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Abstract— When recording extracellular neural activity, it
is often necessary to distinguish action potentials arising from
distinct cells near the the electrode tip, a process commonly
referred to as ‘“spike sorting”” In a number of experiments,
notably those that involve direct neuroprosthetic control of an
effector, this cell-by-cell classification of the incoming signal
must be achieved in real time. Several commercial offerings
are available for this task, but all of these require some manual
supervision per electrode, making each scheme cumbersome
with large electrode counts. We present a new infrastructure
that leverages existing unsupervised algorithms to sort and
subsequently implement the resulting signal classification rules
for each electrode using a commercially available Cerebus
Neural Signal Processor. We demonstrate an implementation of
this infrastructure to classify signals from a cortical electrode
array, using a probabilistic clustering algorithm (described
elsewhere). The data were collected from a rhesus monkey
performing a delayed center-out reach task. We used both
sorted and unsorted (thresholded) action potentials from an
array implanted in pre-motor cortex to “predict” the reach
target, a common decoding operation in neuroprosthetic re-
search. The use of sorted spikes led to an improvement in
decoding accuracy of between 3.6 and 6.4%.

Keywords— spike sorting, extracellular, multi-unit, unsuper-
vised classification, real-time, neural prosthetics.

[. INTRODUCTION

N systems neuroscience, electrophysiology experiments

are traditionally conducted with the goal of understanding
how neurons participate in the context of stimulus driven
tasks. When investigating the response properties of a
neuron, the emission of an action potential (“spike”) is
usually the signal of interest and the remainder of the
waveform is noise. The procedure of spike sorting is to
infer the times at which one or more neurons emit spikes
by examining the voltage deflections on a set of recording
electrodes. A good review of the challenges associated with
this problem can be found in [1].

Recently, there has been a push for implanting large num-
bers of immovable electrodes (100s) for both neuroscience
and neuroprosthetic research. The electrodes’ locations are
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fixed and there is little flexibility to increase the signal-to-
noise ratio after implantation. Hence, implantable electrodes
are manufactured with only moderately high impedances
(e.g., 200-500 k€2) to ensure recordings from at least one
neuron, though in practice they typically record from two
or more. Sophisticated spike sorting algorithms exist for
training and classifying multiple clusters (“units”) in low
signal-to-noise situations [2], [3], but none of these have
been applied across high electrode counts under real-time
classification constraints.

Spike sorting can lead to greater information extraction
from the brain in the context of online neuroprosthetic
development. For example, in the extreme case, it would
be highly detrimental to lump two neurons with opposite
response properties together. However, there has been a
tendency to shy away from spike sorting in this area of
research, where overall decoding performance is of primary
interest. One recent study recognizes the importance of
spike sorting but argues that the task is impractical for
large electrode counts given that sorting provides only an
incremental performance gain [4]. Some studies sort units
on small numbers of electrodes [5], [6], but do so in a
semi-automated fashion. Not surprisingly, there can be wide
variability in the number of neurons and spikes detected
when several different individuals are asked to manually
spike sort an identical raw data stream [7].

In this work, we describe a system that allows for fully
automated spike sorting during online experiments. Our
architecture facilitates the use of any advanced clustering
algorithm and provides a distributed framework for pro-
cessing a batch of electrodes in parallel. The clusters
from each electrode are transformed for real-time sorting
by a 128 channel window discrimination classifier. We also
analyze the neural data in the context of a behavioral task
to demonstrate the benefits of spike sorting and to espouse
the value of our infrastructure.

II. METHODS
A. Basic Platform

A cornerstone of our system is the Cerebus 128 Channel
Data Acquisition System (Cyberkinetics, Inc.). We chose to
use the Cerebus system because its architecture allows for
easy interfacing with our design. First, the Cerebus “front-
end” amplifies the incoming signals, applies an anti-aliasing
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Fig. 1. A screenshot of the Cerebus user interface. Two units are sorted
while a third was left unsorted. The remainder of the waveforms are from
noise crossing the trigger. The operator sets the trigger threshold (red
horizontal line) and places hoops to classify incoming waveforms. The
NSP can classify a spike with a round-trip latency of 1-1.5 ms.

filter, and digitally samples each channel (electrode) at 30
kHz. The digitized output is transmitted via a fiber optic
link to the Cerebus Neural Signal Processor (NSP).

The NSP can filter the incoming data stream for spike
extraction. We chose a fourth order high-pass Butterworth
filter with a cut-off frequency of 250 Hz. The NSP compares
the filtered data in real-time against a simple threshold
trigger — if the trigger is tripped, a 1.6 ms “spike snippet”
is sampled. Next, the NSP compares the spike snippet
against several sets of time-amplitude window discriminators
(“hoops”). Each set of hoops can be used to classify a unit —
if a spike waveform passes through all of the active hoops for
a specific unit it is classified with that unit number. There
can be up to 4 hoops per unit and 5 units per electrode
channel. Snippets that do not satisfy any hoops are tagged
as unclassified. The spike snippets, with their classification
numbers, are broadcast over a private UDP network. The
NSP can optionally broadcast the electrodes’ 30 kHz raw
data onto the network as well.

