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ABSTRACT

Perception is an ‘inverse problem’, in which the state of the world must be inferred
from the sensory neural activity that results. However, this inference is both ill-posed
(Helmholtz, 1856; Marr, 1982) and corrupted by noise (Green & Swets, 1989), requir-
ing the brain to compute perceptual beliefs under conditions of uncertainty. Here we
show that human observers performing a simple visual choice task under an externally
imposed loss function approach the optimal strategy, as defined by Bayesian probability
and decision theory (Cox, 1961; Berger, 1985). In concert with earlier work, this suggests
that observers possess a model of their internal uncertainty, and can utilise this model

in the neural computations that underlie their behaviour (Knill & Pouget, 2004). In our



experiment, optimal behaviour requires that observers integrate the loss function with an
estimate of their internal uncertainty, rather than simply requiring that they use a modal
estimate of the uncertain stimulus. Crucially, they approach optimal behaviour even
when denied the opportunity to learn adaptive decision strategies based on immediate
feedback. Our data thus support the idea that flexible representations of uncertainty are

pre-existing, widespread, and can be propagated to decision making areas of the brain.
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INTRODUCTION

The idea that perception should be viewed as unconscious inference dates back to Al Hazen’s 11th cen-
tury treatise on optics, and is still fundamental to vision science today. The challenge is to understand
how such inference takes place in situations that are both ill-posed (Helmholtz, 1856; Marr, 1982) and
noisy (Green & Swets, 1989). Considerable recent evidence suggests that in such situations human in-
ference can closely approach the performance of a Bayes-optimal observer (the probabilistic inferential
analogue to the ideal observer of signal detection theory). These demonstrations have largely focused
on sensory cue-combination tasks, both crossmodal (Ernst & Banks, 2002; Deneve, Latham, & Pouget,
2001) and unimodal (see, e.g, Jacobs, 1999; Hillis, Watt, Landy, & Banks, 2004; Knill & Saunders,
2003; Landy & Kojima, 2001), and on the effects of motor and sensory uncertainties on motor planning
(Trommershauser, Maloney, & Landy, 2003; Saunders & Knill, 2004; Kording & Wolpert, 2004; Saun-
ders & Knill, 2005; Trommershauser, Gepshtein, Maloney, Landy, & Banks, 2005; Tassinari, Hudson, &
Landy, 2006). There is much less evidence for Bayesian optimality in perceptual estimation tasks for
a single, visual quantity (but see Weiss, Simoncelli, & Adelson, 2002; Schwartz, Sejnowski, & Dayan,

2005; Stocker & Simoncelli, 2006; Landy, Goutcher, Trommershauser, & Mamassian, 2007).

The present study was designed to probe what might be the simplest context in which Bayesian



optimality can be demonstrated, and to rule out other explanations for apparently Bayes optimal be-
haviour. The task was a simple unimodal visual Vernier or ‘offset’ discrimination (Westheimer, 1979),
in which observers had to answer whether one stimulus was offset to the left or right of another. The
stimulus set was fixed, and thus any perceptual uncertainty was due to sensory noise and subsequent
processing. This enabled us to ask whether even for the simplest visual task the brain has an estimate
of internal uncertainty available to guide behaviour (see also Schwartz et al., 2005). There are two key
issues with this kind of behavioural Bayesian optimality experiment: (a) what optimality implies about
which aspect of the sensory noise distribution is represented, and (b) whether we can conclude that ob-
servers do not mimic optimal behaviour via another strategy which does not require the representation

of uncertainty. We attempt to address both these issues in the present study.

To probe the observers’” model of internal uncertainty we imposed an asymmetric loss function
on their Vernier judgments. In the face of such an asymmetry, the Bayes-optimal observer combines
information about their internal uncertainty, at least in the form of a likelihood ratio, with knowledge
about the loss function in order to arrive at an optimal decision (Cox, 1961; Berger, 1985). In any
such behavioural task information from a potentially uncertain distribution is used in the computation
of a decision, but here we show that information about the degree of uncertainty is combined with
the loss function, rather than simply an optimal estimate of the stimulus. This design provides an
alternative to the cue-combination approach, allowing us to assess whether observers use information

about uncertainty over a single visual quantity.

