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Time-Frequency Analysis as Probabilistic Inference
Richard E. Turner, Member, IEEE, and Maneesh Sahani, Member, IEEE

Abstract—This paper proposes a new view of time-frequency
analysis framed in terms of probabilistic inference. Natural
signals are assumed to be formed by the superposition of dis-
tinct time-frequency components, with the analytic goal being
to infer these components by application of Bayes’ rule. The
framework serves to unify various existing models for natural
time-series; it relates to both the Wiener and Kalman filters, and
with suitable assumptions yields inferential interpretations of
the short-time Fourier transform, spectrogram, filter bank, and
wavelet representations. Value is gained by placing time-frequency
analysis on the same probabilistic basis as is often employed in
applications such as denoising, source separation, or recogni-
tion. Uncertainty in the time-frequency representation can be
propagated correctly to application-specific stages, improving the
handing of noise and missing data. Probabilistic learning allows
modules to be co-adapted; thus, the time-frequency representa-
tion can be adapted to both the demands of the application and
the time-varying statistics of the signal at hand. Similarly, the
application module can be adapted to fine properties of the signal
propagated by the initial time-frequency processing. We demon-
strate these benefits by combining probabilistic time-frequency
representations with non-negative matrix factorization, finding
benefits in audio denoising and inpainting tasks, albeit with higher
computational cost than incurred by the standard approach.

Index Terms—Audio signal processing, inference, machine-
learning, time-frequency analysis.

I. INTRODUCTION

M ANY real-world signals are characterized by sparse
frequency content that varies relatively slowly. Exam-

ples include spoken vowels and other animal vocalizations, in
which harmonic structure remains relatively stationary for tens
of milliseconds or more, and electroencephalographic and other
physiological signals, which often contain slowly modulated
oscillatory components laid over a broader-band background.
Consequently, analyses that extract the time-dependent locally
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stationary frequency content of natural signals are ubiquitous,
finding applications in areas such as speech recognition, audio
retrieval and restoration, medical signal processing, and source
separation and localization.
Time-frequency analysis is a mature field with a well-de-

veloped mathematical foundation that characterizes a variety
of different time-frequency representations (e.g. [1]) and effi-
cient digital implementations (e.g. [2]). Nonetheless, open is-
sues remain. For one, different choices of window function in
the short-time Fourier transform, transfer functions in a filter-
bank, or mother wavelet in a wavelet transform yield quite dif-
ferent representations. Despite several proposals [3]–[8] there is
no consensus on how to select the best time-frequency represen-
tation for a particular signal or task, nor are there robust algo-
rithms for automatic (and potentially time-varying) signal-de-
pendent adaptation of the representation. Similarly, corruption
of a signal by noise or missing samples should introduce uncer-
tainty into the values of the time-frequency representation; but
again, no unified robust method exists for computing and han-
dling such uncertainty.
These issues are sharpened when the time-frequency rep-

resentation is not the goal in itself, but instead forms a
pre-processing stage to an adaptive application module such
as a classifier, recognizer, or source-separation algorithm. The
conventional approach is to set the parameters of the time-fre-
quency representation first, and then to select the parameters of
the second-stage application based on the transformed signals.
This step-wise approach has three limitations. First, it necessi-
tates a cumbersome process of validation to find time-frequency
parameters that improve performance at the second stage. In
all but the simplest cases no more than a small set of param-
eters can feasibly be evaluated, thus limiting the capacity to
identify the optimal values and making continuous adaptation
impossible. Second, where time-frequency representations are
overcomplete, representations derived from real signals are
constrained to lie on a submanifold of the full representational
space [1]. Learning [9] and prediction [10] in the application
module should respect these constraints, but this is made com-
plicated by the algorithmic separation. Similarly, while signals
from different sources may be linearly superimposed in the
waveform, their time-frequency representations combine in a
more complicated way [11]. The separation of representation
and application again makes it difficult to flexibly account
for such combination rules in later processing. Third, proba-
bilistic application modules—such as hidden Markov models
(HMMs), non-negative matrix factorization (NMF) or inde-
pendent component analysis—perform best with information
about the reliability of input values, but this information about
uncertainty is precisely that which is difficult to propagate to a
conventional time-frequency representation.
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The goal of this paper is to provide a new perspective on
time-frequency analysis, extending the classical framework so
as to compute and represent uncertainty, select parameters of
the representation in a principled way, and provide straightfor-
ward integration with applications. The core idea has connec-
tions to the frameworks of both Wiener [12] and Kalman [13]
filtering; it is to frame time-frequency analysis as a problem of
estimating unknown underlying signals from (possibly noisy)
observations. A natural signal is assumed to be formed by a
superposition of time-varying sub-band elements, with varying
degrees of time-frequency concentration. The analytic task then
becomes to find these components.
It will be useful to review the general schema of probabilistic

inference as it applies here [14]. Consider a signal observed at
samples, (the subscript notation represents the

sequence of indices ; for compactness we use sum-
mary symbols such as when we do not need to refer to spe-
cific samples). We assume that this signal depends on a set of
unobserved components according to a pa-

rametrized conditional probability distribution . For
now we use the symbol generically to represent the union of
the parameters of all relevant probability distributions; specific
choices of distributions and their parameters are described in
later sections. By assumption, each sequence (for

) makes a spectrally local contribution to , with a spec-
tral profile that is determined by the parameters. Thus, the set of
sequences X constitutes a particular time-frequency representa-
tion for the signal , the form of which is determined by and
the family of distributions .
The probabilistic dependence of on X makes it possible to

model interference, measurement noise, quantization, and other
forms of signal corruption. This incorporation of an explicit
“noise model” (where “noise” stands for all forms of corrup-
tion) is a hallmark of probabilistic methods. It removes the need
for separate signal recovery or denoising, makes it possible to
determine noise parameters adaptively, and to quantify the ef-
fects of noise on the estimated time-frequency representation.
No generality is lost: if the signal is known to be uncorrupted,
the conditional distribution simply picks out with probability 1
a single signal for each representation X.
The goal of probabilistic time-frequency analysis is to es-

timate the representation that underlies a particular measured
signal. It is evident from our construction that this problem is
ill-posed. The dimensionality of X is times larger than that of
, and thus many different possible representations X will gen-
erally achieve the same likelihood for a given signal . Thus,
a second crucial element of the probabilistic model is the prior
distribution on X, . This defines the values of X that are
compatible with the time-frequency model. For instance, if each
sequence represents an amplitude modulated narrowband
carrier signal, then it might be reasonable to assume that the
spectrum of these sequences should be minimized outside the
bandwidth of the corresponding carrier [15], [16].
The two distributions combine according to Bayes’ rule to

define the posterior distribution over X determined by the ob-
served signal and the model parameters.

