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Abstract—Demodulation is an ill-posed problem whenever both
carrier and envelope signals are broadband and unknown. Here,
we approach this problem using the methods of probabilistic
inference. The new approach, called Probabilistic Amplitude De-
modulation (PAD), is computationally challenging but improves
on existing methods in a number of ways. By contrast to previous
approaches to demodulation, it satisfies five key desiderata: PAD
has soft constraints because it is probabilistic; PAD is able to
automatically adjust to the signal because it learns parameters;
PAD is user-steerable because the solution can be shaped by
user-specific prior information; PAD is robust to broad-band
noise because this is modelled explicitly; and PAD’s solution is
self-consistent, empirically satisfying a Carrier Identity property.
Furthermore, the probabilistic view naturally encompasses noise
and uncertainty, allowing PAD to cope with missing data and
return error bars on carrier and envelope estimates. Finally, we
show that when PAD is applied to a bandpass-filtered signal, the
stop-band energy of the inferred carrier is minimal, making PAD
well-suited to sub-band demodulation.

Index Terms—Carrier, demodulation, envelope, inference,
learning.

I. INTRODUCTION

DEMODULATION is the process by which a signal (yt) is
decomposed into the product of two component signals:

a slowly varying envelope or modulator component (mt) and
a quickly varying carrier component (ct). That is,

yt = mtct. (1)

Demodulation was originally developed for radio communi-
cations where the carrier is a sinusoid of known frequency,
but it has since been applied to a range of audio processing
problems including voice coding [1], [2], speech recognition
[3], [4], music retrieval [5], speech enhancement [6] and
source separation [7], [8], and it is used in hearing devices
[6], [9]. In most of these applications, the underlying signal
representation is derived by demodulating the sub-bands of
the recorded signal. Indeed, the time-frequency spectrogram,
a very widely used tool of signal processing, can be viewed
as yielding just such a representation [10] further highlighting
the importance of demodulation. Demodulation methods have
also been used to investigate the relative importance of the
sub-band envelopes and sub-band carriers (known collectively
as the fine-structure) in the perception of sounds [9], [11]–
[16]. However, the conclusions that can be drawn from these
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studies are limited by several well-known problems with the
demodulation methods employed [6], [17]–[19], although a
recently proposed approach [20], very similar to that advocated
here, may help to address these limitations.

The central problem for any demodulation algorithm is that,
in its most general form, the demodulation problem is ill-posed
[21]; any modulator that is non-zero wherever the signal is
non-zero can be associated with a valid carrier, and vice versa.
Thus to achieve repeatable results, an algorithm must impose
implicit or explicit assumptions about the form of carrier
and envelope, often embodied by a set of constraints. For
instance, in an amplitude-modulated radio signal the carrier
is a sinusoid of known frequency very much higher than the
pass-band of the modulator. Imposing this knowledge makes
the demodulation problem well-posed and straightforward.
Unfortunately, in applications involving natural audio signals,
there is no clear separation between the carrier and modulator
bands and so a more sophisticated approach to designing
constraints is needed.

Arguably, a general approach to demodulation should im-
pose constraints on the component signals that are soft (that
is, violations incur penalties but do not necessarily rule out
a candidate decomposition), and that can adapt automatically
to the signal, but which are still steerable if required. Both
softness and adaptability are needed to handle the variability
and potential non-stationarity of the components of the signal.
They allow the algorithm to identify suitable bandlimits for the
carrier and envelope signals from the measured sound, and
to permit temporary, or otherwise minor violations of these
limits if the resulting solution is better in an overall sense.
At the same time, specific knowledge about the properties of
the signal generators or desired decomposition may provide
partial or approximate information about component properties
in some applications. In such cases it would be valuable if
this knowledge could be used to steer the outcome of the
demodulation algorithm.

At least two further properties seem desirable in the con-
text of natural audio demodulation. The first is robustness
to additive noise. Natural signals are often corrupted by
broadband noise, and one might wish for this noise to have
minimal impact on the recovered modulator [22]. Indeed, joint
demodulation and denoising is essential for many practical
applications. The second is self-consistency. There are many
types of consistency property [21], [23], but of particular
interest here is a criterion we call Carrier Identity, which
requires that demodulating a recovered carrier yield a constant
envelope signal. This is similar to the Modulator Identity prop-
erty introduced in the preceding references, which requires
that demodulating a recovered modulator yield an envelope
equal to the original modulator (possibly rescaled), and a
constant carrier. Both of these criteria enforce consistency—
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that demodulation should remove all modulation information
from the carrier, and vice versa—but the Modulator Identity
property may be more difficult to satisfy as it demands that
the second demodulation stage produce a modulator that varies
more quickly than the (constant) carrier.

The discussion above proposes five desiderata for a demod-
ulation algorithm in the context of natural signals:

1) soft constraints,
2) automatic adaptation to the signal,
3) user steerability,
4) robustness to noise,
5) self-consistency.

We argue in section II that no single existing approach to
demodulation meets all of these desiderata. This observation
motivates our development in section III of a new approach
called Probabilistic Amplitude Demodulation (PAD) that nat-
urally satisfies them all.

PAD is a new framework which views demodulation as
a problem of inference and learning, where we adopt the
usage of these terms from Machine Learning. In our context,
inference means the estimation of the modulator and carrier
signals from the recorded samples, given fixed parametric
distributional constraints for both. Learning means the es-
timation of the parameters that describe these distributional
constraints, such as the expected time-scale of variation of the
modulator, and the modulation depth. In other words, inference
corresponds to demodulation, whilst learning corresponds to
adaptation of the algorithm to the signal.

The starting point for PAD is to articulate a probabilistic
forward model (see section III-A) which is a statistical de-
scription of the carrier, modulator, and the way in which they
combine to form the signal. Bayesian probabilistic calculus is
then used to invert the forward model and thereby estimate the
carrier and the modulator from the signal (see section III-B).
The PAD solution is shaped by the assumptions specified in
the forward model, but these constraints are imposed in a soft
fashion because they are probabilistic. Furthermore, we show
in section III-C that the parameters of the model, like the
time-scale of the modulator, can be learned from the signal
by maximum-likelihood or similar techniques. This enables
the algorithm to automatically adapt to novel signals. Addi-
tionally, any knowledge the user has about these parameters
can be incorporated in prior distributions, thereby enabling the
algorithm to be steered. In sections IV-A and IV-B we show
that PAD is robust to noise. In fact, it is simple to incorporate
the noise explicitly in the forward model and, if not known a
priori, learn its level from the signal. Finally, sections IV-A
and IV-B demonstrate that PAD is self consistent in the sense
that it approximately satisfies the important Carrier Identity
property.

