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ABSTRACT

Increasing the performance of neural prostheses is necessary

for assuring their clinical viability. One performance limita-

tion is the presence of correlated trial-to-trial variability that

can cause neural responses to wax and wane in concert as

the subject is, for example, more attentive or more fatigued.

We report here the design and characterization of a Factor-

Analysis-based decoding algorithm that is able to contend

with this confound. We characterize the decoder (classifier)

on a previously reported dataset where monkeys performed

both a real reach task and a prosthetic cursor movement task

while we recorded from 96 electrodes implanted in dorsal pre-

motor cortex. In principle, the decoder infers the underlying

factors that co-modulate the neurons’ responses and can use

this information to function with reduced error rates (1 of 8

reach target prediction) of up to ∼75% (∼20% total predic-

tion error using independent Gaussian or Poisson models be-

came ∼5%). Such Factor-Analysis based methods appear to

be effective when attempting to combat directly unobserved

trial-by-trial neural variabiliy.

Index Terms— Factor analysis, premotor cortex, brain-

machine and brain-computer interfaces, neural prostheses

1. INTRODUCTION

Neural prostheses, which are also termed brain-machine and

brain-computer interfaces, aim to substantially increase the

quality of life for people suffering from motor disorders, in-

cluding paralysis and amputation. Neural prostheses trans-

late electrical neural activity from the brain into control sig-

nals for guiding paralyzed upper limbs, prosthetic arms, ma-
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chines and computer cursors. A few research groups have

now demonstrated that monkeys (e.g., [1]) and humans can

learn to move computer cursors and robotic arms to various

target locations simply by activating neural populations that

participate in natural arm movements. Although encouraging,

even these compelling proof-of-concept laboratory demon-

stration systems fall short of exhibiting the level of perfor-

mance needed for many everyday behaviors, and needed to

achieve clinical viability.

To address this need for increased performance, we re-

port here a Factor-Analysis- (FA-) based decode algorithm

aimed at ameliorating one of the major performance limi-

tations: correlated trial-by-trial neural response variability.

Aside from the intrinsic noise present in the neural signal-

ing process, action-potential-emission rates vary across time,

be it at a short (trial-to-trial) or long (hours to days) time

scale, even when known parameters influencing emission rate

are held constant (e.g., upcoming reach direction and extent).

Other parameters (factors), including those that may not be

known or observable, that are not controlled (e.g., speed of

upcoming reach, level of attentiveness, level of fatigue), may

influence emission rate and, as a result, contribute “common-

mode” variability across the population of neurons.

The need for a new decoder such as the FA-based one

presented here was motivated by the observation, made while

analyzing data from [1], that the neural response associated

with planning to a given reach location changes (modulates)

when a part of a high-speed sequence of plans [2]. Motivation

for the general type of decoder presented here comes from the

considerable effectiveness of a “trial-by-mean” normalization

approach that simply divides the response rate of each neuron

by the mean response rate across all measured neurons on that

trial [3]. To our knowledge this is the first decoder of its kind

applied to “plan” activity.

2. METHODS

In [1] we assumed that the spike counts for each neuron were

independent once the reach endpoint was specified.1 This

1For the Gaussian models, this assumption was made to avoid a problem

of too little training data when fitting a full covariance matrix. For the Poisson
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Figure 1: Simple cartoon illustrating how spike counts can co-vary

from trial to trial. a. Nominal mean spike counts for 5 neurons for a

particular reach endpoint. b, c. Spike counts for two following trials

for the same reach endpoint. Activity is elevated or suppressed.

construction implies that there are no high-level factors (e.g.,

overall attentiveness to the task, reach speed of the upcom-

ing movement, reach curvature) that influence the recorded

neural data (other than the reach target itself). If there were,

then these factors that are uncontrolled, and often unobserved,

would modulate the underlying firing rate of our observed

neurons in predictable fashions, thereby inducing measurable

neuron-by-neuron correlations in the spike counts that we ob-

serve.

