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ABSTRACT
Amplitude demodulation is an ill-posed problem and so it
is natural to treat it from a Bayesian viewpoint, inferring
the most likely carrier and envelope under probabilistic con-
straints. One such treatment is Probabilistic Amplitude De-
modulation (PAD), which, whilst computationally more in-
tensive than traditional approaches, offers several advantages.
Here we provide methods for estimating the uncertainty in
the PAD-derived envelopes and carriers, and for learning free
parameters like the time-scale of the envelope. We show how
the probabilistic approach can naturally handle noisy and
missing data. Finally, we indicate how to extend the model to
signals which contain multiple modulators and carriers.

Index Terms— Amplitude estimation, Bayes procedures

1. INTRODUCTION

Amplitude demodulation is the task of decomposing a sig-
nal into the product of a slowly varying, positive, envelope
and a quickly varying (positive and negative) carrier. De-
modulation is fundamentally ill-posed; any positive modu-
lator defines a valid carrier, via division of the signal. As
such, prior information such as smoothness in the envelope
must be leveraged in order to select one of the infinity of valid
decompositions. Traditional approaches to demodulation of-
ten make these prior assumptions implicit, making it difficult
to understand and improve the methods or to adapt them to
the particular demands of specific problems. Consequently,
these traditional approaches often yield undesirable results
when applied to natural sounds like speech. They also suf-
fer from several important theoretical drawbacks, potentially
yielding unbounded modulators or carriers, or demodulating
band-limited data to yield carriers which are not band-limited
(see [1] for a review). Motivated by these deficiencies, we
have developed an inferential approach called Probabilistic
Amplitude Demodulation (PAD; [2]). By incorporating ex-
plicit priors on envelope and carrier, this approach servesto
lay out clearly the unavoidable assumptions that determine
the solution. It also allows us to tap the powerful machin-
ery of probabilistic inference, thus providing a natural way to
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describe uncertainty in the estimated quantities (which may
then be propagated to provide uncertainty in decisions based
on the audio signal, e.g. in speaker-recognition); facilitating
the data-driven estimation of various crucial parameters,such
as the most natural timescale of envelope modulation; and al-
lowing generalisation of the method to handle noisy or miss-
ing data, and thus to restore damaged audio. However, be-
cause the required estimation steps often involve iterative re-
finement of a non-linear cost function, the methods are con-
siderably slower than traditional feed-forward approaches to
demodulation.

This paper provides specific algorithms for each of these
potential applications using a novel version of PAD described
below. It then extends this approach to handle multi-band
modulation (where multiple carriers and envelopes combine
to produce the signal) within a single inferential process.

1.1. The forward model

The defining feature of probabilistic forward models for am-
plitude modulation is that they comprise a positive, slowly
varying amplitude,at, which multiplies a quickly varying
real-valued, (positive and negative) carrier,ct, to produce the
data,yt. Real data is often noisy and so the forward model
also incorporates additive uncorrelated non-stationary Gaus-
sian noise. In the single-band model we impose noa pri-
ori structure on the carrier. This is often unrealistic (e.g. for
speech where the carrier may contain pitch and formant in-
formation), but works surprisingly well in practice because a
separation in the time-scales of the carrier and amplitude is
sufficient to facilitate accurate inference. The positive am-
plitude process is produced by taking a slowly varying real-
valued process—henceforth called the transformed amplitude
(xt)—and passing it through a static positive non-linearity.
The complete forward model can therefore be written:

p(x1:T |µ1:T ,Γ1:T,1:T ) = Norm(x1:T ;µ1:T ,Γ1:T,1:T ), (1)

µt = µ, Γt,t′ = γ|t−t′|, (2)

at = a(xt) = log(1 + exp(xt)), (3)
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2
c ), (4)

p(yt|at, ct, σ
2
y,t) = Norm(yt; atct, σ

2
y,t). (5)



The transformed amplitudes are produced from a station-
ary Gaussian process and so this form of PAD is called
Gaussian Process PAD (GP-PAD). A standard choice for the
transformed amplitude covariance function is the squared-
exponential kernel,

γ|t−t′| = σ2
x exp

(

−
1

2τ2
eff

(t − t′)2
)

, (6)

where the parameterτeff defines the timescale of a typical
sample drawn from the Gaussian Process. The transformed
amplitudes are passed through a ‘soft threshold-linear’ func-
tion to produce the amplitudes—the nonlinearity is exponen-
tial, and therefore small, for large negative values ofx, and
linear for large positive values. This modifies the prior Gaus-
sian marginal distribution of the transformed amplitudes into
a sparse distribution over envelope amplitudes, which is often
a good match to the amplitude histogram of natural sounds.

1.2. Inference

The two non-linearities of GP-PAD (Eqs. 3 and 5) make exact
inference analytically intractable. The simplest approxima-
tion is to integrate out the carrier and find the most probable
setting of the transformed amplitude variables given the data:

xMAP
1:T = arg max

x1:T

p(x1:T |y1:T , θ), (7)

= arg max
x1:T

log p(y1:T , x1:T |θ) = arg max
x1:T

L(x1:T ).