(1)

Unless X is severely constrained by the prior, this posterior will
assign non-zero probability to many different time-frequency
representations, thereby representing uncertainty about its
value. The scale of the uncertainty, which may often be sum-
marized by standard deviations for each (or more briefly
by the total variance or entropy of the posterior) will depend on
the parameters of the noise model, the parameters of the prior,
and sometimes (but not always) on the signal itself. In this
way, the probabilistic formulation directly addresses the issue
of uncertainty in the recovered representation.
The calculus of probabilities also provides a natural and prin-

cipled scheme to select or adjust the representational parameters
and thus tailor the time-frequency representation to the features
of a particular signal. A fully Bayesian approach would, in fact,
integrate over the unknown parameters, with the best-matched
parameter values naturally dominating the value of the integral.
However, practical considerations often dictate a two-step ap-
proach. First, a single optimal parameter value is identified on
the basis of the model likelihood

(2)

in which X has been integrated out. The representation is then
found according to (1).
The calculation of a time-frequency representation is often

only a precursor to a higher-level analysis algorithm.Many such
applications are themselves based around a probabilistic model
such as an HMMor probabilistic dictionary. Just as the time-fre-
quency analysis model defines a distribution on the
signal given the time-frequency representation, the application
model defines a distribution on the time-frequency
representation given a set of analytic variables W (for now W
stands for all variables in the model; later it will refer specifi-
cally to the NMF spectral dictionary). Thus, when the time-fre-
quency stage is probabilistic the two stages can be combined to
give a marginal likelihood:

(3)

In essence, the higher-level model specifies an application-spe-
cific prior on X.
If the integral of (3) is tractable, then the time-frequency rep-

resentation becomes implicit, and the analytic variables and pa-
rameters can be found without need for an explicit representa-
tional step. More generally, however, direct calculation of the
posterior on the variables W is not possible. Instead it is neces-
sary to use exact or approximate message passing, computing
or approximating the posterior and propagating the
implied estimate of X along with the associated uncertainty to
obtain an estimate of W.
In this paper we first briefly review the basic properties of

classical audio time-frequency analysis that will be important
for the probabilistic development. The general inferential
framework is introduced in Section III and connected to the
classical representations. Subsequent sections consider learning
(IV) and non-stationary noise and missing data (V). Finally,
we illustrate the combination of probabilistic time-frequency
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analysis with NMF (VI), demonstrating improved performance
in audio denoising and restoration tasks (VII).

II. CLASSICAL TIME-FREQUENCY REPRESENTATIONS

Time-frequency analysis takes many forms. Here we review
some key properties of two simple and widely used approaches:
sub-band filtering and demodulation, and the short-time Fourier
transform (STFT) and spectrogram.
In sub-band filtering a bank of band-pass filters splits the

signal into different frequency channels. In the time domain:

(4)

where, in principle, the discrete impulse responses of the
filters, may be infinitely long. The time-frequency
representation is then formed either by the sub-band signals
themselves, or by their amplitude envelopes (often found using
the Hilbert transform) which together characterize the time-fre-
quency distribution of energy in the signal.
The STFT is formed by repeated discrete Fourier transforms

of the signal restricted to local windows ,

(5)

Here are the frequencies at which the STFT is eval-
uated. Again, this representation may be transformed to show
only the energy density, yielding the short-time spectral density
or spectrogram given by the magnitude of the STFT,

.
The filter bank and STFT output are related. Consider filters

constructed by centering a bandlimited transfer function at fre-
quencies . The impulse response functions of the filters
are then , where is the impulse response
of the low-pass filter obtained when the desired transfer function
is centered at 0. Substituting into (4) we find that the outputs of
these filters correspond to waves centered at and modulated
in amplitude and frequency by the STFT coefficients (with
as the window function) [17],

(6)
Conversely, the STFT-modulated sub-band signals

are given by the output of a bank of quadrature fil-
ters . It also follows that the Hilbert envelope
of the filter bank output is identical to the square root of the
spectrogram provided that the filter bandwidth is less than twice
the smallest center-frequency, [17]. Thus,
the spectrogram represents the amplitude of bands defined by
the window function. Wavelet representations are analogously
related to non-uniform filter banks in which window shape

scales with the center frequency . These connections
between different time-frequency constructions also carry over
to the probabilistic setting.

III. GAUSSIAN TIME-FREQUENCY REPRESENTATIONS

We begin by considering probabilistic approaches in which
(the inferential expected value of) the time-frequency rep-
resentation depends linearly on the input signal, as it does
for the filter-bank and STFT representations. A probabilistic
approach is defined by a generative model which specifies
how the signal derives from the unobserved sequences [i.e.

] and gives a prior distribution over those sequences
. A simple choice is to assume that is formed by

the (weighted) superposition of band-limited signals ,
possibly corrupted by noise (a similar assumption is made when
a signal is re-synthesized from sub-band channels by summa-
tion). Then linearity of inference can be assured by setting
the distributions of each and the noise to be Gaussian.
Although apparently simple, the Gaussian assumption proves
to be of quite general value. It encompasses auto-regressive,
moving-average and sinusoidal models [18] and it generalizes
simply to nonregularly sampled data in which case the signal is
considered to be a realization of a Gaussian process [19] (see
section 2 of the supplementary material for further details).
Indeed, if the only constraint on the signal is that it have finite
power, a Gaussian model retains full generality in a maximum
entropy sense [20].
We are typically interested in representations that are time-

invariant. That is, the representation of a time-shifted signal
should be time-shifted by the same amount, but otherwise un-
changed. In the probabilistic view, this requires that the gen-
erative model be statistically stationary. A Gaussian prior on

is defined by a mean signal , and a covariance ma-
trix . Both are simplified by the assumption of sta-
tistical stationarity. The mean signal must be constant in time,
and with no loss of generality can be taken to be zero (with
any constant offset in the signal being added after the are
summed). Further, the covariance matrix must be shift-invariant

and therefore summarized by the expected
auto-correlation function. Neglecting edge effects, the eigen-
vectors of the covariance matrix are sinusoidal functions with
eigenvalues given by the power spectrum ,