In fact, our initial assumptions of conditional indepen-

dence are certainly gross approximations and are worth re-

visiting. While one of the primary influences on premotor

cortical (PMd) preparatory activity is reach endpoint, there

is evidence that activity can depend on several factors other

than target location, such as reach speed [4]. If a given model

only describes reach endpoint, the model cannot accurately

reflect how the firing rate might change if any one of the unac-

counted properties (e.g., reach speed) perturbs the underlying

firing rate. These fluctuations will appear as response “noise”,

though the “noise” will be correlated across neurons. For ex-

ample, consider the cartoon illustration in Fig. 1 where panel

a shows the expected number of spike counts of five neurons

for a given reach endpoint (e.g., 10 cm rightward reach) and

panels b and c show the observed spike counts on two sub-

sequent trials. For panel b, we suggest that the subject might

have been planning a slightly faster than average reach. Con-

versely, for panel c, the subject might have been planning a

slightly slower than average reach. Note how the reach speed

does not necessarily affect all neurons with the same polarity

and magnitude; such heterogeneity was commonly observed.

In reality, we may not know if it is reach speed or some

other variable that is causing the trial-by-trial modulation;

many different factors can be involved and many of them

are simply unobservable (e.g., cognitive attentiveness to the

task). We can instead attempt to infer a set of abstract factors

for each trial, along with the mapping between the factors

and the underlying firing rate of the recorded neurons. A tar-

get decoding algorithm can then use this knowledge to avoid

mistaking the relatively unimportant trial-to-trial variations as

being the signature for an entirely different reach endpoint.

models, independence is a natural consequence of the distribution we chose.

2.1. Latent variable models

Our work is based on “latent variable models” which have

been a statistical tool for analyzing empirical data since the

early 1900s. Everitt (1984) defines latent variables as “essen-

tially hypothetical constructs invented by a scientist for the

purpose of understanding some research area of interest, and

for which there exists no operational method for direct mea-

surement. Although latent variables are not observable, cer-

tain of their effects on measurable (manifest) variables are

observable, and hence subject to study.” In our case, the ob-

servable (i.e., output) variables are the spiking data from the

array of 96 electrodes [1]. The latent variables represent the

cognitive state of the subject. Depending on the model setup,

they may encapsulate the intended reach endpoint, as well as

the uncontrolled and unobserved variables present during the

task. We can use the larger number of observed output vari-

ables to help triangulate the smaller number of unobserved

latent variables of the system.

The two classic methods to reduce dimensionality, and in

essence reveal the underlying latent variables, are Principal

Components Analysis (PCA) and Factor Analysis (FA). As

shown in [5], both of these techniques posit a probabilistic

model with the following form:

x ∼ N (0, I) 〈1〉
y | x ∼ N (Cx, R) . 〈2〉

The latent state vector, x ∈ Rp×1, is Gaussian distributed

with mean 0, covariance I, and is unobserved. The output,

y ∈ Rq×1, is then generated from a Gaussian distribution.

The matrix C ∈ Rq×p provides the mapping between latent

state and observations, and R ∈ Rq×q is a diagonal covari-

ance matrix of the output noise process. The vectors xn and

yn denote independent draws from this model over N obser-

vations (trials), with n ∈ {1, . . . , N}. For non-zero centered

y, the mean across all training trials must be first subtracted

before fitting and applying the model.

PCA (or rather, sPCA2) and FA can be viewed as effective

ways to parameterize a full covariance matrix on the high-

dimensional observations y. Indeed, Eqs. 1–2 imply that y ∼
N (0, CC′ + R). The first term in the covariance, CC′, at-

tempts to capture the “common-mode” variability across the

neural population. The second term, R, represents the in-

dependent variability of the spiking process for each neuron.

Whereas PCA assumes that this spiking variabililty is identi-

cal for each neuron, FA allows different neurons to have dif-

ferent levels of spiking variability. Because the spiking vari-

ability is known to vary with the mean spike rate, which may

be different for different neurons, we focus on FA for the re-

mainder of this work.