Thus PAD meets all the desiderata we have laid out,
but this comes at the price of increased computational cost.
PAD uses a range of well-established, but computationally-
demanding methods for probabilistic inference. For instance,
demodulation requires the iterative optimisation of a non-linear
cost function. A main focus of this research has been to
accelerate the algorithm and currently signals with a sampling

rate of 16KHz can be demodulated in real time on a modern
laptop computer.

Although the new approach is computationally challenging
it does bring with it several advantages over and above
the desiderata mentioned earlier. Unlike in most existing
approaches, the unavoidable assumptions that determine the
solution are stated explicitly in the specification of the forward
model. This makes PAD easy to understand, critique, and
improve. Moreover, PAD can return error-bars on the estimated
modulators and carriers. These are especially relevant if signals
are noisy or contain quickly varying modulators, because there
can be considerable uncertainty in the carrier and modulator
estimates in such cases. The ability to handle uncertainties also
enables the range of demodulation tasks to be generalised, for
example to signals containing missing regions in which the
modulator must be filled-in (see sections IV-A and IV-B). This
is an interesting application as signals with missing segments
can arise in many ways: from device drop-out, damage to
physical media, as a consequence of the removal of impulsive
noise, or from loss of network packets. Restoration of such
signals requires reconstruction of the missing sections. The
modulator information in such reconstructions will often be a
perceptually important component [24].

II. BACKGROUND

There are many existing demodulation algorithms. Here
we argue that no single earlier algorithm satisfies all of the
desiderata introduced in the previous section. We limit our
discussion to methods which return positive envelope signals
as this is the focus of the paper.

Two classic techniques are the Square and Low-Pass (SLP)
method [25] and the Hilbert Envelope (HE) [26] approach.
The SLP method squares the signal to move modulator energy
to low frequencies, where it is then picked off by low-pass
filtering. The method is exact when the signal is composed
of a high-frequency narrow-band carrier, and a low frequency
modulator. When applied to more complex signals, a reason-
able modulator can be extracted by judicious choice of the
low-pass filter cut-off, although this parameter must be set
by hand. Even then, the recovered carrier is often poor. This
is because the filtered envelope may be small, or even zero,
in regions where the signal is non-zero. This results in an
associated carrier which is very large, possibly unbounded.
Overall, the method fails desiderata 1, 2, and 5.

The failure of the SLP method to return bounded carrier
estimates, and the need to set the low-pass filter, are both
issues that are addressed by the HE demodulation approach.
The HE, given by the magnitude of the analytic signal formed
from the measurements, is guaranteed to return a bounded
carrier and requires no hand-tuning. Like the SLP method,
the HE is invariant to amplitude scale changes, and returns a
constant envelope signal for pure sinusoidal input, both useful
theoretical properties. However, it still suffers from several
problems. Practically, the method performs poorly when the
carriers are not single tones. For example, if the signal is a pair
of harmonically-related sinusoids that undergo slow modula-
tion, the HE will contain a contribution at the fundamental
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frequency no matter how slowly the true envelope varies.
Consequently, the HEs extracted from natural sounds often
contain pitch information, even though many applications seek
to separate this from modulation content [22]. Similarly, the
HE is sensitive to noise in the signal, and therefore it is not
robust. The HE has theoretical problems too. For example,
the Hilbert carrier (formed by dividing the signal by the HE)
can be discontinuous for continuous signals. Furthermore, the
Hilbert carrier is not limited to the same frequency region as
the signal—which leads to reconstruction problems when us-
ing demodulated sub-bands [17]. With regard to the desiderata
enumerated here, the method fails all but number 2.

An alternative approach to demodulation is to focus on
estimating the carrier and then to recover the modulator by
division. Coherent approaches to demodulation [27] assume
that the carrier is a frequency-modulated (FM) sinusoid, and
estimate the instantaneous frequency of this carrier by, for
instance, finding the spectral centre of gravity of the win-
dowed signal. Coherent demodulation is usually applied in
the complex domain, with the FM structure being grouped
with the amplitude modulation by the inclusion of a time-
varying complex phase. For this reason, the approach is not
directly comparable to the one taken here which assumes a
real-valued positive modulator. Coherent methods work well
when the carrier is well-approximated as a single sinusoid
(e.g. when operating on a narrow sub-band of the signal),
but like the HE method, fail when the ideal carrier is more
complicated. Moreover, parameters like the window time-
scale have significant impact, and the method would benefit
from an automatic procedure. Thus, while parameters are
available to steer the results of coherent demodulation, and
the method does exhibit consistency by some definitions, the
approach generally fails the other desiderata, including the
Carrier Identity property.

Here, we view demodulation as a Bayesian inference prob-
lem. We first introduced this perspective some years ago,
using a simple version of PAD [28]. The main goal of that
original paper was to extend PAD to handle cascades of
modulators with different time-scales. That line of work was
then generalised to multi-band PAD [29]. In the current paper,
we return to consider single-band demodulation in more depth
and extend PAD in several new directions. First we consider
a more sophisticated and flexible model than that used in
the original work. Second, we provide methods for learning
all of the free-parameters of the model, which enable the
model to automatically adapt to the signal. Third, we present
methods for accelerating inference. The utility of these new
methods is then demonstrated on synthetic and natural signals,
in complete-data, noisy-data and missing-data tasks.