There is no closed-form solution for this optimisation prob-
lem, but a gradient based method can be used to find a local
maximum. The objective function and the gradients of that
function can be computed efficiently, by noting that the objec-
tive can be split into a component derived from the likelihood
and a component from the prior,

L(x1:T ) =

T
∑

t=1

log p(yt|xt, θ) + log p(x1:T |θ). (8)

The likelihood component is simple and fast to compute as
p(yt|xt, θ) = Norm(yt; 0, a

2
t σ

2
c +σ2

y,t). The component from
the prior is more challenging as it involves inverting theT×T
covariance matrix of the Gaussian Process which is impracti-
cal for time-series of even modest length (T > 1000).

One way around this obstacle is to introduce a new set of
unobserved variables,xT+1:T ′ , whereT

′

= 2(T − 1). These
new variables are chosen so that the complete set of aug-
mented variables,x1:T ′ are circularly correlated. This places
the augmented latent variables on a ring and so the new co-
variance matrix,Γ1:T ′ ,1:T ′ , becomes circulant. This leads to
efficient computation using the Fast Fourier Transform (FFT):
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Where∆x̃k is the Discrete Fourier Transform (DFT) of the
mean shifted transformed-envelopes∆xt = xt −µ, andγ̃k is
the DFT of the covariance function, which is the spectrum of
the Gaussian Process:

∆x̃k =

T
′

∑

t=1

FTk,t(xt − µ), γ̃k =

T
′

∑

t=1

FTk,tγt, (9)

FTk,t = exp(−2πi(k − 1)(t − 1)/T
′

). (10)

The derivatives can be computed using the expressions above
and are omitted for brevity. The conjugate gradient method
can be used for optimisation.

1.3. Error-bars and parameter learning

Two key advantages of framing demodulation as an inference
problem are that it leads to methods for estimating the un-
certainties in the recovered amplitudes and for learning the
free parameters in the model. This section describes how to
use an approximate version of Laplace’s method (itself an ap-
proximation) to do this. Laplace’s method approximates the
posterior distribution over transformed amplitudes by a Gaus-
sian centred at the true posterior mode, and with a covariance
matrix given by the negative inverse of the Hessian,H of the
log-joint [3],

p(x1:T ′ |y1:T , θ) ≈
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(
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, (11)
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Laplace’s approximation thus provides an estimate of the pos-
terior uncertainty (Σpost = −H−1) and it can also be used to
perform an approximate integration of the transformed ampli-
tudes,

p(y1:T |θ) =

∫

dx1:T ′ p(y1:T , x1:T ′ |θ), (13)

≈ p(y1:T , xMAP
1:T ′ |θ)

(2π)
T−1

√

det(−H)
. (14)

Unfortunately, the Hessian is a2(T − 1) × 2(T − 1) matrix
and so exact inversion is typically impractical, necessitating
a further approximation. Fortunately, the simple structure of
the Hessian makes this easy. Specifically,H comprises a diag-
onal term from the likelihood (D), and a term from the prior,
which is the inverse prior covariance matrix,

H−1 = −Σpost = (D + Γ−1)−1 = Γ(DΓ + I)−1, (15)

= Γ1/2(Γ1/2DΓ1/2 + I)−1Γ1/2. (16)



This new form is helpful because the difficult inversion
is limited to the matrixA = Γ1/2DΓ1/2 (the other terms
being simple to compute exactly). The matrixA inherits
the property from the prior covarianceΓ that only the low-
frequency components are strongly active. ConsequentlyA
can be well approximated by a truncated eigenexpansion,
A ≈

∑KMAX

k=1 λkeke
T
k , and the problem reduces to finding an

efficient method to compute the topKMAX eigenvectors and
eigenvalues ofA. Fortunately, the Lanczos algorithm can
do just this, requiring only multiplications ofA times a vec-
tor [4]. These multiplications can themselves be computed
rapidly using the FFT.

2. RESULTS

In this section we validate the methods derived above by ap-
plying them to natural data. In the first experiment a fully
observed spoken sentence sound was demodulated using GP-
PAD. A squared-exponential covariance function was used
to model the transformed amplitudes. The observation noise
was set to zero,σ2

y,t = 0, and the remaining parameters,θ =
{σ2

c , σ2
x, µ, τeff}, were learned from the approximate marginal

likelihood using an iterative grid search. The results, shown
in Fig. 1, indicate that GP-PAD discovers modulation content
at the time-scale of the phonemes (the timescale learned from
the signal wasτeff ≈ 20ms). Both the inferred amplitude and
the carriers are well behaved, unlike those recovered from tra-
ditional approaches to demodulation. Importantly, when the
carriers recovered from the speech sound are themselves de-
modulated using GP-PAD, the result is a amplitude which is
almost constant and a carrier which is equal to a rescaled ver-
sion of the original carrier. Many demodulation algorithms
fail this simple consistency test catastrophically.