2The “sensible” PCA (sPCA) model is a probabilistic approach to PCA

and yields the same mapping between latent states and observations as con-

ventional PCA. This is demonstrated by Roweis NIPS 1997.
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The procedure of system identification, or “model train-

ing,” requires learning the parameters from the observed data.

The observed data includes N trials of y, an independent and

identically distributed (i.i.d.) sequence of vectors (y1,y2, . . . ,
yN ) denoted by {y}. With the model shown in Eqs. 1–2, we

only consider a single reach endpoint. Restricting the fit to

only a single endpoint allows for the characterization of the

unobserved factors that influence the observations.

The model-fitting procedure is an unsupervised problem

since the states are “hidden” and therefore unknown; we can-

not use known values of the latent variables to help fit the

parameters C and R. The classic approach to system identi-

fication in the presence of unobserved latent variables is the

Expectation-Maximization (or EM) algorithm. The algorithm

maximizes the likelihood of the observed data over the model

parameters (i.e., θ = {C,R}). This results in the parameters

that correspond to the highest data likelihood P ({y} | θ). We

can then estimate the most likely x for the observed data y.

The fitting procedures are described in [5].

One open question is how to select p, the number of la-

tent dimensions. The objective of model training is to best

describe the training data within the constraints imposed by

Eqs. 1–2. However, with too many latent dimensions the

model training procedure will explain the training data so well

through the latent space that there will be unrealistically small

amounts of independent observation noise (R). This is con-

trary to obtaining a simpler model (fewer latent dimensions)

with a more reasonable amount of observation noise. We used

the standard approach of partitioning data into training and

validation sets to assess at which choice of p overfitting be-

comes a problem. Choosing p is part of the process of “model

selection.”

2.2. Poisson output model

Standard FA uses a Gaussian noise model but this might not

be the most appropriate for our type of data. Recall that our

output variables are the spike counts from the recorded neu-

rons and these are naturally nonnegative integers. Further-

more, the means of these data are relatively low (e.g., <10).

Hence, such data is not necessarily well-suited for a Gaussian

distribution. Neural count data are usually considered to be

Poisson or Poisson-like in their distribution.

There are two possibilities to contend with this issue. One

approach is to modify the raw data by first applying a square-

root to the counts and then centering the data about zero. It

can be shown that the approximation error induced when us-

ing a Gaussian distribution to fit Poisson data is diminished if

the Poisson data is first square-rooted. The transformed data

is then used in the standard FA. Results from this approach

are reported here. The second option is to alter the genera-

tive model to allow for Poisson distributed noise in the output

variables. This was also derived, but not reported here since

results were comparable to the square-root approach.

2.3. Extensions to accommodate multiple targets

The FA methods described so far are intended to be used with

data collected while the subject is preparing to reach to a sin-

gle target. To use FA to help decode reach endpoints, we tried

two different forms of the generative model. The first closely

mimics the decode algorithms that we used in [1]. We fit a

separate FA model (Eqs. 1–2) for each reach target and de-

coded by choosing the maximum-likelihood reach endpoint.

I.e., we determined which reach endpoint’s P (y) reports the

highest probability density for that particular trial’s neural

data. We term this approach FAsep, it can work well in some

cases, and we do not consider it further here. The second ap-

proach (FAcmb) is to share the same output mapping between

target locations and incorporate the effect of reach endpoint

through the shared latent space. The difference between these

models is subtle but important: in the former the generative

model defines a different latent space for each reach endpoint,

while in the latter a single latent space is used and the data for

each endpoint is separated by their different means in the la-

tent space. An example of how the resulting FAcmb clusters

might appear is shown in Fig. 2. We chose the number of

latent dimensions here to be p = 3 to allow for convenient

plotting of the data.
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Figure 2: Single latent space example (FAcmb). Each point corre-

sponds to the inferred latent space variable x for a given trial. The

coloring of the data points denotes the endpoint of the upcoming

reaching arm movement target. H20041217.