Probabilistic amplitude demodulation proceeds by optimis-
ing a non-linear cost function. This is potentially problematic
as the optimisation can be slow and there can be multiple
(local) optima. Recently, in an elegant paper, Sell and Slaney
[22] develop a more computationally efficient demodulation
algorithm that optimises a convex cost function [30] and
therefore ensures the problem has a unique solution. In section
III-D we show that Sell and Slaney’s linear-demodulation
algorithm can be viewed as a version of PAD. This perspective
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Fig. 1. A sample from the GP-PAD forward model produced using parameter
values learned from a segment of speech. The top panel shows the slowly
varying envelopes. The middle panel shows the quickly varying carriers. The
bottom panel shows the generated signal which formed by the product of the
signals above.

is important as it reveals the assumptions implicit in their
method and it means that the machinery developed in this
paper for learning the free-parameters of PAD models can
also be applied in the convex case, allowing it to automatically
adapt to the signal.

III. PROBABILISTIC AMPLITUDE DEMODULATION

This section covers the theoretical development of PAD.
In order to prevent the main ideas from being obscured by
technical detail, we begin this section with a high-level road-
map, highlighting the relationship with the desiderata.

The starting point is the forward model [31], which is a
description of the process by which we assume the signal
is generated. In the present context, the forward model as-
sumes that, (1) the observed signal is formed from a product
of an unknown modulator signal with an unknown carrier,
(2) the carrier is quickly varying, and (3) the modulator
is slowly varying and positive. This information is encoded
probabilistically in, (1) the likelihood p(y1:T |c1:T ,m1:T , θ),
(2) the prior distribution over the carrier, p(c1:T |θ), and (3)
the prior distribution over the modulators, p(m1:T |θ). (The
notation x1:T represents all the samples of the signal x, running
from 1 to a maximum value T ). Each of these distributions
depends on a set of parameters, θ, which controls factors
such as the typical time-scale of variation of the modulator
or the frequency content of the carrier. A specific set of
modelling assumptions, in the form of specific choices for the
distributions above, may be tested by drawing samples from
the forward model (see Fig. 1). In general, a balance must be
struck between the accuracy of the modelling assumptions and
the tractability of inference.

The forward model specifies the parametrised joint proba-
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bility of the signal, carrier and modulator

p(y1:T , c1:T ,m1:T |θ) =
p(y1:T |c1:T ,m1:T , θ)p(c1:T |θ)p(m1:T |θ). (2)

Inference proceeds by using Bayes’ theorem to invert the
forward model and form the posterior distribution over the
modulators and the carriers, given the data,

p(c1:T ,m1:T |y1:T , θ) =
p(y1:T , c1:T ,m1:T |θ)

p(y1:T |θ)
. (3)

The full solution to PAD is therefore a distribution over
possible modulators and carriers, and not a single modulator-
carrier pair. This reflects the fact that there is not sufficient
information to solve ill-posed problems unambiguously. For
practical applications the posterior distribution must be sum-
marised, and one approach is to return the most probable
modulator and carrier given the signal,

c*
1:T , m*

1:T = arg max
c1:T ,m1:T

p(c1:T ,m1:T |y1:T , θ) , (4)

together with error-bars which indicate the uncertainty around
this best-estimate. Demodulation therefore reduces to opti-
misation of a cost-function which specifies how the vari-
ous constraints trade-off with one another in a soft manner
(desideratum 1).

The parameters of the model, θ, control how the constraints
trade off, and therefore determine the PAD solution. One
way to set the parameters is to choose some general purpose
values (e.g. [22]), possibly determined by inspecting samples
from the forward model. However, mismatch between such
modelling assumptions and the signal can lead to undesirable
results. In general we would like the model to have a fairly
large number of parameters which automatically adjust to the
signal (desideratum 2). Fortunately, a number of methods are
available to learn the parameters of probabilistic model from
a signal alone. Perhaps the simplest is to use the maximum-
likelihood (ML) value of the parameters.

θML = arg max
θ

p(y1:T |θ), (5)

= arg max
θ

∫
p(y1:T , c1:T ,m1:T |θ) dc1:T dm1:T . (6)

Unfortunately the integral which this demands is often analyti-
cally intractable and so numerical approximation methods have
to be used. The art is to find accurate, but fast approximations.

If the user has some prior knowledge of the parameters
of the model then an alternative to the ML estimate is
the maximum a posteriori (MAP) estimate. Here, the user’s
knowledge is incorporated into the prior over parameters, p(θ)
which shapes the solution (desideratum 3),

θ* = arg max
θ

p(θ|y1:T ) = arg max
θ

p(y1:T |θ)p(θ) , (7)

and the ML method is often recovered when the prior over
parameters is uniform, p(θ) = constant.

The next three sections follow the path described in this
section, beginning with a mathematical description of the
forward model, then considering inference, and ending with
learning.

A. Forward Model

The defining feature of a probabilistic forward model for
amplitude modulation is that the signal arises from a product of
a slowly varying modulator and a quickly varying carrier (see
equation 1). However, as real data are often noisy, the forward
model developed here explicitly incorporates additive uncor-
related Gaussian noise around the value of this product, thus
improving the noise-robustness of the method. For generality,
the Gaussian noise is taken to have non-stationary variance.
In other words, given a particular modulator and carrier, the
signal is assumed to be a Gaussian-distributed random variable
with a mean given by the product of the modulator and carrier,
and a time-varying variance denoted by σ2

y,t,

p(yt|mt, ct, σ2
y,t) = Norm(yt; mtct, σ2

y,t). (8)

We use the notation Norm(x;µ,Σ) throughout to indicate a
Gaussian or Normal density on the variable x with mean µ
and (co)variance Σ.

