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Abstract

Most current approaches for learning latent variable models, such as variational
methods, require access to a normalized joint distribution. However, for models
that do not belong to the standard, widely-studied parametric classes or that are
derived from an undirected graphical model, the normalizer is often not readily
available. Here we generalize the score matching approach [1] to learn a wide class
of latent variable models based on joint exponential family (or maximum-entropy)
distributions with arbitrary sufficient statistic vectors. We derive a stochastic
gradient based optimization scheme that does not depend on the computation of
normalizing constants for either of the joint or the posterior densities.

1 Background

Latent variable modelling is a powerful tool for learning about the underlying structure of a data
set in an unsupervised setting. However, inference and learning are difficult in most complex (e.g.
non-Gaussian) models. Intractability often arises because normalising functions cannot be computed:
either for the posterior density, or the joint density itself, or both (a situation often referred to as
"double intractability").

In the following, we consider models where the joint distribution over observed (x) and latent
variables (z) is in the exponential family:

p(x, z) = exp(θTS(x, z)−A(θ)) , (1)
with a sufficient statistic vector S(x, z), natural parameters θ and log-partition function A(θ).

While the exponential family is a special class of latent variable models, it is also a very flexible one
that can be used to approximate many densities that are not themselves within this family. However, if
the sufficient statistic vector is of a non-standard form the log-partition function A(θ) often cannot be
expressed in closed form, making the model doubly intractable. For this reason, they are unsuitable
for variational methods such as expectation maximization (EM) where the maximization (M) step
optimizes the expectation of the normalized log joint likelihood.

Even though we do not have access to the likelihood function in these models, we can still compute
the gradient of the log-likelihood with respect to the parameters:

∇θ log p(x) = ∇θ log

∫
p(x, z)dz =

∫
∇θp(x, z)dz∫
p(x, z)dz

= 〈S(x, y)〉z|x − 〈S(x, y)〉x,z , (2)

where angle brackets represent expectations. To approximate the above expectations, one typically
has to sample from the corresponding distributions. However, sampling from the joint density may
be inefficient in practice (in part, because this joint is more often multimodal than is the posterior),
which leads to high variance in the gradient. Here we show how score matching makes it possible to
learn in such doubly intractable exponential family models, without the need to sample from the joint
distribution.
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2 Score matching for fully observed models

Score matching (SM) is an algorithm originally developed to fit statistical models without latent
variables that are not easily normalized [1], i.e. when the model density is only available up to
proportionality. SM circumvents the inaccessibility of the normaliser by minimizing a cost function
based only on the gradients of the log density.

In principle, SM matches the gradients of the true and model densities, according to the objective
function:

J(θ) = Ex
[
‖∂x log p∗(x)− ∂x log pθ(x)‖2

]
,

where p∗(x) is the true density and pθ(x) is the model density.

Hyvarinen [1] showed that minimizing the discrepancy between these score functions (∂x log p(x))
for the model and the true density is equivalent to minimizing the following cost function:

J̃(θ) = Ex

[
∂2x log pθ(x) +

1

2
(∂x log pθ(x))

2

]
(3)

≈ 1

N

∑
n

∂2x log pθ(x
(n)) +

1

2

(
∂x log pθ(x

(n))
)2

. (4)

Note that J̃(θ) depends on the true density p∗(x) only through the data points {x(n)}n=1...N and that
∂x log pθ(x) does not depend on the normalizer of pθ(x).

3 Score matching for latent variable models

3.1 Defining the score matching objective

Previous work analyzing the formal relationship between Gaussian restricted Boltzmann machines
(RBMs) and autoencoders [2] has shown how the SM cost function can be defined for energy based
models that incorporate latent variables z:

p(x, z) ∝ exp(−E(x, z; θ)) . (5)

The score function for such model can be expressed using an expectation with respect to the posterior
density, p(z|x):

∂x log pθ(x) = −
∫
p(z|x) ∂xE(x, z; θ)dz , (6)

and thus the SM objective can be rewritten as follows [2]:

JLV (θ) =
1

N

∑
x

∑
i

−1

2
〈∂xi

E(x, z; θ)〉2z|x + 〈(∂xi
E(x, z; θ))

2〉z|x − 〈∂2xi
E(x, z; θ)〉z|x . (7)

Here, the first sum is over the observations x ∈ {x(n)}n=1...N and ∂xi
denotes the partial derivative

with respect to the ith dimension of x.

3.2 Score matching in jointly exponential family models

The RBM models analyzed by [2] are “singly intractable” in that the latent variables are conditionally
independent given the observations and the posterior distribution is easily computed. This structure
allows the SM objective function (Eq. 7) to be written in closed form and thus optimized directly
with respect to the model parameters.

