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ABSTRACT describe uncertainty in the estimated quantities (whicly ma

Amplitude demodulation is an ill-posed problem and so itthen be propagated to provide uncertainty in decisionschase
is natural to treat it from a Bayesian viewpoint, inferring On the audio signal, e.g. in speaker-recognition); faatitiig

the most likely carrier and envelope under probabilistin-co the data-driven estimation of various crucial parametersh
straints. One such treatment is Probabilistic Amplitude Deas the most natural timescale of envelope modulation; and al
modulation (PAD), which, whilst computationally more in- lowing generalisation of the method to handle noisy or miss-
tensive than traditional approaches, offers several ddgas.  INg data, and thus to restore damaged audio. However, be-
Here we provide methods for estimating the uncertainty irfause the required estimation steps often involve itexatv

the PAD-derived envelopes and carriers, and for learnieg fr finement of a non-linear cost function, the methods are con-
parameters like the time-scale of the envelope. We show hogiderably slower than traditional feed-forward approactee
the probabilistic approach can naturally handle noisy anglemodulation.

missing data. Finally, we indicate how to extend the model to ~ This paper provides specific algorithms for each of these

signals which contain multiple modulators and carriers. ~ potential applications using a novel version of PAD destib
below. It then extends this approach to handle multi-band

modulation (where multiple carriers and envelopes combine
to produce the signal) within a single inferential process.

Index Terms— Amplitude estimation, Bayes procedures

1. INTRODUCTION

Amplitude demodulation is the task of decomposing a sig—l'l' The forward model

nal into the product of a slowly varying, positive, envelopeThe defining feature of probabilistic forward models for am-
and a quickly varying (positive and negative) carrier. De-plitude modulation is that they comprise a positive, slowly
modulation is fundamentally ill-posed; any positive modu-varying amplitude,a;, which multiplies a quickly varying
lator defines a valid carrier, via division of the signal. Asreal-valued, (positive and negative) carrigr,to produce the
such, prior information such as smoothness in the envelopgata,y;. Real data is often noisy and so the forward model
must be leveraged in order to select one of the infinity ofvali also incorporates additive uncorrelated non-stationaayss
decompositions. Traditional approaches to demodulation osian noise. In the single-band model we imposeanuri-

ten make these prior assumptions implicit, making it difficu ori structure on the carrier. This is often unrealistic (e.g. fo
to understand and improve the methods or to adapt them &peech where the carrier may contain pitch and formant in-
the particular demands of specific problems. Consequentljprmation), but works surprisingly well in practice becaus
these traditional approaches often yield undesirablelteesu separation in the time-scales of the carrier and amplitade i
when applied to natural sounds like speech. They also susufficient to facilitate accurate inference. The positive- a
fer from several important theoretical drawbacks, potdlyti  plitude process is produced by taking a slowly varying real-
yielding unbounded modulators or carriers, or demodudatin valued process—henceforth called the transformed amplitud
band-limited data to yield carriers which are not band#eni  (x;)—and passing it through a static positive non-linearity.
(see [1] for a review). Motivated by these deficiencies, weThe complete forward model can therefore be written:

have developed an inferential approach called Probabilist

Amplitude Demodulation (PAD; [2]). By incorporating ex-  p(x1.7|p1.7, T'i.r1.7) = Norm(xp.r; par, Trrr), (1)

plicit priors on envelope and carrier, this approach setves 1, =y, 'y =y_y, )
lay out c_IearIy the unavoidable assumptions that determlne a; = a(x;) = log(1 + exp(xs)), 3)
the solution. It also allows us to tap the powerful machin- ) )

ery of probabilistic inference, thus providing a naturaiwa p(ce|oc) = Norm(cy; 0, 07), (4)
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The transformed amplitudes are produced from a stationVhere Ax; is the Discrete Fourier Transform (DFT) of the
ary Gaussian process and so this form of PAD is callednean shifted transformed-envelopks, = x; — i, andyy is
Gaussian Process PAD (GP-PAD). A standard choice for thihne DFT of the covariance function, which is the spectrum of
transformed amplitude covariance function is the squaredhe Gaussian Process:

exponential kernel, , ,

T T
1 Axy, = FT — Vi = FT 9
Ne—r| = 0% €XD (—(t - t/)Q) ; (6) Xk 1&:21 belse =) e t:zl bt (9)
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where the parametery defines the timescale of a typical FThp = exp(—2mi(k —1)(t = 1)/T"). (10)

sample drawn from the Gaussian Process. The transformeghe derivatives can be computed using the expressions above

amplitudes are passed through a “soft threshold-linear¢{u  and are omitted for brevity. The conjugate gradient method
tion to produce the amplitudes—the nonlinearity is exponengan pe used for optimisation.