The prior distribution for the carrier is assumed to be
Gaussian and uncorrelated in time, so that a typical sample
from the prior would be white noise. Actual carriers in natural
sounds will frequently be more structured, as in speech where
the carrier may contain pitch and formant information, but
the details of this structure are difficult to anticipate in the
prior. In practice, the broad spectral assumption tends to
separate the inferred time-scales of the carrier and modulator,
facilitating accurate inference. To avoid an amplitude scale
degeneracy between the carrier and modulator, the carrier scale
(or equivalently its variance) is set to unity,

p(ct) = Norm(ct; 0, 1). (9)

The slowly varying modulator process is constrained to be pos-
itive in the current approach. It is generated by the application
of a pointwise non-linear function to a slowly varying real-
valued (positive and negative) function—henceforth called the
transformed-modulator (xt)—drawn from a stationary Gaus-
sian process (GP; see [32] or [33] for an introduction). In the
sampled context, this simply means that the distribution over
all the transformed-modulator samples (x1:T ) taken jointly
is a multivariate Gaussian distribution with mean µ1:T and
covariance matrix Γ1:T,1:T ,

p(x1:T |µ,Γ) = Norm(x1:T ;µ1:T ,Γ1:T,1:T ). (10)

Stationarity requires that the mean of the Gaussian be constant
over time, µt = µ, and that the covariance between the
transformed-modulator sample at time t and that at time t′ be
a function of their temporal separation, ∆t = |t− t′|, alone:

Γt,t′ = 〈xtxt′〉 − 〈xt〉〈xt′〉 = γ|t−t′| = γ∆t. (11)

For signals from a stationary GP, the covariance (or autocorre-
lation) function determines the expected spectrum of the signal
according to the Wiener-Khintchine theorem. Intuitively, if
the covariance falls off quickly with ∆t, then the spec-
trum of the transformed-modulators will contain appreciable
higher frequency power, and the signals will tend to vary
quickly over time. By contrast, if the autocorrelation falls off
slowly, the transformed-modulator will vary relatively slowly.
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A convenient choice for the transformed-modulator covariance
function is the standard squared-exponential kernel,

γ∆t = σ2
x exp

(
− 1

2τ2
eff

∆t2
)
. (12)

Of the two parameters, τeff determines how quickly the au-
tocorrelation falls off and therefore fixes the time-scale of
variation of a typical sample drawn from the GP, whilst
σ2

x = γ0 determines its amplitude.
The non-negative modulator signal is derived determinis-

tically from the transformed-modulator by a ‘soft threshold-
linear’ function:

mt = m(xt) = σm log(1 + exp(xt)). (13)

This non-linearity is dominated by its exponential part for
large negative values of x, yielding small modulator signals
m. For large positive values of x the mapping is approxi-
mately linear. Thus, the Gaussian marginal distribution of the
transformed-modulators is modified into a sparse distribution
over the modulator variables. A sparse distribution is often a
good match to the modulator histogram derived from natural
sounds [34].

Equations 8-13 define a specific subclass of possible
models—and therefore possible algorithms—for probabilistic
amplitude demodulation. We refer to algorithms derived from
this subclass as Gaussian Process PAD (GP-PAD).

B. Inference

Full distributional inference is intractable in GP-PAD be-
cause of the two non-linearities of the forward model (equa-
tions 8 and 13), and so some form of approximation is
necessary. The use of the joint mode (equation 4) is one
option; however, the structure of GP-PAD allows for a slightly
more sophisticated approach. The Gaussian prior on the carrier
makes it possible to integrate over the unknown carrier values,
leaving a marginal probability on the transformed-modulator
alone. The inferred modulator signal is then derived from the
mode of this marginal probability:

x∗1:T = arg max
x1:T

p(x1:T |y1:T , θ), (14)

= arg max
x1:T

log p(y1:T , x1:T |θ) = arg max
x1:T

L(x1:T ),

where the final equation defines the objective function L.
Experiments indicate that this approach is both faster and more
robust to over-fitting.

There is no closed-form solution for this optimum, but a
gradient-based method can be used to find a local maximum.
The objective-function and its gradients can be computed
efficiently as follows. Note first that the objective splits into
two terms: one derived from the likelihood and one from the
prior,

L(x1:T ) =
T∑
t=1

log p(yt|xt, θ) + log p(x1:T |θ).

The likelihood term is simple and fast to compute as the
probability of the signal given the transformed-modulator

at that time-step is a zero mean Gaussian distribution with
a variance determined by the modulator, p(yt|xt, θ) =
Norm(yt; 0,m2(xt) + σ2

y,t). The component from the prior is
more challenging as it involves inverting the T ×T covariance
matrix of the GP which is intractable for time-series of even
modest length (T > 1000).

One way around this obstacle is to introduce a new set
of unobserved variables, xT+1:T ′ where T

′
> T , such that

the augmented set of variables x1:T ′ is circularly correlated
(so, for example, x1 and xT ′ are neighbours). This places the
augmented latent variables on a ring and the new covariance
matrix, Γ1:T ′ ,1:T ′ , is circulant, Γt,t′ = Γmod(t−t′,T ′ ). The
objective can now be computed efficiently using the Fast
Fourier Transform (FFT):

L(x1:T ′ ) = c+
1
2

T∑
t=1

log(m2
t + σ2

y,t)

− 1
2

T∑
t=1

y2
t

m2
t + σ2

y,t

− 1
2T ′

T
′∑

k=1

|∆x̃k|2

γ̃k
, (15)

where ∆x̃k is the Discrete Fourier Transform (DFT) of the
mean-shifted transformed-modulators ∆xt = xt − µ, and γ̃k
is the DFT of the covariance function, which is the spectrum of
the Gaussian Process. The derivatives can be computed using
the expressions above and are omitted for brevity (see [34] for
the details). The conjugate gradient method can be used for
optimisation [35]. There is some freedom in setting T

′
, but

two useful rules of thumb are that it should be a power of two
to accelerate the FFT, and it should be larger than T by several
times the decay-time of the modulator covariance function so
as to avoid wrap-around artifacts that might otherwise arise
by the introduction of correlation between the beginning and
end of the signal. Alternatively, these potential wrap-around
artifacts might be avoided by zero-padding the signal.