However, for continuous latent variables without conditional independence both the posterior dis-
tribution and the expectations in the SM objective are typically intractable. In these cases the SM
objective function is non-trivial to optimize since the posterior expectations appearing in JLV (θ) (Eq.
7) depend on the intractable normalizer of p(z|x).

The main contribution of this paper is to show that it is nonetheless possible to compute the gradients
of the SM objective for doubly intractable jointly exponential family distributions.
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The SM objective function for jointly exponential family models takes a form analogous to Eq. 7.

JExpF (θ) =
1

N

∑
x

∑
i

−1

2

〈
θT∂xiS(x, z)

〉2
z|x + 〈

(
θT∂xiS(x, z)

)2〉z|x + 〈θT∂2xi
S(x, z)〉z|x .

(8)

To compute the gradient of JExpF (θ) with respect to θ without knowing the normalizer of p(z|x) or
p(x, z), we make use of the following exponential family property:

∇θ log p(z|x) = ∇θθTS(x, z)−∇θAz|x(θ) = S(x, z)− 〈S(x, z)〉z|x . (9)

This relationship allows us to propagate the derivatives into the expectation integrals, arriving at
an expression for the learning gradient in which the posterior p(z|x) appears only in terms of its
expectations:

∇θJExpF (θ) =
1

N

∑
x

∑
i

−θT 〈∂xi
S〉z|x

[
Covz|x(S, ∂xi

S)θ + 〈∂xi
S〉
]

+ 〈(S − 〈S〉z|x)(θT∂xi
S)2〉z|x + 2〈∂xi

S∂xi
ST 〉z|xθ (10)

+ Covz|x(S, ∂2xi
S)θ + 〈∂2xi

S〉z|x ,

where we have omitted the arguments of the sufficient statistics vector S(x, z) for compactness.
These necessary expectations can be efficiently estimated using gradient-based Markov chain Monte
Carlo samplers in the posterior – typically a simpler sampling problem than that of sampling from
the marginal on the observed variables. Here we used the No-U-Turn sampler [3], a variant of
Hamiltonian Monte Carlo.

4 Experiments

We ran preliminary experiments using synthetic data from a rectified latent Gaussian model (RLGM),
with correlated Gaussian latent variables constrained to the positive quadrant and a Gaussian output
distribution:

p(z) ∝ N (z|0,Σ)
∏
l

Θ(zl) (11)

p(x|z) = N (x|Wz, σ2I) . (12)

where Θ(·) is the Heaviside function.

In general, the normalizer for the joint RLGM cannot be computed analytically, making it unsuitable
for learning by EM. On the other hand, the RLGM can be written in a jointly exponential family
form with the following sufficient statistics: S(x, z) = vec

[
xTx, xzT , zzT

]
. Thus we can use the

gradients of the SM objective to learn the parameters of the model: Σ,W, σ.

We chose both the latent space and the observation space to be 2-dimensional and used data generated
from the model for learning. Figure 1 shows contours of the empirical densities for the true and
learned model parameters for three different examples. Since the log-likelihood function is intractable
for the RLGM, we evaluated the the quality of the learned parameters by the total variation distance
between empirical data distributions:

δ(P,Q) = sup
x
|P (x)−Q(x)| . (13)

The distances were computed across pairs of data sets generated using the true and the learned
parameters. We compared these values to distances between data sets both coming from the true
model (Figure 2). Based on this metric, there was no significant difference between the learned and
true densities.

5 Discussion

The introduction of score matching for exponential family latent variable models makes it possible to
design and learn flexible latent variable models, directly incorporating domain-specific knowledge in

3



a b c

Figure 1: Contours of the data histograms generated using the true (solid lines) and the learned
parameters (dashed lines).
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Figure 2: Total variation distance between pairs of data sets generated from the true model (blue),
between pairs of data sets from the true and the learned model (green). The three sets of bars
correspond to the examples shown in Fig.1.

the form of the sufficient statistics. SM is also well suited to learn models where the original model
is normalized but the latent variables have a restricted domain, such as the RLGM examined in our
experiments. In higher dimensions normalizing constants for these models often become analytically
intractable.

As we have seen, SM can be applied to doubly intractable jointly exponential family models, and
(based on consistency results shown for standard score-matching) should thus converge to the
correct marginal distribution. No bias is introduced by resorting to fixed form approximations (e.g.
factored, Gaussian). Furthermore, by contrast to fully stochastic learning (such as the Boltzmann
machine learning rule, or contrastive divergence) Monte Carlo simulation is only required to estimate
expectations under the posterior distribution, typically a more tractable problem.

Thus, we expect this new approach to be useful in many settings where the parameters of a doubly
intractable model are to be learned.
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