tial, and therefore small, for large negative valuescpand
linear for large positive values. This modifies the prior &au
sian marginal distribution of the transformed amplitudes i
a sparse distribution over envelope amplitudes, whichtemof Two key advantages of framing demodulation as an inference
a good match to the amplitude histogram of natural sounds. problem are that it leads to methods for estimating the un-
certainties in the recovered amplitudes and for learnirg th
1.2. Inference free parameters in the model. This section describes how to
. N use an approximate version of Laplace’s method (itself an ap
The two non-linearities of GP-PAD (Egs. 3 and 5) make exachroximation) to do this. Laplace’s method approximates the
inference analytically intractable. The simplest appmed  hosterior distribution over transformed amplitudes by asa
tion is to integrate out the carrier and find the most probablgjsn centred at the true posterior mode, and with a covagianc
setting of the transformed amplitude variables given tha:da yatrix given by the negative inverse of the HessHrof the

1.3. Error-bars and parameter learning

log-joint [3],
4P = arg max p(xi.r |y 1.1 6), (7) logloint(3]
X1:T
= arg maxlog p(y1.7, x1:7|0) = arg max L(xy.7). p(xXy.7 yrr, 0) =
e e 1 MAP\T MAP )
exp | = (X — X7 ) H(xy.~ —x700) |, (11
There is no closed-form solution for this optimisation prob P (2( i = X ) B =) (1)
lem, but a gradient based method can be used to find a Iocalhere
maximum. The objective function and the gradients of that" '
function can be computed efficiently, by noting that the obje 2
tive can be split into a component derived from the likeliloo ~ He.tr = dxrdy log p(y1:1, %177 0) - (12)
and a component from the prior, Frr’ T
T Laplace’s approximation thus provides an estimate of tlse po
L(x1.7) = ZlOgP(MXt» 0) +log p(x1.r|0). (8)  terior uncertainty £t = —H~1) and it can also be used to
t=1 perform an approximate integration of the transformed ampl
The likelihood component is simple and fast to compute anges’
p(yi|x¢,0) = Norm(y; 0,af02+07 ;). The component from B
the prior is more challenging as it involves inverting the T plyrrlf) = | dxypp(yrr, xy.q010), (13)
covariance matrix of the Gaussian Process which is impracti (27T>T71
cal for time-series of even modest lengih £ 1000). ~ p(yLr, xﬂf}f’\&)m. (14)

One way around this obstacle is to introduce a new set of

unobserved variablesy., .7+, wherel” =2(T'—1). These  ynforyynately, the Hessian isAT — 1) x 2(T — 1) matrix
new varlabl_es are chosen S0 that the complete .set of augr4 so exact inversion is typically impractical, necesisiga
mented variablesy, ;- are circularly correlated. This places , f,1ther approximation. Fortunately, the simple struetof
the augmented latent variables on a ring and so the new CHie Hessian makes this easy. Specificallgomprises a diag-

variance matrixl’; 7 ;.;v, becomes circulant. This leads t0 5| term from the likelihoodIg), and a term from the prior,
efficient computation using the Fast Fourier Transform (EFT |\ hich is the inverse prior covariance matrix

fam e Sloga LSS L SRIAGEHT = RS (0T ST a9
: P 20’2 v} a% 2T’ = :Yk _ F1/2(F1/2DF1/2 + I)71F1/2. (16)




This new form is helpful because the difficult inversion
is limited to the matrixA = T''/2DI''/2 (the other terms
being simple to compute exactly). The matuk inherits  «”
the property from the prior covariandethat only the low-
frequency components are strongly active. Consequehtly
can be well approximated by a truncated eigenexpansior
A~ fojix Axerel, and the problem reduces to finding an o~ 0
efficient method to compute the tdpuax eigenvectors and
eigenvalues ofd. Fortunately, the Lanczos algorithm can 4 .6/4‘./8 5 5‘.2

do just this, requiring only multiplications of times a vec-
tor [4]. These multiplications can themselves be computec

rapidly using the FFT.
©~ 0

2. RESULTS

In this section we validate the methods derived above by ap _
. - - (&)

plying them to natural data. In the first experiment a fully

observed spoken sentence sound was demodulated using C , , ,

PAD. A squared-exponential covariance function was use(c  4.85 4.9 4.95 5 5.05 5.1 5.15

to model the transformed amplitudes. The observation nois time /s

was set to zero;§ . = 0, and the remaining parametefs—

{02, 0%, 1, Terr}, were learned from the approximate marginalrjg. 1. GP-PAD of a spoken sentence sound shown at two

at the time-scale of the phonemes (the timescale learned frogrror-bars are 3 times the marginal uncertainty derivethfro
the signal wasex ~ 20ms). Both the inferred amplitude and Laplace’s approximation. The magenta lines show the am-

the carriers are well behaved, unlike those recovered framt pjitydes derived from demodulating the carriers using e p

carriers recovered from the speech sound are themselves de-

modulated using GP-PAD, the result is a amplitude which is

almost constant and a carrier which is equal to a rescaled velhis new setting. We begin by extending the forward model

sion of the original carrier. Many demodulation algorithmsto comprise a set of positive, slowly varying amplitudes(

fail this simple consistency test catastrophically. which multiply a set of quickly-varying real-valued, (ptiee
GP-PAD is able to estimate modulators in sections of &nd negative) carriers:{;) which are summed, along with

signal which are missing; by setting the noise variance to inGaussian noise, to produce the datg.(That is,

finity in these regions, the missing modulator values are de- D

termined wholly by their prior covariance with nearby value v, = Z Caidds + Oyer. (17)