(7)

where we define the discrete Fourier transform matrix with fre-
quency index and order as . The
error in this approximation vanishes in the limit (see
[21], [22]) and is often negligible in real world applications in
which the duration of the signal is much larger than the recip-
rocal of the bandwidth of the sub-band processes.
We refer to models specifying a stationary joint Gaussian

distribution over the signal and its time-frequency representa-
tion as Gaussian time-frequency (GTF) models. As will be seen
below, GTF models provide probabilistic analogues to both the
filter-bank and STFT.

A. Probabilistic Filter Banks

In the basic GTF model, the sub-band processes are gen-
erated independently of each other from zero-mean stationary
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Gaussian priors with covariance , which de-
termine their frequency profiles; and the signal is formed by
their sum, possibly corrupted by uncorrelated Gaussian noise
of amplitude (defined by ).

(8)

Inference in this model yields the familiar sub-band filter-bank
form. Since the model is linear and Gaussian, the posterior dis-
tribution over the sub-band processes will also be Gaussian,

(9)

In Appendix A we show that the posterior covariance
does not depend on the signal. Thus, the uncertainty in a simple
GTF representation where the level of noise in the signal is con-
stant and known depends only on the parameters of the repre-
sentation. The signal-dependent information is summarized by
the posterior mean, . Appendix A
shows that this mean can be found by passing the signal through
a filter bank,

(10)

The filters are fixed and do not depend on time, a property which
can be seen to follow from the signal-independence of the pos-
terior variance.1 The filters take the Wiener form [12], with fre-
quency response given by the ratio of the model component
power spectrum to the model total signal power spectrum

,

(11)

That is, the coefficient estimates are recovered by weighting
each frequency by the signal-to-noise ratio. Practically, this
leads to efficient implementations of estimation using the fast
Fourier transform (FFT).
That estimation in the GTF model is equivalent to Wiener

filtering should not be surprising. The Wiener filter recovers a
target signal with minimal squared error, rejecting stationary
interference of known spectral density. In our case, the target
signal is the th component , while the interference is
the mixture of the other components and noise.
Wiener’s assumptions of a linear filter and squared-error mea-
sure, are equivalent to the assumed generative linearity, station-
arity, and Gaussianity of the GTF framework. The generative
view facilitates extensions, however—particularly by allowing
adaptive estimation of the spectra of the relevant signals (see
Section IV).

1As the posterior covariance is data-independent, the effective “window” of
the time-frequency representation is not adaptive. In this regard we disagree
with the analysis of [23], who argue that the effective window of a specific ex-
ample of a probabilistic STFT (discussed later) is adaptive. In fact, it is edge ef-
fects which are causing the window to change in their application, and in central
portions of a long signal these do not make a contribution. The cases of adaptive
and hierarchical models with signal-dependent uncertainties are treated here in
Sections V and VI.

B. The Probabilistic STFT and Spectrogram

The link between the classical filter bank and STFT analyses
suggests that it should also be possible to construct a GTFmodel
in which inference matches the STFT. This requires sub-band
processes that are complex-valued, like the Fourier co-
efficients. In fact, it is sufficient to define separate and indepen-
dent priors on the real and imaginary parts of . These are
taken to be zero-mean stationary Gaussians, with a low-pass co-
variance structure. Following the equivalence between STFT-
modulated waves and filter bank channels established in (6), the
signal is formed by a sum of the real parts of complex-modu-
lated waves and noise:

(12)

This definition echoes the relationship between the classical
filter bank and STFT by construction. Defining ,
we see that , and thus
as in the classical case. Furthermore, the marginal distribution
over implied by this construction is identical to that of (8)
provided that (see Appendix C).
The linear-Gaussian construction again ensures that inference

is linear and that the posterior covariance does not depend on the
signal. Appendix B shows that the posterior mean is given by:

(13)

with, in general, a component-dependent window function
given by the convolution of the frequency-shifted inverse
signal correlation and the component prior correlation function:

(14)

As must be low-pass in structure to ensure frequency
localization of the sub-band processes, this window function
will also be low-pass. When the coefficients have the same prior
low-pass covariance structure, , the window becomes
component-independent and we recover the standard STFT (5).
If, instead, the windows are scaled linearly with frequency, the
representation corresponds to a multiscale wavelet transform.
The posterior mean of the complex filter bank coefficients
is obtained by frequency shifting the posterior mean of the

STFT coefficients, or equivalently, by filtering using complex
filters formed from the STFTwindow, .When
the windows, , are bandpass, this corresponds to a quadra-
ture filter bank in which the real and imaginary parts are related
by the Hilbert Transform. Furthermore, the amplitudes of the
posterior mean correspond to the spectrogram,

(15)

Thus, with appropriate parametrizations, GTF models pro-
vide probabilistic analogues to the traditional filter bank, STFT
and spectrogram. This theoretical connection to an additive
generative model justifies additive re-synthesis techniques. It
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also leads to a number of generalizations. In the next section
we see how the probabilistic framework can be used to adapt
a representation to match the statistics of the signal. Then, in
Section V, we will show how to incorporate non-stationary
noise and missing data into the framework.