GP-PAD is able to estimate modulators in sections of a
signal which are missing; by setting the noise variance to in-
finity in these regions, the missing modulator values are de-
termined wholly by their prior covariance with nearby values.
In order to test this ability on natural signals it is necessary to
establish a measure of ‘ground-truth’. A consistent approach
is to estimate the amplitude of the complete signal using GP-
PAD. This can then be compared to the estimates derived from
the signals which have missing sections. The quality of the in-
ferences in the missing sections is measured using the signal
to noise ratio. The results, shown in Fig. 2, indicate that the
envelope of missing sections can be accurately predicted in
missing sections of speech up to about50ms in length.

3. MULTIPLE MODULATORS AND CARRIERS

Many sounds contain multiple carriers and modulators. For
example, the vowels of speech can be well approximated by
a comodulated harmonic stack of sinusoids. This presents a
problem for PAD because it contains just a single carrier and
modulator. In this section we show how to generalise PAD to
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Fig. 1. GP-PAD of a spoken sentence sound shown at two
different scales. The speech signal is shown in black. The
envelopes are shown in red and the carriers in blue. The
error-bars are 3 times the marginal uncertainty derived from
Laplace’s approximation. The magenta lines show the am-
plitudes derived from demodulating the carriers using the pa-
rameters learned from the original signal.

this new setting. We begin by extending the forward model
to comprise a set of positive, slowly varying amplitudes (ad,t)
which multiply a set of quickly-varying real-valued, (positive
and negative) carriers (cd,t) which are summed, along with
Gaussian noise, to produce the data (yt). That is,

yt =
D

∑

d=1

cd,tad,t + σyǫt . (17)

The carrier processes are second order auto-regressive (AR(2))
Gaussian random variables,

p(cd,t|cd,t−1:t−2, θ) = Norm

(

cd,t;

2
∑

t′=1

λd,t′cd,t−t′ , σ
2
d

)

.

The amplitude processes are formed from real-valued, in-
dependent transformed amplitudes (xd,t) which are linearly
mixed, and then passed through the soft-threshold linear
function,

ad,t = a

(

E
∑

e=1

gd,exe,t + µd

)

, (18)

In the following, the transformed amplitudes will be gen-
erated from zero-mean stationary Gaussian process with



Fig. 2. Filling in the envelopes of missing sections of speech
using GP-PAD. Top Panel: Signal to noise ratio (in decibels)
of the inferred envelopes as a function of gap size. Bottom
panels: A short section of the speech sound (black) with pro-
gressively longer missing sections (blue). The size of these
gaps is shown for reference on the top plot by black circles.
τeff is shown in red. The envelopes estimated using the com-
plete signals are shown in red with associated error-bars at3
standard deviations. The envelopes estimated on the missing
data, with associated error-bars, are shown in cyan.

squared exponential kernels. Typically the parameters of the
AR(2) processes and the transformed envelopes are chosen
so that the carriers are expected to vary more quickly than the
amplitudes.

3.1. Inference and Learning

Exact inference in this model is analytically intractable and
so approximations are required for inference. One approach
is to follow the scheme developed for PAD which is to find
the most probable transformed amplitude, given the data,

XMAP = arg max
X

p(X|Y, θ) = arg max
X

log p(X,Y|θ).

The log-joint is complicated because it involves an integral
over the carriers,

p(X,Y|θ) = p(X|θ)

∫

dC p(Y,C|X, θ). (19)

However, when the amplitudes are fixed, the joint distribu-
tion of the carriers and the data,p(Y,C|X, θ), is Gaussian
and so it is possible to compute the integral exactly using the
Kalman Smoother. The gradients can also be computed us-
ing the expectations returned by the Kalman Smoother (see
[1] for more details). The parameters of the model, which in-
clude the centre-frequencies and bandwidths of the carriers,
the time-scales, marginal variances, and means of the trans-
formed modulators, and the weights, can be learned using a
similar scheme to that described in section 1.3 (again we refer
the reader to [1] for more details).

3.2. Results

The methods described in the previous section were used to
learn the parameters of the model from training data which
included running water, wind, rain, fire, and speech. Sample
sounds generated from the forward model using these param-
eters indicate the aspects of the data which the model is cap-
turing (seehttp://tinyurl.com/archivesounds).
Realistic sounding running water, wind, rain and fire sounds
are produced indicating that these acoustic-textures are de-
fined by relatively low-level statistics. In contrast, the speech
sound is too rich to be accurately captured.

4. CONCLUSIONS

This paper has introduced a new approach to Probabilistic
Amplitude Demodulation. Methods have been provided for
inferring envelopes, estimating the uncertainty in these infer-
ences, and for learning the parameters of the model such as
the time-scale of the modulation. The power of these new
methods was illustrated on speech sounds where they were
able to infer the modulation in missing sections up to50ms in
duration. Finally we indicated how to extend the framework
to handle multiple carriers and amplitudes.
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