Similar external loss functions have long been used in the psychophysics literature to modify re-
sponse criteria, and thus explore the receiver operating characteristic (ROC) curve (Green & Swets,
1989). In these earlier experiments, however, observers were provided with trial-by-trial feedback about
their performance, potentially allowing them to adopt a feedback-driven threshold-adaptation strategy
that mimics the Bayes optimal strategy without requiring an explicit model of internal uncertainty.
Crucially, in our experiment, observers received only periodic cumulative feedback, thus ruling out the

use of such simple adaptive threshold schemes and strengthening the conclusions that can be drawn



from behavioural results.

METHODS

Observers

Four participants (2 male, 2 female) took part in the experiment. They had a mean age of 25.5 years,
were all right-handed, and had normal or corrected-to-normal vision. Three were entirely naive with

respect to the aims of, and theory behind, the experiment; and the fourth (observer 4) was an author

(LW).

Stimulus and Equipment

The stimulus consisted of a pair of vertically arranged Gabor-like patches, in which a sinusoidal grating
with a spatial frequency of 0.03 cycles/mm (0.21 cycles/° of visual angle), was multiplied by a Gaussian
envelope with a characteristic width (20) of 29.9 mm, truncated at a full width of 100 mm (14.4° of
visual angle) in the horizontal direction, and a rectangular envelope with a width of 10.3 mm (1.48° of
visual angle) in the vertical (see Fig. 1a). The pixel intensity in the two patches ranged from 0 to 255
(black to white) against a grey background of intensity 128. The separation of the two patches was
5.67 mm (0.813° of visual angle), and the stimulus appeared with the centre of the upper patch located
66.7 mm (9.56° of visual angle) either to the left or right of the fixation cross in a pseudorandomised
order. On each trial the entire lower patch (both envelope and grating) was displaced relative to the
upper patch by one of 20 pseudorandomised values, ranging from -15 to +15 pixels (positive numbers

indicating offsets to the right). Each pixel corresponded to 0.333 mm (0.0478° of visual angle).

Before each block of main trials, observers were given a short block of practice trials in which the



stimulus duration was 500ms. In main trials the stimulus duration was 160ms, which is shorter than
the latency for initiating a saccade (Carpenter, 1988; Hodgson, 2002), and was chosen to avoid fixation
of the stimuli. There was a randomized delay period of 750-1250 ms between the time of response and

the time of presentation of the next stimulus.

The experimental program was written in MATLAB (The Mathworks Inc, Natick, MA), using the

Psychophysics Toolbox extensions (Pelli, 1997; Brainard, 1997).

Procedure

Observers sat at a table in front of a computer screen, and placed their head on a chin rest such that
the perpendicular distance from their eyes to the screen was 400 mm. During the experiment, observers
fixated a central cross on the screen, and were asked to make simple Vernier judgments (Westheimer,
1979), reporting whether the lower of the two Gabor patches was offset to the right or left of the upper

one. The task is depicted schematically in Fig. 1a. Responses were given using a computer keyboard.

We imposed an asymmetric loss function to probe the observers’ representation of uncertainty. On
each trial observers were awarded points for a correct answer (‘rewards’), or had points taken away
for an incorrect answer (‘costs’). Observers were instructed, and given an incentive, to maximise the
cumulative number of points scored during the experiment. The loss function varied between blocks of
trials — the rewards for correctly answering ‘right’ (R,) or ‘left’ (R;) were constant and equal, but the
cost for incorrectly answering ‘right’ (C,) could be different from that for incorrectly answering ‘left’
(C). A similar asymmetric penalty approach has been used to probe uncertainty in recent studies of
motor planning (Trommershauser et al., 2003; Trommershauser et al., 2005). When the penalty for
answering ‘left” incorrectly is greater, a reasonable strategy would be to answer ‘right’ more often when
uncertain of the answer. This would result in a psychometric curve shifted in the direction of the higher