A desktop PC runs a graphical user interface (GUI) under
Microsoft Windows. The GUI can configure the NSP via
the UDP network, including modifying the threshold levels
and hoops for online classification. Additionally, the GUI
receives the spike snippets and plots each snippet, color
coded by classification number. A human operator would
ordinarily determine the best sets of hoops for each channel
by examining the past history of spike snippets. This is
known as the training phase. Fig. 1 is a screenshot of the
user interface for one particular electrode.

Other commercial online spike sorting products offer
more advanced visualization tools, but all of these existing
approaches are only semi-automated in that they require
human assistance during the training phase to learn a set
of sorting parameters. Given these human-specified param-
eters, the systems then trivially capture and classify all new
waveforms.

B. New Architecture

Our approach is to leverage the data acquisition and classi-
fication capabilities of the Cerebus system, while automating
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Fig. 2. The system diagram of our “RR” architecture. The Cerebus “front-
end” collects raw data from the set of electrodes and interfaces with the
Cerebus NSP as usual. The GUI is now relegated to a monitoring role. A
second PC, running RTAI Linux (a real-time variant of Linux) is also on
the UDP interface — we dub this the “RR server.” It can receive data from
the NSP as well as manipulate the NSP’s configuration. The RR server
communicates with data processing clients on a separate network interface.
These clients train on the data and manipulate the Cerebus NSP parameters
by using the RR server as a proxy. We also wrote a Matlab (Mathworks,
Inc.) MEX interface for communication with the RR server; this allows
for easy integration of clustering algorithms that are written in Matlab.

the training phase. A block diagram of the system is given in
Fig. 2. First, the RR server configures the NSP to broadcast
the 30 kHz data stream from all active electrodes. The
collection time contain a sufficient number of neural events
for the training algorithm. The RR server buffers data from
all electrodes in memory.

After collection is finished, an RR client can request
a specific electrode’s data from the RR server through a
remote procedure call (UNIX rpcgen). The client pro-
cesses the data with the algorithm of choice (as detailed in
the following sections), identifying the units present on an
electrode. There are typically several computational clients
communicating with the server on a TCP/IP network. Each
electrode or group of electrodes can be farmed out to one
of these clients for parallel processing. This is a key feature
since parallelization can dramatically reduce the overall time
to train the spike sorter across all of the electrodes. We used
generic Pentium 4, 3.0 GHz computers with 2 GB of RAM
for the RR server and the three accompanying RR clients.

Once an electrode’s data is processed, the client uses
the clustering information to generate hoops for online
classification by the NSP. The sorting clients relay the new
threshold level and hoops to the NSP via the RR server.
The NSP subsequently classifies all incoming neural events
based on these hoops.

C. Spike Clustering Algorithm

We use methods described in [2] to identify the shapes
of action potentials associated with different cells in the
recording, prior to on-line classification of spikes using the
hoops of the Cerebus NSP. This training algorithm was run
in Matlab and interfaced with the RR server using compiled
MEX functions. We summarize the algorithm here, but refer
the reader to [2] for more details. The objective of the
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Fig. 3.  Clustering results from electrode G20040117.22. Projections
into the 2-dimensional principal subspace (after peak alignment and noise
whitening) are shown (left panel). Median waveforms for each cluster
demonstrate the difference in unit shapes in the temporal domain (right
panel). The false positive and miss rates for four clusters are each less than
5% when examining the a posteriori cluster assignment probabilities in the
training set. However, only two of the units could have been reasonably
sorted using hand-positioned hoops. Note that the pre-processing of
snippets described in the text is essential to cell identification; conventional
principal components estimated from unprocessed data do not reveal the
differences between the three lower-amplitude action-potential shapes.

algorithm is to estimate the number of sources (neurons)
that contribute to the observed signal, and to characterize
the distribution of action-potential shapes that each source
produces.

The data are first high-pass filtered to eliminate local-field
fluctuations, and a threshold is chosen relative to the RMS
of the filtered signal. A snippet is sampled around each
threshold crossing, but snippets that do not match a prede-
fined shape heuristic are discarded. The remaining snippets
are shifted in time to align their peaks. The recorded
signal is also sampled at times where the RMS-derived
threshold was not exceeded, so as to build an estimate of
the covariance matrix of the noise. The extracted snippets
are noise-whitened and the principal components of the
transformed ensemble estimated by a fitting technique that
is robust to outliers. Finally, the snippets are projected into
the corresponding 4-dimensional principal subspace, where
a mixture model is fit to the data by maximum-likelihood,
using a “relaxation” variant of Expectation-Maximization
that reduces the chances of converging to local maxima.
The particular relaxation scheme employed allows model
selection to be integrated into the fitting procedure, thus
automatically identifying the number of cells.