IV. ADAPTATION OF TIME-FREQUENCY REPRESENTATIONS

In the probabilistic framework, the parameters that dictate
the form of the time-frequency representation—the filter func-
tions and STFTwindow—are derived from the expected covari-
ances of the sub-band processes. These covariances can them-
selves be fit to provide a statistically optimal description of the
signal (or family of signals). This yields a principled approach
for adapting the parameters of the representation.
One strategy is to maximize the likelihood (2). In

the GTF model, the marginal distribution of the signal is itself
Gaussian, with a covariance given by the sum of the sub-band
covariances plus a constant diagonal contribution from noise,

(16)

Direct optimization in the time domain is cumbersome owing
to the large covariance matrices involved. However, by trans-
forming to the frequency domain using (7), we obtain a simple
expression for the marginal distribution,

(17)

Here, is the signal power, and
the model power defined in (11) with the parameter dependence
made explicit. The parameters of the component spectra can
now be adjusted numerically (for example, by gradient ascent)
to minimize divergence between the model and signal spectra
as measured by the likelihood (17). A similar approach is used
in Bayesian spectrum analysis [18] where the components are
spectral lines. We find that this frequency-domain fitting ap-
proach generally leads to more efficient and more accurate pa-
rameter estimation than some other methods suggested in the
literature (e.g. [24], [25]).

V. NON-STATIONARY MODELS

The explicit generative model of the probabilistic framework
can be modified to embody known structure in the signal. An
example is a signal corrupted by time-varying noise, or with
missing samples. Classical time-frequency methods have no
natural way to account for such non-stationarity, and the in-
corporation of non-stationary noise into the GTF model breaks
its simple equivalence to classical approaches. Unfortunately,
non-stationarity also makes inference in models defined by
explicit covariance structure, as in (8) or (12), computationally
burdensome. In this section we develop a different GTF speci-
fication, which allows efficient inference using a Kalman filter
approach.

The simplest non-stationarity involves time-dependent noise.
Formulating a GTF model in terms of complex sub-band pro-
cesses we can write

(18)

The sequence tracks the change in noise variance. Missing
data are treated by taking the corresponding , so that
the processes are not constrained by the data occurring at
these times.
The non-stationarity of the signal in this model breaks the

simple convolutional filter relationship of (34), even for time-in-
variant prior covariances on . Consequently, inference in
the GTF models of (8) or (12) would require the expensive in-
version of the full expected signal covariance matrix. An al-
ternative is to redefine the prior on as a Gauss-Markov
auto-regressive process. This choice ensures that the inverse co-
variance matrix is band-diagonal and that the necessary compu-
tations can be performed efficiently, for example by a Kalman-
filter based message passing approach.
Following (12), the th complex sub-band process is ex-

pected to be an amplitude- and phase-modulated -wave (or
“phasor”) . Such a phasor can be defined
by a complex first-order auto-regressive or AR(1) process:

(19)

The complex innovations term, which has independent real and
imaginary components with variance , induces slow varia-
tion in the amplitude and phase perturbations over time, with
the shrinkage parameter ensuring the amplitude
remains bounded. This model has been introduced as the Prob-
abilistic Phase Vocoder (PPV) and exact inference is possible
using the Kalman smoothing algorithm (see [24] and supple-
mentary material). The cost of inference scales as , i.e.
linear in time, but quadratic in the number of filters.
The AR(1) prior induces a bandpass expected spectrum

which is suitable for many applications,

(20)

The center frequency is set by , and the bandwidth by .
The skirts of this spectral distribution are broad, but can be
sharpened by constructing a cascade of AR processes. However,
since this increases the computational complexity we focus on
the single AR(1) case here.
The samemodel can be defined in terms of STFT coefficients:

. Substituting this expression into (18) and (19)
yields:

(21)
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Fig. 1. Relationships between classical and probabilistic time-frequency anal-
ysis. A complex filter bank (cFB, ) is formed from a set of filters that define
the real part of the response (FB, ) and their quadrature pairs. The com-
plex filter bank is related to the short-time Fourier transform (STFT, )
via a frequency shift. The spectrogram can either be viewed as the square
magnitude of the STFT or the complex filter bank coefficients, which is the
Hilbert envelope of the filter bank. There are equivalent probabilistic versions
of these representations. For example, the probabilistic phase vocoder (PPV,
z) recovers complex filter bank coefficients and Bayesian spectrum estimation
(BSE, s) recovers the STFT. The magnitude of these representations is a prob-
abilistic spectrogram.

Thus, the real and imaginary parts of the STFT coefficients
evolve according to independent AR(1) processes. This model
is used in the Bayesian Spectrum Estimation (BSE) framework
of [23] (with ) which thus proves to be equivalent to
PPV. Exact inference is again possible by Kalman smoothing
(see supplementary material).
The PPV and BSE coefficients are related by a frequency

shift. If the noise is stationary , the posterior mean
recovered by the Kalman filter in each case is equal to that
returned by the associated filter bank or spectrogram. In this
sense, BSE and PPV can be identified as more general proba-
bilistic counterparts of the STFT and complex filter bank

. The amplitudes of these quantities (which are equal) give
the corresponding probabilistic spectrogram, or, equivalently,
the probabilistic version of the sub-band Hilbert envelopes.2

The relationships between classical and probabilistic time-fre-
quency analysis are summarized in Fig. 1. Matlab implementa-
tions of PPV and BSE, including methods for maximum likeli-
hood learning of the parameters and accelerated inference using
the FFT for the stationary noise case, are available from http://
learning.eng.cam.ac.uk/Public/Turner/GTFtNMF.

VI. COMBINING PROBABILISTIC TIME-FREQUENCY ANALYSIS
WITH NON-NEGATIVE MATRIX FACTORIZATION

In this final section of theoretical development, we examine
how probabilistic time-frequency analysis can be combined
with an analytic module defined on the time-frequency rep-
resentation to allow distributional information (including
information about the representational support and uncertainty)
to be propagated between the analysis levels.
For illustration, we focus on non-negative matrix factoriza-

tion (NMF, [26]) applied to a spectrogram. NMF finds a fac-
tored approximation which describes the spectrogram as a time-
varying sum of a small number of positively weighted spectral
basis functions. It is an increasingly popular algorithm in audio
analysis, being used, for example, for music transcription [27]

2As the spectrum of the AR(1) process is not band-limited the Hilbert enve-
lope of the corresponding filter bank output is not precisely equal to the spec-
trogram, although in practice it is often extremely close.

and source separation [28]. There are many versions of NMF.
Here we concentrate on a probabilistic version of Itakura-Saito
NMF (IS-NMF), related to that presented in [29].