One of the advantages of probabilistic demodulation is that
it becomes possible to estimate the uncertainty in the recovered
modulators. However, although the uncertainty is mathemati-
cally well-defined, computational tractability remains an issue.
Here, we employ an approximate version of Laplace’s method,
itself an approximation, to compute it. Laplace’s method [31]
approximates the posterior distribution over the transformed-
modulators by a Gaussian centred at the posterior mode, with a
covariance matrix given by the negative inverse of the Hessian
matrix, H, of the log-joint (given in equation 15),

p(x1:T ′ |y1:T , θ) ≈ p(y1:T , x∗1:T ′
|θ)

× exp
(

1
2

(x1:T ′ − x∗
1:T ′

)TH(x1:T ′ − x∗
1:T ′

)
)
, (16)

where,

Ht,t′ =
d2

dxtdxt′
log p(y1:T , x1:T ′ |θ)

∣∣∣∣
x
1:T ′=x∗

1:T ′

. (17)

Thus the estimated posterior uncertainty is Σpost = −H−1.
Unfortunately, the Hessian is a T

′×T ′ matrix and so inversion
is typically intractable. A further approximation exploits the
simple structure of the Hessian: H is the sum of a diagonal



6 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. X, MARCH 2011

term from the likelihood (D with Dtt = d2

dx2
t

log p(yt|xt)), and
the inverse prior covariance matrix,

H−1 = (D + Γ−1)−1 = Γ1/2(Γ1/2DΓ1/2 + I)−1Γ1/2. (18)

In this form the difficult inversion is limited to the matrix
A = Γ1/2DΓ1/2, the other terms being simple to compute ex-
actly. The matrix A inherits the concentrated eigenspectrum of
the prior covariance Γ (recall that, after augmentation, both are
circulant matrices whose eigenvalues correspond to the Fourier
coefficients of any row). Consequently, A can be well approx-
imated by a truncated eigenexpansion, A ≈

∑KMAX
k=1 λkekeTk ,

and the problem reduces to finding an efficient method to
compute the top KMAX eigenvectors, ek, and eigenvalues, λk,
of A. The Lanczos algorithm provides one solution, requiring
only multiplication of A by a vector [36], and these products
can be computed rapidly using the FFT. The eigenvalues and
vectors then approximate the posterior covariance,

Σpost ≈ Γ1/2

(
I −

KMAX∑
k=1

λk
λk + 1

ekeT
k

)
Γ1/2. (19)

This expression has an instructive interpretation: in order to
compute the approximate posterior covariance (the posterior
uncertainties), begin with the marginal covariance of the prior
(the prior uncertainties) and subtract uncertainty corresponding
to each eigenmode of the likelihood. In practice, the most
useful elements of uncertainty are given by the marginal
posterior variances (the diagonal entries in Σpost) and memory
limitations will often restrict calculations to only these values.

C. Learning

The parameters of the GP-PAD forward model reflect
assumptions about the statistics of the signal such as the
time-scale of variation in the modulator or its degree of
sparsity; and the quality of modulator estimates depends on the
match between these parameters and the true signal properties.
Although the non-linear model complicates the manual spec-
ification of these parameters, the Bayesian approach makes it
possible to determine appropriate values automatically.

To avoid over-fitting, parameter learning must respect the
uncertainty in the values of the latent variables [34]. Above,
this uncertainty was approximated by Laplace’s method (equa-
tion 16); this Gaussian approximation is conveniently inte-
grated with respect to the transformed-modulators, to yield a
marginal likelihood function for the parameters alone:

p(y1:T |θ) =
∫
p(y1:T , x1:T ′ |θ)dx1:T ′ , (20)

≈ p(y1:T , x∗1:T ′
|θ) (2π)T

′
/2√

det(−H)
. (21)

This (approximate) marginal likelihood provides an objective
function for learning the parameters. In practice, the modulator
time-scale (τeff) is learned in this way.

Laplace’s approximation is still computationally costly in
realistic settings, and so a more efficient alternative is used to
learn values of the remaining parameters (σ2

x, σm and µ). This
approach is motivated by observing that these parameters are

well-constrained by the marginal distributions of each sample,
which do not depend on the temporal structure:

arg max
σm,µ,σ2

x

p(y1:T |σ2
m, µ, σ

2
x) ≈ arg max

σm,µ,σ2
x

∏
t

p(yt|σ2
m, µ, σ

2
x).

The marginal integrals are easy to evaluate numerically
(e.g. by gridding the region of significant probability under the
parameter priors). This leads to a two stage scheme in which
the marginal distribution of the signal is used to learn σ2

x,
σm and µ, and then Laplace’s approximation to the likelihood
is used to learn τeff. Any available prior information about
the parameters can be incorporated into either of these stages
(equation 7). Using our implementation of GP-PAD, the first
stage of learning typically takes a few seconds on a standard
laptop, independent of the signal duration. The second stage
of learning typically takes a few minutes for a second of sound
at 16000Hz.

A matlab implementation of GP-PAD can be obtained from
the authors’ website (www.gatsby.ucl.ac.uk/resources/pad).

D. Relationship to existing methods

Before demonstrating PAD practically, we note several
connections to existing demodulation methods. First, the GP-
PAD assumptions imply that the expected value of the square
of a noiseless (σ2

y,t = 0) signal, conditioned on the modulator
values, is equal to the square of the modulator: 〈y2

t |mt〉 = m2
t .

Thus, in principle, the square of the signal provides an
unbiased estimator for the (squared) modulator; but it has very
large variance (equal to 2m4

t ). This variance can be reduced by
exploiting the slow variation of the modulator and averaging
the squared signal over a local region, although this reduction
in variance comes at the cost of introducing some bias because
the true modulator may vary slightly over the local region.
This leads precisely to the SLP method described earlier.
From this new perspective, choosing the low-pass filter cut-
off in SLP amounts to selecting a point on a bias-variance
trade-off. Motivated by this connection, the SLP method is
used to intialise the gradient optimisation for GP-PAD. It is
worth reiterating, however, that although the SLP method often
provides a reasonable estimate of the modulator (in a squared-
error sense), the corresponding estimate for the carrier is often
extremely inaccurate and so fine-tuning of the SLP solution is
essential for many applications.

In a recent paper, Sell and Slaney introduce an elegant
approach to demodulation [22] that defines the modulator as
the solution to a convex optimisation problem which can be
written,

minimise
∑
f

(
WfFf (m(t))

)2
subject to m(t) ≥ |y(t)|.