3. RESULTS

To assess the potential performance benefits of using FAcmb

to help decode reach endpoints, we turned to a dataset that

exhibited trial-by-trial variability and in which shared pro-

cesses contributed heavily to the overall data variability. In

our recent brain-computer interface (BCI) experiments, we

presented a mix of BCI trials (short trials, chained rapidly to-

gether) and standard reach trials (Fig. 1 in [1]). The BCI tri-

als from multi-hour experimental sessions with two monkeys

(G20040427 and H20040928) had individual trial lengths

of approximately 400 ms. For the real reaches, most trials had

plan periods greater than 400 ms and we discarded any catch

trials with timings shorter than this. Therefore, we could an-
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alyze neural activity up to ∼400 ms after target presentation

regardless of the trial type (BCI versus real reach).

We know from previous data analysis that there can be

substantial gain modulation as a chain of BCI trials progresses

[2] and that simply normalizing single-trial responses by the

average firing rate across the array (on that trial) can consider-

ably improve decode performance [3]. Therefore, we trained

on a set of data that included both BCI trials and reach trials

(some decode improvement was also found when consider-

ing BCI or reach trials alone). This resulted in an ideal type

of dataset. The FA methods could potentially represent the

gain modulation as an underlying factor and the target de-

coder could perhaps benefit from this more accurate model.

Figure 3 shows a comparison between the simple Poisson-

based decoder used in [1] and the FAcmb decoder. The FAcmb

model had p = 8 latent dimensions. We have plotted the de-

code error so as to better illustrate the difference between

the two methods. A number of neural count window lengths

were tested for each monkey (termed Tint in [1]), each begin-

ning 150 ms after target onset (termed Tskip in [1]). The per-

formance differential between simple Poisson-based decod-

ing and FAcmb decoding was appreciable. For long window

lengths, the performance improvement can be quite substan-

tial (up to ∼15%) in both monkeys.

We can also express the improvements in single-trial de-

code accuracy in terms of the ITRC (Information Transfer

Rate Capacity) metric espoused in [1]. For these BCI datasets,

the total ITRC would have increased by approximately 1–

1.25 bps if we would have used FAcmb during real-time ex-

periments. This constitutes an ITRC increase of 15-20%.

4. DISCUSSION

We investigated the use of a more sophisticated decode al-

gorithm in the hopes that we can achieve higher prosthetic

performance. FA techniques were used to help better account

for trial-by-trial variations in uncontrolled and unobserved as-

pects of the prosthetic task. We applied minor extensions to

the conventional FA model and adapted it for the purpose of
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Figure 3: Comparison of simple Poisson-based decoder (black) with

the FAcmb decoder (red). a. Monkey G (dataset G20040427). Mod-

els were trained on the first 75 trials per condition and tested on

the remaining 76 trials per condition in the dataset. b. Monkey H

(dataset H20040928). The training set consisted of 65 trials per

condition and the test set had 67 trials per condition.

decoding target endpoint. We found that using an entirely

separate model for each reach endpoint was not as effective

as fitting a single model to the entire dataset. The latter strat-

egy (FAcmb) requires fewer model parameters and may be

less prone to estimation error and overfitting. Surprisingly,

the complicated extensions to support Poisson distributions

(not reported in detail here) were deemed unnecessary since

the Gaussian-based models did equally well (at least for Tint

> approximately 70 ms), and even better in some instances,

when data were square-root transformed.

The utility of the FA methodology was demonstrated with

our brain-computer interface (BCI) datasets from [1], where

the task design had different operating modes (BCI vs. real-

reach trials). This resulted in much more shared variabil-

ity and FAcmb was able to consistently and significantly out-

perform the conventional methods. For a clinical prosthetic

setup, the situation of mixing BCI and real reach trials would

not be realistic since the patient would be paralyzed. How-

ever, even for a clinical BCI the set of actions available to

the patient may be so heterogeneous that there may be un-

derlying factors that significantly modulate the outputs, even

though the factors are irrelevant to the task itself. If this is the

case, FA can be one tool by which the system designer can

combat performance limitations and degradation.
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