penalty, yielding a higher overall score (see Fig. 2a).
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Figure 1: Experimental design. a, On each trial a stimulus consisting of two vertically arranged
Gabor patches was briefly flashed, and the observer pressed a key to say whether the lower patch was
offset to the left or right of the upper patch. Participants were asked to maximize their score, with
varying numbers of points being awarded for a correct answer (‘reward’) and deducted for an incorrect
answer (‘cost’). Participants received only periodic feedback about their performance, in the form of
a cumulative score every 15 trials. b, Schematic of the quantities and transformations involved in the
construction of the Bayes-optimal observer. The stimulus x produces a stochastic neural response. The
observer transforms this neural response into a belief distribution (see (1)), and then uses this belief
to decide which answer to give in the face of varying costs and penalties (see (2)). The Bayes-optimal
observer specifies the optimal forms of transformations (1) and (2), thereby providing a behavioural
benchmark of optimality.

We used five different sets of costs and rewards, listed in Table 1. The final column in this table
shows, qualitatively, the relative shift we would expect for each set of costs and rewards according
to the strategy just described. In the Results section we describe an optimal Bayes observer analysis

which confirms, and quantifies, the optimality of this ‘curve shifting’ strategy.

The five different sets of costs and rewards were presented in a counterbalanced, pseudorandomised



Table 1: Values of a corresponding to costs and rewards

R, =Ry C C. « curve shift
+20 -10 -50 0.3 —
+20 -20 -40 04 —
+20 30 -30 0.5 0
+20 -40 -20 0.6 —
+20 -50 -10 0.7 —

block design. This was repeated in two experimental sessions on separate days, which provided a
further test of our hypothesis — the level of observers’ internal uncertainty might be expected to differ
in the two sessions, due to perceptual learning, consolidation or extrinsic factors. If observers were to
behave optimally in two sessions with different noise distributions, this would support the claim that

they carry a flexible representation of current internal uncertainty.

Each block consisted of a short practice session (60 trials), and a main session (260 trials). In the
main session feedback on performance was provided only every 15 trials, when observers were shown
the total score they obtained in the last 15 trials, as well as their cumulative total in the block so
far. The sparseness of this feedback made it unlikely that observers could learn an optimal internal
threshold by an adaptive threshold adjustment strategy. Control analyses (see Results) support this
view. In the practice session, observers received trial-by-trial feedback to familiarize them with the
cost values for that block, and encourage consistent performance in the main trials. However, the
practice stimuli were presented for 500ms rather than 160ms, which made the task much easier. As the
effective internal noise should therefore be different for the practice stimuli, feedback in the practice
session could not be used to adaptively learn a response threshold relevant to the main-block trials.
In addition, the easier stimulus meant that there were very few trials on which observers failed to give
the correct answer, implying that there should have been very little uncertainty in their belief. This
further limits the likelihood that they could use the practice session to test alternative strategies for

dealing with the loss function.



An instruction screen appeared at the beginning of each block, and after each feedback screen,
reminding observers of the task and costs for that block. After the experiment was finished, observers
were debriefed using a simple questionnaire. Participants were paid according to ethical guidelines, with
a score-related bonus in gift vouchers to motivate concentrated performance and encourage observers

to try to maximise their total score.

RESULTS

Bayes Optimal Observer Analysis

The final column of Table 1 shows the relative shift of the psychometric function we might expect for
different settings of the costs and rewards, under an intuitive strategy for maximizing score in which
observers shift their psychometric function in the direction with the higher penalty. A quantitative
Bayesian observer analysis was used to confirm and quantify the optimality of this strategy. Fig. 1b
depicts the quantities involved in this analysis. The visual stimulus, with a Vernier offset x, evokes a
stochastic neural response, on the basis of which the observer constructs an internal belief about the
value of the stimulus offset (step (1) in Fig. 1b). This belief is then used to guide a decision about the

appropriate response (step (2)).