Here, Ff is the Fourier coefficient at freqency f and Wf is
a window function used to penalise high-frequency energy in
the modulator. The basic idea is that the constraints ensure
the modulator is greater than the absolute value of the signal
at each time-point, and the cost-function ensures the solution
goes near to the rectified signal, in a slowly varying and
smooth manner. This sensible scheme was motivated heuris-
tically, but here we show that it can also be derived from a
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probabilistic model. Consider a forward model for amplitude
demodulation in which a positive modulator (mt ≥ 0) is drawn
from a truncated multivariate Gaussian and where the carrier
is drawn from a uniform distribution on the range [−1, 1],

p(m1:T |Σ1:T,1:T ) =
1
Z

exp
(
−1

2
mT

1:TΣ−1
1:T,1:Tm1:T

)
, (22)

p(ct) = Uniform(ct;−1, 1), (23)
yt = mtct. (24)

The fact that the carriers in this model are bounded between
−1 ≤ ct ≤ 1 can be motivated from a sinusoidal model,
ct = sin(φt).

The prior over the carriers enforces the constraint that
|ct| ≤ 1. The likelihood enforces the constraint that, ct =
yt/mt. Both of these constraints are only satisfied when the
modulator is greater than or equal to the data magnitude,
mt ≥ |yt|. The posterior distribution over modulators is
therefore another truncated Gaussian where the constraints
define the new truncation points. The MAP modulator is then
given by,

m*
1:T = arg min

m1:T

C(m1:T ) such that mt ≥ |yt|, (25)

where the cost function is the negative of the log prior
probability of the modulators,

C(m1:T ) =
1
2

mT
1:TΣ−1

1:T,1:Tm1:T ≈
1
2

T∑
k=1

|m̃k|2

γ̃k
. (26)

This is the same cost function as used in Sell and Slaney’s ‘lin-
ear’ demodulation algorithm, revealing the connection between
their approach and the probabilistic one. This connection is
valuable as it suggests methods to determine the free param-
eters of the convex approach such as the spectral weighting
function, W (f) (equivalent to the covariances γ̃−1/2

k ).
One contribution that emerges from previous research is a

catalogue of properties that are desirable in a demodulation
algorithm. Many properties identical or similar to these arise
naturally when the rules of probability are used to invert
the PAD generative model. For instance, the carrier and
the modulator recovered by GP-PAD from a bounded signal
will also be bounded [21] because the prior probability of
an unbounded carrier or modulator vanishes. Similarly, the
modulator will be smooth [26] because a realisation from a
GP prior with a squared exponential kernel is (almost surely,
almost everywhere) analytic [32]. PAD is also covariant with
respect to the scale of the input signal (a generalisation of a
constraint in [26]) because the ML modulator variance rescales
to compensate for any change in the signal scale.

IV. RESULTS

Here, we apply GP-PAD to various signals, demonstrating
its compliance with the remaining desiderata and comparing
it to methods which fail them, like the SLP and HE methods.
One of the main challenges posed by the evaluation of
demodulation algorithms on natural signals is that the ground
truth is unknown. This means that a quantitative comparison
of different schemes must take an indirect approach. We

present several different comparisons of this sort. The first
uses synthetic signals, for which the ground truth carriers
and modulators are known (see section IV-A). The results
suggest that PAD is more flexible than other methods. In
particular, GP-PAD performs well even when the modulator
and carrier bands overlap, which is often the case in natural
signals, and also when the signal is stochastic. Although
these results are suggestive, they cannot be seen as conclusive
without knowing which synthetic signal class is a sensible
approximation to natural sounds. In section IV-B GP-PAD is
applied to speech and the estimated carriers and modulators
are shown to be qualitatively superior to those recovered by
other methods. The solutions are evaluated for consistency,
for example by demodulating the carrier to test for the Car-
rier Identity property. Another test of consistency, related to
robustness, estimates the modulators from noisy signals and
measures how close these come to inferences based on the
clean signal. Similarly, modulators estimated in missing-data
regions are compared to the values obtained from the complete
signal. These consistency tests are important criteria that a
demodulation algorithm should meet, but are not sufficient to
guarantee a good algorithm. For example, an algorithm which
returned a constant modulator, independent of the signal,
would pass the tests above, but would evidently not qualify as
a good demodulation algorithm.

Finally, in section IV-C, PAD is applied to the sub-bands
of a signal showing that the carrier remains reasonably band-
limited, in contrast to those returned by many existing meth-
ods. This is critical for reconstruction [18].

A. Synthetic signals

The experiments described in this section test PAD on syn-
thetic signals in three different settings; noise-free data, noisy
data and missing data. In all of the experiments, the synthetic
signal comprised a modulated carrier, possibly combined with
additive Gaussian noise, yt = mtct + σytεt. Three different
carriers were used

1) A sinusoidal carrier, c(1)
t = sin(2πf (c)t) where f (c) =

100.7Hz.
2) A harmonic carrier, c(2)

t = sin(2πf (c)
1 t) + sin(2πf (c)

2 t)
where f (c)

1 = 100.7Hz and f (c)
2 = 201.4Hz

3) A white noise carrier, c(3)
t ∼ Norm(0, 1)

The properties of the carrier were generally found to have
a more substantial effect on the performance of the demod-
ulation algorithms than the properties of the envelope. For
this reason the same envelope was used throughout all of the
experiments shown; an exponentiated sum of three sinusoids,

mt = exp

(
3∑
k=1

(
α

(1)
k sin(2πf (m)

k t) + α
(2)
k cos(2πf (m)

k t)
))

.

The coefficients of the sinusoids were drawn from a unit
variance Gaussian α

(i)
k ∼ Norm(0, 1) and the frequencies of

the sinusoids uniformly sampled between 0 − 2Hz, f (m)
k ∼

Uniform(0, 2). The results reported below are robust to the
seed of the pseudo-random number generator. A sample rate
of 2000Hz was used for the experiments.
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Fig. 2. Demodulating synthetic signals. Each pair of rows shows a different signal (y, black) decomposed into a modulator (mest, thick line) and a carrier
(cest, lower panel) using three different methods; the Hilbert Envelope (column 1), the SLP method (column 2) and PAD (column 3). The true modulator is
also shown for reference (mtrue). The result of demodulating the carriers (an empirical test of the Carrier Identity property) is also shown (m(cest)).

For reference, PAD is compared to the HE and SLP methods
below. One of the metrics used for comparison is the Signal
to Noise Ratio (SNR) between the true envelopes (mt) and
the estimated envelopes (m̂t),

SNRm = 10 log10

T∑
t=1

m2
t − 10 log10

T∑
t=1

(mt − m̂t)
2 (27)

A SNR can be defined analogously for the carriers.

