOG-LINEAR POISSON-PROCESS REGRESSION

The point process score matching objective derived above ap-
plies quite generally to any parametric point process. In the
remainder of this paper, we focus on a class of models in
which the log-intensity function of a point process is taken
to depend on an observed covariate function x(t). For ex-
ample, the times of action potentials (or “spikes”) generated
by a sensory neuron may depend on a sensory stimulus being
presented to the animal.

The simplest such model is conditionally Poisson, with a
log-intensity function that is a linear function of x(t):

log λθ(t) = θTx(t) . (3)

This scheme resembles a generalised linear model (GLM) for
a Poisson count observation, and indeed the point-process
likelihood may be obtained as a limit of the Poisson-count
GLM [2]. Thus, in practice, such models are often fit by dis-
cretising time, counting events that fall in each discrete bin,
and using the iterative GLM framework. The score-matching
estimator is far simpler.

Recalling that the log model density is given by pθ(T ) =∑
i log λ

θ(ti)−
∫
dt λθ(t) =

∑
i θ

Tx(ti)+constant, we have:

Ĵ(θ) =
∑
i

1

2

(
θTx′(ti)

)2
+ θTx′′(ti) (4)

where primes represent temporal derivatives. Solving for the
minimum in θ (and writing x′i for x′(ti) etc.) we obtain:

θ̂ = −
(∑

i

x′ix
′
i
T
)−1∑

i

x′′i (5)

This is a simple estimator that depends only on derivatives
of the regression covariate evaluated at the times of events.
It does not depend on the value of λθ(t) at other times, and
thus its computational burden scales with the number of
events rather than with total observation time T . As will be
seen in the experiments below, it can compare favourably
to maximum-likelihood estimators in accuracy, at a small
fraction of the computational cost.

If the continuous-time covariate function x(t) and its
derivatives are not known exactly, and instead must be sam-
pled, potentially quantised and possibly corrupted by noise,
then the process by which the smooth function is recon-
structed from these samples will affect the quality of the



estimate in (5). The exact nature of any bias will depend on
the properties of the estimates of x′i and x′′i . However, two
general points are worth noting: First, the separate sums in
the numerator and denominator of (5) will reduce the im-
pact of correlation between estimates of the first and second
derivatives; and second, while zero-mean perturbations in es-
timates of x′′ will average away in the numerator, noise in x′

will contribute a positive-definite bias to the squared term in
the denominator. In effect, such estimation noise contributes
a term very similar to that encountered in ridge regression.

4. LNP REGRESSION

The log-linear assumption of (3) is common, but not always
appropriate. More general linear-nonlinear-Poisson (LNP)
models have attracted interest, particularly from the neu-
roscience community. These models assume an intensity
function of the form λ(t) = f(Kx(t)), where K is a vector
or matrix and f() is an unknown nonlinear function mapping
the column space of K to R+. Note that for arbitrary f(),
only the row space of K is identifiable.

If the regressor covariate values x(t) are normally dis-
tributed, then spectral methods offer efficient—and generally
unbiased and consistent—estimators for the row space of K
[5, 6]. However, these approaches suffer from considerable
bias when the distribution is non-normal. The alternative is
to assume a basis of nonlinear functions φi(), with f() then
estimated within the space spanned by this basis. This ap-
proach may be formulated in information-theoretic terms [7],
although the resulting cost function is identical to that ob-
tained by the conventional likelihood-based treatment [8].

Here, we parametrise the log intensity in a similar way.
Let φ() be a fixed vector-valued function mapping the column
space of K to Rm (that is, it collects the outputs of the m
basis nonlinear functions into a single vector-valued output).
Then the model intensity is log λθ(t) = θTφ(Kx(t)). [We
continue to use the generic symbols Pθ, pθ and λθ for the
model, even though the parameters now form a tuple (θ,K).]

The log-likelihood for this model is

log pθ(T |K,θ) =
∑
i

θTφ(Kx(ti))−
∫
dt λ(t)

Writing xi = x(ti), φi = φ(Kx(ti)), and similar forms for
derivatives as above, we have:

∂tiφ(Kx(ti)) = ∇φT(Kx(ti))Kx′(ti) = ∇φi ·Kx′i

∂2tiφ(Kx(ti)) = (∇∇φ ·Kx′i) ·Kx′i +∇φi ·Kx′′i

where∇∇φ is a 3-tensor of the form [∇∇φ(z)]ijk = ∂2φi

∂zj∂zk
.

And so the LNP score matching objective is

Ĵ(K,θ) =
〈
θT(∇∇φ ·Kx′i) ·Kx′i + θT∇φi ·Kx′′i

+
1

2
‖θT∇φi ·Kx′i‖2

〉

It is straightforward to see that by setting K = I and
φ(z) = z (that is φ(Kx) = x), we obtain ∇φ = 1 and
∇∇φ = 0, and so recover the log-linear model score match-
ing cost function of (4).