Fig. 3 shows the results on a two minute segment of neural
data.

D. Hoop Design for Online Classification

Given the mixture model derived by the spike-clustering
algorithm, each action-potential snippet can be assigned to
the cell from which it is most likely to have originated.
However, this operation cannot be carried out on the stan-
dard Cerebus NSP hardware. We propose a novel method
that uses the probabilistic assignments from the training set

to generate hoops for each cell so that the Cerebus NSP can
classify new snippets in real-time!:

1) Choose the cluster whose waveforms have the highest
power about their peak.

2) Given the set of snippets for this cluster, for each
time point consider a hoop whose amplitude window
encompasses a fixed multiple of the interquartile range
of snippet samples at that time point. Center the
windows about the median voltage at the respective
time point. This non-parametric metric minimizes the
effect of outliers in a given class.

3) Select the hoop from those considered at all time
points that minimizes the false positive rate from other
neural events in the data stream. Continue this process
until there are no false positives remaining or the four
available hoops are exhausted.

4) Remove all events that have been correctly classified
by this set of hoops. Since the hoop selection is non-
optimal and is not as robust as the original clustering,
there can be many unclassified neural events remaining
for this cluster (i.e., misses). These events continue to
remain in the training data since they will impact the
hoop selection for other clusters.

5) Repeat steps until all clusters have been assigned
hoops.

Although our process of choosing hoops is not optimal,
it is a computationally-efficient greedy algorithm. It imple-
ments an intuitive heuristic for setting hoops from a set of
tagged waveforms.

We added an extra heuristic to reduce the leakage of
false positives into legitimate classifications. We used the
first set of hoops to extract mostly unsortable activity that
crosses threshold. Four hoops are placed at equispaced
time points shortly after the threshold crossing. Their
amplitude windows are twice the threshold level of that
channel, centered about zero volts. We call this the “hash
unit.”” The NSP classifies units in a prioritized fashion and
all classifications are mutually exclusive. Hence, the hash
unit can reduce the false positive rate at the expense of
miscatagorizing other spikes into the hash unit.

Fig. 4 shows the median waveforms of each unit along
with the hoop settings. This is the final result from the
clustering and hoop design process.

E. Data Collection and Analysis

We analyzed data from a rhesus monkey trained to per-
form delayed center-out reaches to visual targets presented
on a fronto-parallel screen. The monkey started each trial
by touching a central target. After 250-500 ms, a peripheral
target appeared on the screen. Following a 200-750 ms
“plan period,” the monkey was instructed to reach to the

INote that since the NSP does not perform any snippet alignment before
classifying, all training spike snippets are locked to NSP threshold crossings
for hoop design.
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Fig. 4. Threshold and hoop design for three clusters on electrode
G20040202.14. Waveforms are bounded by 1.5 times the interquartile
range, centered about the median. Hoop positions are graphed with a slight
jitter along the x-axis to provide visibility when hoops overlap. Features
of note include: the hash unit (gray hoops) captures most of the green
multi-unit cluster; the red unit registers ~10% false positives due to the
green unit and ~20% misses due to the hash unit.

target. The animal received a liquid reward after holding the
peripheral target for 200 ms. On randomly-interleaved trials
the monkey was shown the peripheral target but not cued to
reach. We recorded arm position (Polaris, Northern Digital,
Inc.) and neural data from a 100 electrode chronically
implanted electrode array (Cyberkinetics, Inc., impedances
nominally 200-500 k€2). Animal protocols were approved
by the Stanford University Institutional Animal Care and
Use Committee.

After testing and verifying the entire RR system, we
investigated the benefits of sorting by running analyses to
ascertain how well target location can be estimated from
plan period spike rates for a single trial. Given a particular
target location, the distribution of spike rates for each trial
was modeled as a multivariate Gaussian. We employed
maximum likelihood methods (similar to [8]) to determine
the highest probability target location for a given trial.
Either sorted data or threshold crossings were input into
the estimator. All dimensions were taken to be independent.
We obtained classification percentages for each day’s session
through leave-one-out cross-validation.

III. RESULTS AND DISCUSSION
A. Clustering and Classification

The two key parameters for our algorithm were the
threshold level and hoop extent; these were set to 3.5 times
the RMS of the filtered data and 3.73 times the interquartile
range, respectively. The parameters were empirically deter-
mined to provide adequate results.