Whilst the HE has no free parameters, and can therefore
be applied directly to any signal, the SLP method must be
adapted to the signal. We chose a low-pass filter with a
logistic shape, 1/(1 + exp((f − fcut-off)/fwidth) and set the
cut-off (fcut-off) and width (fwidth) to return the largest SNR
for the estimated envelopes. This is an upper-bound on the
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performance of the SLP method using the logistic filter shape
because it exploits the ground-truth to optimise the parameters.
One further correction is made to the usual SLP algorithm to
address the fact that it can return an estimate for the square-
envelope that is negative, as there is no positivity constraint
on the output of the low-pass filter. We therefore thresholded
the filter output, setting values that fell below 10−4 to 10−4.

In order to make the tests as demanding as possible, all
of the parameters in PAD were learned from the signal using
maximum-likelihood; i.e., no prior knowledge was used. For
the noisy signals, the noise-level was assumed to be known
before hand and the parameters were set to those learned from
the clean signal.

Some typical results for the three algorithms demodulating
three different clean test signals are shown in Fig. 2 and the
results on noisy signals are summarised in Fig. 3.

The HE is the best estimator when the carrier is a pure tone,
although all three methods typically have high SNRs (∼ 40)
for signals of this type. However, when the carrier is more
complex, the HE often contains components that are faster
than desired. For example, when carriers contain harmonics
the HE contains a component at the fundamental, and when
the carriers are stochastic the HE becomes very noisy. For
similar reasons, the HE degrades quickly as more noise is
added to the signal.

The SLP envelope is more robust than the HE. It is often
accurate (as measured by the SNR of the estimated envelopes)
so long as it is known where to place the filter cut-off. For this
reason, in normal applications it tends to perform well when
the carrier and modulator bands are well separated, but less so
when there is overlap. Here the oracular determination of the
threshold overestimates SLP performance. However, whilst the
estimate of the envelope is often accurate in a squared-error
sense, the method can return very poor estimates for the carrier
(e.g. see the noisy carrier in Fig. 2). This happens because in
regions of low energy, the SLP envelope may become too
small resulting in carrier estimates which are very large. As
stated above, there is no constraint built into the method to
ensure that the carrier remains well behaved.

GP-PAD out-performs the SLP method in every condition
and the HE in every condition bar the simplest (a pure tone
carrier in noise free conditions), both in terms of the SNR of
the envelopes and the SNR of the carriers (data not shown).
PAD approximately satisfies the Carrier Identity test for all
of the synthetic signals, whilst the other methods do not (as
shown in Fig. 2). The conclusion is that PAD is more robust,
both to changes in the signal class and to additive Gaussian
noise.

Finally, Fig. 4 demonstrates that PAD can be used to
accurately fill in the envelopes in missing regions of the
synthetic signals. Practically, the inference proceeds as for
complete data, but the variance of the observation noise is set
to infinity in the missing region (σ2

y,t = ∞). The estimated
envelopes are very accurate for small gap sizes, but deteriorate
for gaps comparable to the time-scale of the envelope. The
uncertainty in the estimated envelopes grows correspondingly
with the gap size. Importantly, the true envelope tends to
remain within the error-bars at all gap sizes. The conclusion

0

10

20

30

40

50

S
N

R
 e

nv
el

op
e 

si
gn

al
 1

 

 
HE
SLP
PAD

0

10

20

30

40

50

S
N

R
 e

nv
el

op
e 

si
gn

al
 2

−5 0 5 10 15 20 25 inf

0

10

20

SNR signal

S
N

R
 e

nv
el

op
e 

si
gn

al
 3

Fig. 3. Demodulating noisy synthetic signals. Noise was added to the signals
shown in Fig. 2 and the envelopes estimated using the three methods. The
panels show the SNR of the estimated envelopes as a function of the SNR of
the signal. The three methods are; HE (circles), SLP (crosses), PAD (squares).
PAD out-performs the other methods on the noisy data by about 3-12dB. The
rightmost markers show the performance on the clean signal for reference.

is that PAD can accurately estimate both the envelopes and
the uncertainty in regions of missing data.

B. Speech signals

This section applies PAD to a speech sound. Noise-free
data, noisy-data and missing-data settings are considered.
There is an important difference between the synthetic signals
considered in the previous section and natural sounds like
speech treated here. Whereas the synthetic sounds contained a
single time-scale of modulation, natural sounds often contain
modulation at multiple time-scales (see Fig. 5). Fortunately,
PAD can be used to automatically diagnose when this is the
case and to select between the various solutions. The key
quantity in this process is the (approximate) likelihood of the
time-scale, p(y|τeff). This is found to have a single peak for
the synthetic sounds considered in the last section indicating
a single best solution. However, this quantity has three peaks
for the speech sound considered here (see Fig. 5). Each of
these peaks corresponds to modulation arising from a different
physical process; the glottal pulse periods, the syllables, and
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the sentences of speech. By appropriately choosing the prior
(see equation 7), the user is able to select between these
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Fig. 5. Approximate likelihoods of the time-scale parameter, τeff. The left
panel shows the log-likelihood for the noisy-carrier synthetic signal which is
unimodal. The right panel shows the log-likelihood for the speech signal which
has three modes originating from the pitch (τ−1

eff = 550Hz), syllable (τ−1
eff =

34Hz) and sentence (τ−1
eff = 3Hz) structures in speech. These frequencies

are higher than normally associated with these structures because each cycle
corresponds to two or three time-scales.

different solutions. For example, a prior which favours the
syllable time-scales is used in Fig. 6. The speech is demod-
ulated effectively and the Carrier Identity property holds to
a close approximation. For comparison, when the parameters
of the SLP method are chosen to demodulate at this time-
scale a reasonable looking modulator can be returned, but
the carriers are typically ill-behaved. Similarly, when a prior
is used which favours the sentence time-scales, PAD again
demodulates the sound fairly effectively (see Fig. 7), especially
in comparison with the result from SLP. Finally, when a
prior is used which favours the glottal pulse time-scales, PAD
recovers a modulator which resembles the solution provided
by the HE. The HE method demodulates voiced phonemes at
the time-scale of the vocal fold oscillations because this causes
harmonic structure, but in unvoiced sections it becomes noisy.