A similar closed-form solution is also available for the
“generalised quadratic model” (GQM) case, where K = I
and φ(z) = vec(zzT) (the ‘vec’ operator unrolls a matrix
argument into a vector). In this case we have, writing ei for
the cartesian basis vector along coordinate i:

∇jφ(x) = vec(ejxT + xeTj )

⇒ ∇φi · x′i =
∑
j

vec(ejxT + xeTj )x
′
ij = vec(x′xT + xx′T)

and ∇φi · x′′i = vec(x′′xT + xx′′T)

also ∇j∇kφ(x) = vec(ejeTk + eke
T
j )

⇒ (∇∇φi · x′i) · x′i = 2 vec(x′ix
′
i
T)

Collecting these expressions together we find the closed form
estimator:

θ̂GQM = −

(∑
i

vec(x′ix
T
i + xix

′
i
T)vec(x′ix

T
i + xix

′
i
T)T

)−1
∑
i

(
2 vec(x′ix

′
i
T) + vec(x′′i x

T
i + xix

′′
i
T)
)

“Maximum Expected Likelihood” methods have also
been proposed for GQM estimation [9], but like other spec-
tral methods depend on a known and tractable distribution of
regression inputs. The score-matching estimator is efficient,
and free of such assumptions — a point we investigate in
experiments below.

5. EXPERIMENTS

We investigated the properties of the proposed score-matching-
based estimators in numerical experiments, in which we fit
model parameters to simulated data where the true parameters
θ and K were known. Two aspects of the were of particular
interest: the consistency and the computational costs of the
estimators. We also compared these estimators to maximum
likelihood (ML) estimates obtained by iterative procedures.

5.1. Generalised Linear Model

We began by evaluating the simple log-linear Poisson model
estimator (5). Responses were generated according to (3).
A 10-dimensional covariate function x(t) was obtained by
filtering Gaussian white noise sampled at 1000 Hz with 10
Gammatone filters. A “true” weight vector θ was chosen ran-
domly. Event times were generated by an inhomogeneous
Poisson process with log-intensity given by the weighted fil-
ter outputs, offset to achieve a total event event rate of 10, 20
or 40 Hz. The agreement between recovered and true model
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Fig. 1. Comparison between score matching (SM) and max-
imum likelihood (ML) estimation for the generalised linear
Poisson model. SM achieves high correlation to ground truth
(note the y-axis on the upper figure) and approaches the per-
formance of ML with considerably lower computational cost.

parameters was quantified using the Pearson correlation coef-
ficient ρ.

As expected, the ML estimator performed slightly better
than the score-matching estimator for small data sizes, partic-
ularly for low event rates (Fig. 1). However, correlation co-
efficients in both cases were high. With increasing data size
both estimators converged to the true solution. The computa-
tional cost of the closed-form score matching estimator was
over two orders of magnitude lower than the cost of the iter-
ative ML estimator, which increases considerably with data
size.

ML parameter estimation in practice is often based on
binning events at a pre-determined timescale to make esti-
mation computationally feasible. If the true intensity func-
tion varies more rapidly than the bin-width, such discretisa-
tion may mask the true underlying function. We constructed
simulated data as before, but generated the input covariate
and events at a sample rate of 5000 Hz, which we binned to
1000 Hz for ML estimation. In our simulations, this mismatch
in bin width had a detrimental effect on the fitted parameters
(Fig. 2). An advantage of the score matching estimator is
that it is evaluated only at the exact event times and does not
require any binning. In neural experiments, x(t) is often an
experimental stimulus which varies at a fixed rate (for exam-
ple, the frame rate of a monitor). Nonetheless, the physio-
logical response may be more rapid — for example, with the
neurons spiking immediately after a frame refresh rather than
uniformly throughout the frame presentation time. Thus, an
appropriate choice of bin width may often be unclear.
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Fig. 2. Comparison between SM and binned ML estimation
on the GLM. Binning high-frequency input adversely affects
ML estimates. The continuous time SM estimate does not
require any binning.

5.2. Generalised Quadratic Model

We then examined the performance of our score-matching
estimator for the log-quadratic (GQM) case, where the log-
intensity depended linearly on the outer product of the co-
variate function – x(t)x(t)T. Linear weights θ, now forming
a matrix, were chosen randomly; event times simulated; and
the resulting estimates of θ evaluated. Maximum likelihood
estimation for the GQM is partiularly compuationally burden-
some and thus not extensively employed. Instead, we com-
pared the score-matching estimator to another closed-form
solution that maximises the expected likelihood (MEL) of
GQM [9].

While MEL methods provide a fast and robust way to
fit GQM parameters, they rely on the assumption that ex-
pected likelihoods can be computed for the given input dis-
tribution. If this is the case, as for Gaussian inputs, the MEL
estimator’s performance exceeds that of the score matching
estimator with only a small increase in computational cost
(Fig. 3). However for covariates that follow a more natural
non-Gaussian distribution, the MEL estimator is not appro-
priate. When events are driven by a covariate based on fil-
tered speech waveforms, with the same Gammatone profiles
as before, the MEL estimator collapses. The score-matching
derivation does not depend on the stimulus distribution, and
so is not affected by the change in statistics (Fig. 4). In fact,
the estimated parameters are slightly more accurate than with
the Gaussian noise covariate, probably because the speech-
driven model generates events with greater temporal preci-
sion.
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Fig. 3. Comparison between SM and maximum expected
likelihood (MEL) estimation for a generalised quadratic
model using Gaussian inputs. MEL offers clear advantages
when expected likelihoods are computable with only modest
computation burden.

6. CONCLUSION

We have introduced a new class of estimators for point-
process models based on measurements in continuous time,
and derived specific estimators for “regression” settings
where the point-process intensity depends on a known ex-
ternal covariate. The estimators are frequently closed-form,
and computation scales with the number of events rather than
the total interval length. This approach to estimation may
help to expand the range of point-process models that can be
tractably fit to measured data.
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