A. A Probabilistic Interpretation of Itakura-Saito NMF

IS-NMF can be interpreted as a non-negative factored model
for the expected squared amplitudes of random STFT coeffi-
cients . Specifically, we construct the STFT coefficients
by scaling unit-variance random complex Gaussian coefficients

by non-negative amplitudes , possibly adding com-
plex Gaussian noise ,

(22)

The squares of the amplitude variables are formed by the
product of two sets of non-negative basis-functions: temporal
basis functions and spectral basis-functions ,

(23)

Intuitively, the IS-NMF model describes the STFT coefficients
as (complex) Gaussian noise which is modulated in specific
cross-band and cross-time patterns.
The Gaussian components of the model define an effective

likelihood for the temporal and spectral basis
functions ,

(24)

where . Optimization of this
likelihood to identify the temporal and spectral basis functions
is thus equivalent to minimizing the Itakura-Saito divergence
between the spectrogram and the basis-func-
tion approximation .
Further constraints may be imposed on the basis functions to

shape the properties of the factorization. For example, temporal
NMF (tNMF) adds a cost function to penalize temporal basis
functions that change abruptly [28]–[33]. We adopt an analo-
gous approach here, adding a Gaussian process prior on the log-
arithm of the temporal basis functions with an exponentiated
quadratic covariance function [19],

(25)

The hyper-parameter sets the typical time-scale of variation of
the temporal basis functions (measured in samples). The hyper-
parameter controls the mean of the marginal distribution of
the temporal basis functions, , which takes a log-normal
form. This distribution is sparse (the excess kurtosis is positive)
and the degree of sparsity is controlled by . We choose not
to include an explicit prior over spectral basis functions.
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B. Limitations of NMF on the Classical Spectrogram

The common use of NMF with pre-computed spectrograms
suffers from many of the limitations associated with step-wise
algorithms. First, NMF does not capture the dependencies in the
spectrogram introduced by the time-frequency analysis. These
dependencies are a consequence of the linear injective mapping
from signal to STFT which constrains the time-frequency co-
efficients to lie on a hyperplane [34]. Incorporating these con-
straints into the probabilistic model should improve prediction
(e.g. in denoising or restoration tasks) and learning. This incor-
poration could be explicit [35] or implicit, as here where we
switch from modeling time-frequency coefficients to the wave-
form.
Second, and similarly, NMF does not model the phase of the

STFT coefficients, even though these carry important informa-
tion with densely sampled narrowband coefficients. Extensions
such as the high resolution non-negative matrix factorization
model [36], [37] have sought to learn the phase dependencies in
the STFT output. Again, such dependence can also be implic-
itly handled by modeling the waveform directly. In particular,
complex phase interplay due to window-function modulation or
simultaneous excitation of overlapping filters by narrow-band
signals can then be handled automatically.
Third, it is difficult for NMF to accurately capture distortions

in the STFT coefficients arising from corruption of the signal.
Although NMF can capture independent noise in the STFT co-
efficients, as in (22), it is more challenging to handle complex
correlations. However, even simple forms of waveform noise,
such as independent Gaussian distortions, can result in corre-
lated noise in the STFT coefficients. Similarly, it is not com-
pletely clear how to compute the STFT coefficients when some
waveform data are missing. One option is to discard all coeffi-
cients where the window overlaps with the missing region [38],
but this can lead to very large segments of the spectrogram being
deleted. Again, direct waveform models should be able to limit
the impact of missing data to the samples that are directly af-
fected. This approach also has the advantage that once infer-
ence has been performed, restoration of the signal waveform is
simple and does not require iterative methods [34], [39].
Some previous work has sought to combine NMF with a

GTF-like approach to provide a model in the waveform do-
main [40]. However, in this proposal the signal was first divided
into frames, which were modeled as statistically independent
and stationary conditioned on the NMF coefficients. Although
the independence assumption led to efficient inference schemes
based on the STFT, the model was still unable to capture tem-
poral dependencies in the time-frequency coefficients between
frames. In the full combination of GTF and NMF we describe
below, the STFT window function emerges from assumptions
about the bandwidth of the time-frequency coefficients, and the
model is able to capture the relevant coefficient interactions.

C. Combining NMF and GTF Models

The probabilistic formulations of time-frequency analysis
and NMF are straightforward to combine to provide a time-fre-
quency structured model of the signal waveform. We refer to
this class of models (and associated algorithms) as GTF-NMF,
or with priors on the temporal basis functions, GTF-tNMF.

Fig. 2. GTF-tNMF model trained on speech. The model was trained on 3 s of
speech from a female speaker. Panel A shows the learned spectral fea-
tures in the NMF part of the model, W. These features are very sparse. Panel B
shows the learned filter responses in the GTF part of the model. Panel
C shows the filters which are activated by four example spectral features (cor-
responding to the rows in panel A indicated by arrows). Most spectral features
activate filters that are adjacent in frequency, but some activate more widely
separated filters (e.g. feature 12). (a) Special features W. (b) Filterbank .
(c) Example features.

The key step is to replace the independence of assumed by
probabilistic IS-NMF in (22) with the GTF assumptions of (12)
or (21). Here, we choose the BSE approach of (21), although
more general sub-band covariance functions could also be used
at greater computational cost. The combined model is thus
given by:

(26)

with the amplitudes, , being factored according to (23) as in
IS-NMF, and possibly subject to priors of the form (25) as in
tNMF. As before, the model could equivalently be formulated
in terms of sub-band processes , but we will not do so
here. We also defer to the supplementary material discussion
of equivalent hierarchical rather than product versions.
Whereas the GTF model describes signal waveforms as com-

prising a sum of independent band-limited Gaussian noise pro-
cesses, the GTF-tNMFmodels allow these processes to be mod-
ulated with specific cross-band patterns (described by ) that
vary over time (according to ) (see Fig. 2 for a visualization
of the parameters learned from a speech signal). In either case,
the overall model is non-stationary.