Next we consider the performance of PAD on signals
which are noisy and contain missing data. As ground truth is
unknown we compare the envelope estimates derived from the
noisy signals to those derived from the clean signals. This is
an important consistency test. Fig. 8 indicates that the solution
from PAD degrades less quickly in the presence of noise than
that from the SLP or HE methods. Fig. 9 shows that PAD can
reliably estimate the envelope of speech signals in missing
regions up to 20ms long.

C. Sub-band demodulation

One of the more frequent applications of demodulation
in the context of natural sounds is to the sub-bands of
the signal. However, it is known that the carriers derived
from band-limited signals using many demodulation methods,
such as the SLP and HE methods, are not guaranteed to be
spectrally limited to the pass-band of the filter (see Fig. 10
for one example). This can lead to artifacts, for example
when reconstructing signals by recombining filtered versions
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Fig. 6. Demodulating the syllables of speech. The top pair of rows shows a speech signal consisting of three spoken sentences (y, thin black line, upper
panel) decomposed into a modulator (mest, thick positive valued line, upper panel) and a carrier (cest thin line, lower panel). The left hand column shows
PAD and the right hand column the SLP method. The time-scale used for PAD was learned from the data using a flat prior, and the SLP cut-off was set to
give similar results to PAD. The result of demodulating the carriers (an empirical test of the Carrier Identity property) is also shown (m(cest), thick positive
line, lower panel). The bottom pair of panels is a close up of the middle sentence. The three standard deviation error-bars on the PAD envelopes are also
indicated by the shaded region.

of the sub-band modulators with the original carriers [17].
Fig. 10 demonstrates that the carriers derived from GP-PAD
are substantially more band-limited than those derived from
the HE or SLP methods. However, as there is no constraint on
the carrier frequency content, carrier signal energy can still be
found outside of the filter. In principle, PAD could be extended
to add such a constraint to the spectral content of the carrier,
which may improve performance in this application.

An alternative approach to sub-band demodulation, that
suggests a different extension to PAD, is that of coherent
demodulation [27]. Like the HE, this method assumes the
carrier is a single frequency-modulated sinusoid, but it is
constrained to be limited to the pass-band of the filter. The
method performs well when the filters are narrow, but it
can perform poorly for broad filters that contain harmonic or
noisy carriers which violate the assumptions of the algorithm.
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methods. The panels show the SNR of the estimated envelopes as a function
of the SNR of the signal. The three methods are; HE (circles), SLP (crosses),
PAD (squares). PAD out-performs the other methods on the noisy data by
about 5-11dB.

Furthermore, there is no positivity constraint on the envelope
in this approach and so it is not directly comparable to the
approach taken here. In fact, the envelope is completely un-
constrained in coherent demodulation (although it may inherit
bandwidth constraints from a band-limited input signal and
a band-limited carrier estimate). It is interesting to contrast
this to PAD where it is the carrier which is unconstrained
(beyond having zero mean and unit variance). It appears that
a method which imposes direct constraints on both the carrier
and envelope would combine the benefits of both approaches.
For instance, one approach in this direction would be to extend
PAD so that the carrier is modelled as a frequency modulated
sinusoid, and to place a prior over the frequency modulation.

One potential application of a version of probabilistic sub-
band demodulation is to missing signal reconstruction. In
fact, the approach developed for reconstructing the envelopes
in PAD (see sections IV-A and IV-B) can be used for this
purpose if the carriers in each subband are reconstructed
along with the modulators. Two possible schemes are to either
approximate the carriers as fixed frequency sinusoids or as
Gaussian noise, which has been passed though the filter bank.
This reconstruction approach, which could be improved by
explicitly modelling the carrier, is a probabilistic version of
that used by Clark and Atlas [24].
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V. CONCLUSION

This paper has introduced a new perspective on demodu-
lation, viewing it as a probabilistic inference problem. This
perspective led directly to the development of an algorithm
called Probabilistic Amplitude Demodulation which proceeds
via an optimisation of a non-linear cost function. The Fast
Fourier Transform was used to accelerate inference allowing
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Fig. 10. Demodulating a filtered speech signal. A speech signal (top panel,
normalised log10-spectrum shown in black) was filtered using a cosine shaped
filter (centred at 2000Hz with full-width 250Hz, smooth line) and normalised
to unit variance to produce a band-limited signal (top panel, blue line within
the filter pass-band). This was demodulated using the HE, SLP and PAD
methods and the the lower three panels show the log-spectra of the resulting
carriers. The carrier derived using PAD is closer to being limited to the pass-
band of the filter than the other methods, but energy still leaks outside.

PAD to run in real-time on current hardware, and further
approximations based on Laplace’s method were introduced to
make learning tractable. However, despite these improvements,
PAD remains computationally intensive when compared to
existing approaches to demodulation. Nevertheless, PAD has
several advantages. For instance, we have highlighted five
desiderata which previous demodulation algorithms fail to
satisfy, but which are fulfilled by PAD. The first is that the
method have soft constraints, which is naturally met by PAD
because of the probabilistic calculus upon which it is based.
Second, we demonstrated that the method can automatically
adjust to the signal by learning important parameters, like the
time-scale of variation in the modulator and the sparsity of the
signal. Third, we have shown that the method can be steered by
the user, for example on a speech signal where user-specific
priors were used to select between modulation solutions of
differing time-scales. Fourth, we demonstrated that the method
was robust to broadband noise added to both synthetic and
natural data. And fifth, that the PAD solution was consistent,
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in the sense that PAD removes almost all of the modulator
information from the carrier (the Carrier Identity property).

PAD not only returns an estimate of the modulator in a
signal, it also returns an estimate of the uncertainty in the
modulator. The fact that PAD handles uncertainties correctly,
means that it can be naturally extended to missing-data tasks.
The probabilistic framework also lends itself naturally to
changes in the assumptions about carrier and modulation
content, and so the current algorithm may form the basis of
useful extensions. One hope, in particular, is that this approach
can be extended to simultaneous amplitude and frequency
demodulation.
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