In order to test this ability on natural signals it is neceg$a =

establish a measure of ‘ground-truth’. A consistent apgtoa . .

is to estimate the amplitude of the complete signal using GPLN€ carrier processes are second order auto-regressi@)AR

PAD. This can then be compared to the estimates derived froffaussian random variables,

the signals which have missing sections. The quality ofrthe i (

|
%

ferences in the missing sections is measured using thelsigna(cq ¢[c4t—1:t—2,60) = Norm
to noise ratio. The results, shown in Fig. 2, indicate thet th
envelope of missing sections can be accurately predicted
missing sections of speech up to abduns in length.

2
. by 2
Cd,t; d,t'Cdt—t',04q | -

t'=1

‘Fhe amplitude processes are formed from real-valued, in-
dependent transformed amplitudes; {) which are linearly
mixed, and then passed through the soft-threshold linear

3. MULTIPLE MODULATORS AND CARRIERS function,
Many sounds contain multiple carriers and modulators. For =
example, the vowels of speech can be well approximated by adt = & Z 8d.eXet + d | (18)
e=1

a comodulated harmonic stack of sinusoids. This presents a
problem for PAD because it contains just a single carrier anth the following, the transformed amplitudes will be gen-
modulator. In this section we show how to generalise PAD teerated from zero-mean stationary Gaussian process with



However, when the amplitudes are fixed, the joint distribu-
tion of the carriers and the data(Y, C|X, §), is Gaussian
and so it is possible to compute the integral exactly usieg th
Kalman Smoother. The gradients can also be computed us-
ing the expectations returned by the Kalman Smoother (see
[1] for more details). The parameters of the model, which in-
5 9 14 24 39 &5 108 180 300 500 clude the centre-frequencies and bandwidths of the cayrier
gap length fms the time-scales, marginal variances, and means of the-trans
Ll o formed modulators, and the weights, can be learned using a
il kit .i;,iﬂﬁ%umlu, similar scheme to that described in section 1.3 (again ves ref

WW\’MWWWWWW N WWTUWWWWMWM the reader to [1] for more details).

: : 3.2. Results
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The methods described in the previous section were used to

WWWWWWWWW “’”U”TMW ”””W"WWWWWW g learn the parameters of the model from training data which
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included running water, wind, rain, fire, and speech. Sample
sounds generated from the forward model using these param-

| || |\ eters indicate the aspects of the data which the model is cap-
g _.vfxﬂm%mw . wmu ﬁwvw{ o turing (seehttp://tinyurl. coni archi vesounds).
2 it "WWWW"I‘W Realistic sounding running water, wind, rain and fire sounds
[ , are produced indicating that these acoustic-textures ere d
47 48 49 5 5.1 fined by relatively low-level statistics. In contrast, theeech
time /s sound is too rich to be accurately captured.
Fig. 2. Filling in the envelopes of missing sections of speech 4. CONCLUSIONS

using GP-PAD. Top Panel: Signal to noise ratio (in decibels)

of the inferred envelopes as a function of gap size. BottonThis paper has introduced a new approach to Probabilistic
panels: A short section of the speech sound (black) with proAmplitude Demodulation. Methods have been provided for
gressively longer missing sections (blue). The size ofehesinferring envelopes, estimating the uncertainty in theder

gaps is shown for reference on the top plot by black circlesences, and for learning the parameters of the model such as
Teft is shown in red. The envelopes estimated using the conthe time-scale of the modulation. The power of these new
plete signals are shown in red with associated error-ba8s atmethods was illustrated on speech sounds where they were

standard deviations. The envelopes estimated on the missigble to infer the modulation in missing sections up@ms in
data, with associated error-bars, are shown in cyan. duration. Finally we indicated how to extend the framework

to handle multiple carriers and amplitudes.

squared exponential kernels. Typically the parameterbeof t
AR(2) processes and the transformed envelopes are chosen

so that the carriers are expected to vary more quickly than thm R, E. Tumner Satisical Models for Natural Sounds

li . ) i . .
amplitudes Ph.D. thesis, Gatsby Computational Neuroscience Unit,
UCL, 2009.
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