An individual observer’s responses to repeated presentations of the same visual stimulus may vary.
We assume that this variability arises from at least two separate sources of noise. The first source
perturbs the observer’s sensory estimate of the Vernier offset by a random additive increment. This
creates a noise distribution centred on the stimulus, the uncertainty due to which is reflected in the
observer’s belief. The second source affects the observer’s decision directly, in a way that is independent
of the value of the stimulus offset. We may think of this as ‘decision noise’, or as the result of motor
errors or of lapses in attention. We do not expect this source of variation to affect the observer’s

internal belief about the value of the offset, and so it is neglected in the theoretical development below.



When modelling experimental responses, however, we introduce a separate ‘lapse rate’ parameter, so
that these stimulus-independent errors do not corrupt our estimate of the stimulus-centred noise. Note
that we do not distinguish between stimulus-centred semsory noise, and any stimulus- or estimate-
centred decision noise which might, for instance, arise as sensory information is integrated with the
loss function. Our definition of Bayesian optimality in decisions thus refers to all stimulus-centred
variation. In concert with earlier analyses, we do however assume that the majority of this variation

is ‘sensory noise’, and so treat and refer to it as such.

In keeping with the standard psychophysical treatments of sensory noise, our model assumes that

2 around

the internal estimate of the Vernier offset, &, is normally distributed with constant variance o
the true stimulus offset: p(¢|x) = N(&;2,02) (Thurstone, 1927; Green & Swets, 1989). We test
this assumption below, showing that the psychometric curves were all well fit by cumulative normal

functions, with a constant slope parameter for each observer in each session. However, our observers

each displayed a systematic bias in their responses; this will be addressed later.

In the Bayesian view, the observer’s belief about the Vernier offset = is not limited to a single
estimated value €. Instead, £ parameterises a belief distribution over all possible values of z that are
consistent with the sensory evidence. The optimal form for this belief distribution is given by Bayes

rule:

p(Elz) - p(z)

p([¢) = 2

(1)

We assume that the prior belief about z is uniform, which implies that this optimal belief will
also be Gaussian, with the same variance as the sensory noise distribution, and mean given by ¢:
p(z|€) = N(x;€,0?) (we might also have assumed a broad zero-centred Gaussian prior, although then
the variance of the posterior belief would have been slightly smaller than that of the sensory noise, for
which there was no evidence in the data). In fact, if observers are able to learn the true distribution of

x, their prior (and therefore posterior) belief should take the form of a series of delta functions located
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at each discrete offset value used. In addition, for extreme values of x, the stochastic response £ may
fall outside the range of possible values, distorting the posterior. However, variability in decisions at
the extremes was minimal, so that any divergence from normality at those points would have little
impact on estimates of sensory variance. And within the central range, where decisions did vary, the
values of the stimulus offset used were very closely spaced and we saw no evidence that observers were

aware of the discretization.

The observer must base his or her response on the belief distribution (step (2) in Fig. 1b), and
Bayesian decision theory gives the optimal form of this response (see Berger, 1985; Maloney, 2002;
Yuille & Bulthoff, 1996). The observer should answer ‘right’ if and only if, on the basis of his or her
belief, the expected (mean) reward (I') for answering ‘right’ is greater than the expected reward for
answering ‘left’: i.e. if I'[‘right’] > I'[‘left’]. In this simple case, the expected reward is obtained by
adding together the product of the probability of the answer being correct times the corresponding
reward, and the probability of the answer being wrong times the corresponding cost. These two
probabilities express the degree of the participant’s belief that the lower patch fell to the right or left
of the upper patch, and are given by the areas under the belief distribution p(z|€) that fall of to the

right and to the left of 0 respectively.