D. Learning and Inference in GTF-tNMF Models

As is common in NMF, we seek to learn temporal and spectral
basis functions by maximizing the likelihood:

(27)
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As with IS-NMF, the likelihood is formed by integrating out
the time-frequency coefficients. Collecting these coefficients to-
gether, , the log-likelihood is given by,

(28)

Since the coefficients are now dependent, the integral is harder
to perform. However, for fixed basis functions, the model
becomes equivalent to a linear-Gaussian state space model with
time-varying weights (given by the time-varying amplitudes
and sinusoidal basis functions). Thus, the likelihood, along
with its derivatives with respect to W, H and the time-frequency
parameters can all be computed using the Kalman smoother
(see supplementary material). The computational complexity is
determined by the cost of the Kalman smoother to be .
In practice, optimization of the likelihood by the conjugate
gradient algorithm converged far more quickly than alternatives
like Expectation Maximization (EM), as has been observed for
other models [41]. Temporal constraints are incorporated as
with standard NMF, by including the log-prior in
the cost function. Learning of the temporal basis functions then
returns the maximum a posteriori (MAP) rather than maximum
likelihood value.
The posterior distribution over the time-frequency coeffi-

cients given the signal, , is obtained by the
same Kalman smoother employed during learning. Intuitively,
this inference amounts to a time-frequency analysis using
time-varying filters that slowly adapt to the local spectral
content of the signal estimated by NMF.
Matlab implementations of NMF, tNMF and GTF-tNMF can

be obtained from the website http://learning.eng.cam.ac.uk/
Public/Turner/GTFtNMF.

E. Relationship to Existing Models

The GTF-tNMF model generalizes both GTF and tNMF
models. When the amplitude variables are constant, ,
it reduces to BSE. Although there is no similar limit in which
GTF-tNMF reduces to tNMF exactly, a tNMF-like approach
may be recovered when a modified EM algorithm is used
for training as follows: 1) the amplitudes are initialized to a
constant value so that the first E-step corresponds to computing
the STFT, 2) uncertainty in the E-step is discarded as NMF
does not treat uncertainty in the STFT coefficients (so-called
zero-temperature EM [42]), 3) the E-step is not updated, since
tNMF does not re-estimate the STFT coefficients. That is,
tNMF is similar to a single iterative M-step in zero-temperature
EM learning of the GTF-tNMF model (see supplementary
material). More generally, the GTF-tNMF model extends prob-
abilistic amplitude demodulation [16], [22], [43], [44] to the
multi-carrier setting. It is a member of the generalized Gaussian
scale mixture model family which has been used for image
[45] and video [46] modeling. The approach does not treat the
time-frequency representation as data [47], but rather as latent
variables that are inferred from the signal.

VII. EVALUATION

Although the objective of this paper is largely to lay out the
theory of probabilistic time-frequency analysis, the practical

performance of the new methods developed here was also eval-
uated on a denoising task and a missing data imputation task.
Performance of instances of GTF, NMF, tNMF and GTF-tNMF
model classes were compared to one another.
The models were tested on spoken speech from three male

and three female speakers in the TIMIT database (arc0, cpm0,
adc0 and aem0, vmh0, alk0) [48]. Speaker-specific models were
produced by training the models on 6 s of speech from each
speaker (sampling rate 16 kHz) and then testing on novel sen-
tences spoken by the same speaker (of duration 3–3.5 s) that
were either corrupted by white Gaussian noise or which con-
tained missing sections.
The GTF model used was BSE (21). The NMF models

were IS-NMF (22) and its temporal extension IS-tNMF (25).
The GTF-tNMF model used was the combination of BSE
with IS-tNMF as introduced in Section VI-C (25), (26). All
models used time-frequency components, but results
were found to be robust in range –50. For all of these
models, we tested versions using an unadapted time-frequency
representation with center-frequencies linearly spaced from
50 to 6000 Hz on a log-scale with full-width-half-maximum
bandwidths that were 5 percent of the center-frequency. For
GTF and GTF-tNMF models we also tested adapted versions in
which the filter center-frequencies, bandwidths and variances
were learned using maximum-likelihood and approximate
maximum likelihood respectively.
The models that included spectro-temporal modulation fea-

tures (NMF, tNMF and GTF-tNMF) each had com-
ponents. In the temporal versions, the time constants were set
to 47 ms ( samples), but performance on held-out
data was stable over a wide range of values ( –1000
samples) roughly corresponding to the syllable rate. The basis
functions learned using NMF were used to initialize tNMF. In
turn, these were used to initialize the GTF-tNMF model and to
set the hyper-parameters and . The basis functions were
then fine-tuned along with the filter parameters for the filter-
adapted version. The parameters learned for the filter-adapted
GTF-tNMF model for speaker vmh0 are shown in Fig. 2.

A. Denoising

In the denoising test, Gaussian noise of known variance was
added to the test signal and the models were used to reconstruct
the signal waveform and spectrogram. For the GTF model this
was simple since the denoised coefficients could be estimated
using (13) and then added together to reconstruct the signal. The
procedure was also straightforward for GTF-tNMF. The MAP
temporal basis functions were inferred (using 50 conjugate gra-
dient iterations) and then the waveform was reconstructed as in
the GTFmodels. NMF and tNMF provide denoised estimates of
the spectrogram coefficients , but they
do not provide an automatic method to reconstruct the signal
waveform. We used an iterative method which refines a signal
waveform until it matches the estimated denoised spectrogram.
Experiments indicated that the method of [39] scored better on
the evaluation metrics than that of [34]. In order for NMF/tNMF
to be used for denoising, the noise variance in the STFT coeffi-
cients must be estimated ( , see (22)). This was done by com-
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puting the STFT of Gaussian noise and evaluating the long-term
variance within each band.
Three metrics were used to evaluate the models’ re-

construction quality: the signal-to-noise ratio (SNR) be-
tween the reconstruction and ground-truth waveforms,

; the perceptual

quality metric PESQ [49], and the SNR between the log-
arithm of the reconstructed spectrogram sub-bands and
the ground-truth spectrogram, averaged over sub-bands