The traditional problem with testing spike sorting algo-
rithms on real neural data is that there is no measure for
the ground truth. As an alternative, the training algorithm
uses the a posteriori probability densities to calculate a
false positive and miss probability for each cluster. The
cluster is said to be well-isolated if each type of misclas-
sification probability is under 5%. For our G20040202,
G20040312, and G20040330 data sets, there were 62,
40, and 41 units that fit this criteria, respectively.
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Fig. 5. Waveforms from two clusters with a bound of two times the

interquartile range, centered at the median. These units are easily separated
by the clustering algorithm, with low false positive and miss rates. While
the median shapes are distinct, a hoop-based classifier struggles with the
data due to the spread of the waveforms. Hoops placed for the green
unit capture 26.7% false positives from the red unit even though clustering
algorithm estimates false positives at less than 5%. Data were taken from
electrode G20040312.21.

We then asked if these units are still well-isolated when
classified with hoops. We computed the false positive and
miss rates for hoop classification by comparing against
the initial clustering results. Since the original cluster-
ing algorithm is taken to be the ground truth, we should
only consider neurons that were previously deemed well-
clustered. For the same three data sets, 46, 33, and 25
units had false positive and miss rates less than 5% when
sorted with hoops. However, this comparison does not
include the effect of misclassification against known noise.
If we lift this exemption, the noise heavily influences the
misclassification rates and many fewer hoop classifications
satisfy our goodness criteria.

Ultimately, the hoop-based classifier performed well but
did not achieve exceptional results. There will either be
extraneous noise sorted with legitimate units or a loss of
spikes into the hash unit. For example, our hoop-based
system is unable to reliably sort 5 units on an electrode
as shown in Fig. 3. Nevertheless, the overall sorting
performance was assessed to be qualitatively equivalent to
human selection of the hoops; often an individual may feel
he is selecting acceptable hoops, but he is unable to fully
appreciate the underlying clustering of the data. Fig. 5
provides an extreme limit case where hoop-based sorting
breaks down.

Our infrastructure is highly effective in terms of training
time. The clustering algorithm takes approximately 20
seconds per electrode, and we sorted 96 electrodes in 10
minutes with three RR clients. This is at least as fast as
human-assisted training, but the strength of our architecture
is its scalability and repeatability for very large electrode
counts. Training time can be reduced by simply adding more
RR clients.

B. Target Location Estimation

Next, we performed a target estimation analysis to verify
that spike sorting provides greater information extraction.
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TABLE I
DECODING PERFORMANCE IMPROVEMENT DUE TO SORTING

Data Set # of Tgts,Elec. Unsorted Perf. Sorted Perf.
G20040329 8,36 64.6% 70.7%
G20040330 8,35 63.3% 69.7%
G20040413 16,35 74.8% 79.9%
G20040417 8,48 90.4% 94.0%
G20040421 8,42 83.8% 89.1%

For each day’s data, we excluded electrodes that did not
have two or more clustered units as determined by our
training algorithm. For our task, the estimation performance
asymptotes as the number of electrodes is increased, even if
the additional electrodes have only unsortable neural activity.
To illustrate the the benefits of spike sorting we biased the
simulations by considering only sortable electrodes. We
suggest that this biasing would not be necessary for a
more challenging task (see [4] where more performance was
gained by spike sorting).

Spiking rate was calculated for each unit (or electrode
for the unsorted simulations) in a 150 to 350 ms window
following the peripheral target presentation. The results
of the maximum-likelihood estimator are summarized in
Table I. We found a performance increase between 3.6
and 6.4% when using spike sorted units for classification.
The increase was dependent on the following parameters:
model training size, spike integration window, and electrodes
dropped. Searching this entire space of parameters is
intractable. However, we can confidently report that in the
various scenarios that we tested spike sorting resulted in at
least the same or better estimation performance. On two
occasions, we compared the automated sorting architecture
and hand-optimized hoop locations; the two methods were
nearly equivalent in performance.

IV. CONCLUSION

We demonstrated that fully automated spike sorting for
laboratory experiments involving hundreds of neural elec-
trodes is practical with present-day technology. Our archi-
tecture facilitates use of unsupervised clustering algorithms
for configuring existing real-time spike classifiers. Further-
more, we also demonstrated that the performance of a reach
target estimator is improved when using sorted information
as opposed to threshold crossings. While the performance
improvement is not stellar, it is gained with little expense.
The infrastructure, once installed, is trivial to run before
every day’s experiment, and it is extensible past the point
where rapid, consistent, human-assisted sorting of hundreds
of electrodes becomes untenable. Furthermore, the training
stage is truly quantifiable and can serve as a more robust
daily record of the neural implant’s stability.

Our current architecture is designed to exploit the real-
time classification capability of the Cerebus NSP. However,
spike-shapes can be more accurately sorted using projection
techniques similar to those used in the clustering algorithm

described here. To this end, we have preliminary plans
for a revised architecture. It will implement real-time
classification with more sophisticated algorithms while still
using off-the-shelf equipment for data acquisition.
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