. The spectrogram was
computed using a Hamming window of duration 128 samples
with 50% overlap. The last criterion was chosen due to its phase
insensitivity and to favor the NMF models as NMF specifically
models the time-frequency representation and this measure is
not sensitive to noise introduced by the reconstruction step.
The denoising results are shown in Fig. 3. The trends for dif-

ferent speakers were similar and so results were averaged. Error-
bars indicate the standard error of the mean, but these errors are
dominated by the fact that all methods perform more poorly on
some speakers than others. The filter-adapted GTF-tNMFmodel
(red line) generally outperformed the other probabilistic models,
leading to average improvements (across all noise conditions
and speakers) over the next best method of 2.8 dB for waveform
reconstruction, 0.48 for PESQ and 3.2 dB for log-spectrogram
reconstruction. The unadapted GTF-tNMF model was slightly
better on average for the high-noise conditions, but this was not
consistent across subjects. The filter-adapted GTF model (blue
line) outperformed tNMF (green line) at waveform reconstruc-
tion, as NMF does not model phase and the iterative reconstruc-
tion method introduced noise. The snippets shown in the bottom
panels in the figure are taken from three different speakers and
are indicative of typical behavior. For sections with a spec-
trum close to that of the long-term average of the whole signal,
the GTF model performed similarly to the GTF-tNMF model
(bottom snippet), but more generally the ability of GTF-tNMF
to adapt to the local spectro-temporal statistics of the signal
allowed it to more accurately capture the local spectrum (as
for the high frequency content in the top two snippets). Both
methods performed more poorly on fricatives than on voiced
sections of speech because the phases are more variable and
therefore harder to predict. tNMF sometimes performed better
than the GTFmodel on the spectrogram reconstructionmeasure,
presumably because this closely reflected the optimized objec-
tive. In this context, it is perhaps surprising that GTF-tNMF
still consistently outperformed tNMF on this metric. NMF per-
formed poorly across all measures, as expected, as it does not
model temporal dependencies and therefore cannot smooth out
the noise. At very high noise levels the methods performedmore
and more similarly and the PESQmeasure began to break down.

Learning the center-frequencies, bandwidths and variances of
the time-frequency representation improved the GTF model re-
sults significantly (average improvements of 1.0 dB for wave-
form reconstruction, 0.28 for PESQ and 0.80 dB for log-spec-
trogram reconstruction, compare solid and dashed blue lines
in Fig. 3). The improvement was much more modest for the
GTF-tNMF model (0.33 dB for waveform reconstruction, 0.05

for PESQ and 0.36 dB for log-spectrogram reconstruction) pos-
sibly because GTF-tNMF could partly compensate for the mis-
specified time-frequency representation by adapting the spectral
basis functions accordingly. However, the magnitude of the ef-
fect of this compensation appears to be task-dependent, as filter
adaptation significantly improved GTF-tNMF performance on
the missing data task.
All of the experiments were conducted on a desktop machine

with an Intel i7-3930K 3.20 GHz (12 thread) processor and 64
GB memory. Test times for processing one second of audio
(processing times scaled linearly with the signal duration) were:
NMF 20 s, tNMF 50 s, GTF 0.05 s, GTF-tNMF 300 s. No deci-
mation was used and all of the time frequency coefficients were
maintained at the same sampling rate as the signal. All code was
implemented in Matlab with associated overhead for the loops
required for the Kalman filter.
Although the focus of this paper is on probabilistic models,

we also compared to three well-known audio denoisingmethods
for reference: block thresholding [50], Wiener filtering using
decision directed SNR tracking [51], and spectral subtraction
[52]. Of these methods, block thresholding performed best on
the metrics considered here, but the filter adapted GTF-tNMF
model significantly outperformed it (average improvements of
0.94 dB for waveform reconstruction, 0.46 for PESQ and 1.35
dB for log-spectrogram reconstruction).

B. Missing Data Imputation

In the missing data experiment, 0.62–19 ms gaps were in-
troduced into the high energy regions of the test signals (so as
to avoid placing gaps in silence). tNMF, GTF and GTF-tNMF
models were used to reconstruct the missing regions. NMF was
excluded from these experiments as its failure to model tem-
poral dependence precludes interpolation. For the remaining
models, missing data interpolation was handled as for noisy data
with the noise variance set to infinity in the missing regions
( and ). For tNMF these regions in the
spectrogram were extended to all affected spectrogram frames.
The missing data results are shown in Fig. 4. The same eval-

uation measures were used as in the denoising experiments,
with the SNRmeasures being computed only for the reconstruc-
tions of the missing regions rather than over the entire wave-
form. However, since the PESQ measure requires input signals
that are longer than the missing sections used here, this mea-
sure was computed on the whole waveform. The filter-adapted
GTF-tNMF model (red line) generally outperformed the filter-
adapted GTF model (blue line) with average improvements of
4.2 dB for waveform reconstruction, 0.57 for PESQ and 4.7 dB
for log-spectrogram reconstruction. The snippets shown in the
bottom panels in the figure are indicative of typical behavior.
Again the GTF-tNMF model made better interpolations than
the GTF model when the segment was a poor match to the
long-term spectrum of the signal. In the reconstruction exper-
iments, adapting the time-frequency representation led to sig-
nificant improvement for both the GTF (1.8 dB for waveform
reconstruction, 0.22 for PESQ and 1.4 dB for log-spectrogram
reconstruction) and GTF-tNMF models (2.7 dB for waveform
reconstruction, 0.34 for PESQ and 5.0 dB for log-spectrogram



6180 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 23, DECEMBER 1, 2014

Fig. 3. Denoising results. White Gaussian noise was added to clean speech signals from six speakers. Six probabilistic models and three classical denoising
algorithms used to reconstruct the signal and spectrogram. Reconstruction quality compared to ground truth was evaluated as a function of the initial quality using
three different measures: SNR of the waveform (top left), PESQ (top center) and spectrogram SNR (top right). The abscissa shows the quality of the noisy signal
and the ordinate shows the improvement (quality of reconstruction minus quality of noisy signal). The lines are averages across the six speakers and the shaded
regions around them are the standard errors. The lower panels show small sections of the reconstructions for three different speakers for the two noise conditions
indicated by open circles in the top panels. The higher SNR condition is shown in the left column. Each panel shows the original waveform (black line), the noisy
version (gray line) and the reconstructions from the filter-adapted GTF (blue line) and GTF-tNMF models (red line). Spectrograms are shown in the supplementary
material. For full details see Section VII in the main text.

reconstruction). Test times were the same as those reported for
the denoising experiments, except for the GTF method. Here it
was necessary to use the Kalman filter, rather than FFT-based
methods, which took 5 s per second of audio.

VIII. DISCUSSION

The preliminary experiments reported in the previous sec-
tion indicate that the probabilistic interpretation of time-fre-
quency analysis can translate into improved performance on
audio-denoising and missing data imputation tasks. The result is
promising, but the critical limitation of the methods developed
in this paper is their computational complexity, and in partic-
ular the quadratic scaling with the number of sub-bands. How-
ever, here there is room for optimism since signal processing has
many well developed methods for efficient implementation of
time-frequency analysis and there is scope to incorporate these
into approximate inferencemethods. For example, in themodels
considered here, the sub-bands are not decimated. In principle,
there is no reason why models based on multi-rate signal pro-
cessing could not be treated in the same way, an approach which
connects to popular approximation methods for Gaussian pro-
cesses based upon pseudo-points [40], [53], [54].

IX. CONCLUSION

This paper introduced a new way of framing time-frequency
analysis in terms of a probabilistic inference problem. The new
view led to methods for automatically adapting the time-fre-
quency analysis to the statistics of the signal (using maximum-
likelihood) and handling non-stationary noise and missing data
(using the Kalman filter). The perspective also connected to-
gether a number of existing models and algorithms thereby sim-
plifying the literature. Perhaps the most important benefit of
the new approach is that it enables time-frequency analysis to
be combined with down-stream processing modules that have
a probabilistic interpretation. We provide an example in which
non-negative matrix factorization was combined with a proba-
bilistic time-frequency model. The hybrid approach was evalu-
ated on two audio-reconstruction tasks involving denoising and
missing data imputation of speech. The hybrid model outper-
formed the component models in terms of waveform SNR, spec-
trogram SNR and a perceptual quality metric. Future work will
focus on reducing the significant computational complexity of
the new probabilistic time-frequency approaches by fusing ef-
ficient methods from signal processing with approximate infer-
ence techniques.
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Fig. 4. Missing data results. Short sections were removed from six speech signals from different speakers and five different probabilistic models were used to
reconstruct the missing sections. Reconstruction quality compared to ground truth was evaluated as a function of the duration of the missing sections (0.62–19 ms)
using three different quality measures: SNR of the waveform (top left), PESQ (top center) and spectrogram SNR (top right). The abscissa shows the gap duration
and the ordinate shows the quality of the reconstruction. The lines are averages across the six speakers and the shaded regions around them are the standard errors.
The lower panels show small sections of the reconstructions for the two missing data conditions indicated by open circles in the top panels. The shorter gap duration
condition is shown in the left column. Each panel shows the original waveform (black line), the missing section (gray shaded region) and the reconstructions from
the filter-adapted GTF (blue line) and GTF-tNMF models (red line). For full details see Section VII in the main text.

APPENDIX A
ESTIMATION IN PROBABILISTIC FILTER BANKS

We show that the posterior mean of a GTF model recovers
the Wiener Filter. Consider a vector of stacked time-frequency
coefficients, . The model (8)
can be written in terms of this vector,

(29)

where collects the prior covariance matrices,

...
...

. . .
...

(30)

Block diagonal matrices like this will be written as
. The weights

C select the contributing entries of at each time-point,
. Since the prior and the likeli-

hood are Gaussian, so too is the posterior distribution,
. The posterior mean

and the posterior covariance
are found using Bayes’ rule,

(31)

The posterior covariance consists of two terms, one from the
likelihood and the other from the prior. Neither of these two
terms depend on the signal and so the uncertainty information
is independent of the signal. The posterior covariance can be
rewritten where

. Substituting this expression for the
posterior covariance into the expression for the posterior mean
yields,

(32)

Concentrating on the estimates for the th component,
, we note that since the prior

covariance matrices are stationary, the expression reduces to an
acausal filtering operation,

(33)
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where the filter is given by the convolution between the prior
covariance and the inverse signal covariance,

(34)

This is the Wiener Filter [12]. The frequency domain view
is perhaps more intuitive. To derive it, we use the fact that
stationary covariance matrices can be written in terms of the
power-spectrum (7) and hence, .
The discrete Fourier transform of the filter is the ratio of the
component spectrum to the signal spectrum.

APPENDIX B
ESTIMATION IN PROBABILISTIC STFTS

This section proves the connection between GTF models
and the STFT. The model (12) can be written in the form of
(29) using a state vector, which plays the role of , formed
by stacking the real and imaginary parts of the coefficients,

.
The prior covariance becomes,

, and the
weights C select the contributing entries of at each time-point
and multiply them by the appropriate sinusoid,

(35)

The component matrices have sinusoids along the diagonals,
and .

The posterior mean for the probabilistic STFT coefficients is
recovered by substituting these parameters into (32). Collecting
real and imaginary parts, this gives,

(36)

That is, the posterior mean is obtained by filtering through the
inverse signal covariance, frequency shifting down towards the
base-band, and low-pass filtering through the STFT prior co-
variance. The order of these operations can be exchanged, for
example we can frequency shift the inverse covariance toward
the base-band, , to recover the STFT

(37)

Here the window function is the convolution of the frequency-
shifted inverse covariance matrix and the component prior co-
variance, and so will typically be low-pass,

(38)

obtained by frequency shifting the inferential filters to DC.

APPENDIX C
ESTIMATION IN PROBABILISTIC COMPLEX FILTER BANKS

We begin by connecting the probabilistic complex filter bank
to the probabilistic filter bank. The relationship between the
likelihood is simple and it has already been established, so here
the focus is on the prior over the complex filter bank coefficients.

We know the prior over the STFT coefficients is a zero-mean
Gaussian with covariance, . Combining this
with the frequency-shift relationship between the complex filter
bank and STFT, , we can compute the covari-
ance of the real and imaginary parts of the coefficients,

(39)

Focusing on the covariance of the real components, we note the
prior is equivalent to that assumed in the filter bank when the co-
variances are related by a frequency shift,

.
We now consider estimation. Most of the hard work has al-

ready been done in the last section because the posterior mean
of the complex filter bank is just a frequency shifted version of
the STFT,

(40)

where the filter is

(41)

The real part of the posterior mean is equal to the posterior mean
of the real filter bank derived earlier (compare to (34)). More-
over, the filter is equal to the frequency shifted window used in
the probabilistic STFT.
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