P(answer ‘right’) = P (T'[‘right’] > T'[‘left’]), (2)
0 0

eright] = [ plale) Re do+ [ plale)-C, do. 3)
o) 0

I[left] = /0 palé)-Codot [ plale) Ry do (4)

With some rearrangement, and combination of the integrals, we arrive at an expression in which the
observer’s belief that the Vernier displacement was to the left is compared to a single quantity, «, that

includes all the cost and reward terms. The values of « for each set of costs and rewards used in our
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experiment are given in Table 1.

A - 0 / / . Cl_Rr
T(JI,OZ) - P p(l“‘f) Cll‘ <a ’ a Cl_R +C _Rl’ (5)

where we have introduced the notation A, (z, «) for the probability that the Bayesian observer answers
‘right’, given a stimulus offset x and cost structure «, and 2’ is a dummy variable of integration over

the observer’s belief.

It is useful at this point to introduce a normal density function which has the same width as
p(&|z) and p(x|§), but zero mean: f,(¢) = exp(—Cz/Qaz)/\/%ra?. Thus p(¢|z) = f,(§ — x) and
p(x|€) = fo(x —£), and the corresponding cumulative function is ®,(¢) = [°_ ¢ f5(¢") d¢’. Then,

Ap(z,0) = P( fo(2' =€) da’ < oz) (6)
= P ( ) d¢ < a> [where ( = 2’ — ¢] (7)
= P(®,(-§) <a) (8)
= P(¢> -2, (a)). (9)

The probability that ¢ is greater than —®_ () can then be found by integrating the assumed sensory

noise distribution:

Ara) = [* plele) de (10)



12

If we again insert ®, (and exploit its symmetry) we obtain the following easily computed expression

for the optimal probability with which the observer should answer ‘right’ for a given value of o and x;

Awa) = o ) e (11)
4351 ()

=/ f(¢') d¢ [where (' =2 — ¢ (12)

= O, (z+ D, (). (13)

The only unknown quantity in Equation 13 is the standard deviation, o, of the zero-mean cumulative
Gaussian distribution ®,. This plays two roles in our Bayesian analysis; it is both the width of the
sensory noise distribution, and, under the assumed uniform prior, the width of the consequent belief
distribution. Under the symmetric cost condition (o = 0.5) the observer’s decision reflects only whether
the mean of his or her belief lies to the left or right of 0 (according to sensory noise), and is independent
of the width of the belief distribution. Thus, following the standard psychometric approach, we estimate
the variance of the noise by fitting a psychometric function based on a cumulative Gaussian to the

behavioural data, with the slope of the function providing an estimate of o.

The analysis of the Bayesian observer expressed in Equation 13 makes two predictions: as a changes,
the psychometric curves (1) retain the same cumulative-normal shape, with the same width parameter,
and (2) translate by an amount ®_!(«). Fig. 2b shows an example of the psychometric function fit to

the data for one observer in one session, and shifts with changing « are clearly visible.

The fitting procedure, and the methods used to test these predictions, are detailed below. Briefly,
we first verified that the shape of the psychometric function did not change with o by Bayesian model
selection. We then tested the agreement of the observed curve translations with those predicted by the

optimal Bayesian analysis. We fit psychometric functions to the data and measured the centre p of
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Figure 2: Evaluating behavioural optimality. a, Illustrates the qualitative prediction for opti-
mization of the loss function - observers should give the answer with the lower penalty when uncertain,
resulting in a shift of the psychometric curve in the direction of the higher cost. b, Example data
from one observer in the five different o conditions. Crosses show data points, and the smooth lines
show psychometric functions fit to the data, with the slope constrained to be the same for each «
condition c, Hlustrates the procedure for measuring observed shifts, once psychometric functions have
been fit to the data from the five a conditions. d, Illustrates the procedure of taking the inverse value
of the psychometric function at the values of a used in the experiment. The optimal shift between two
psychometric curves is then given by the difference between the two corresponding inverse values.

each, i.e. the value of x at which the fitted psychometric curve gave equal probabilities of each answer,
given by the mean of the underlying Gaussian (see Fig. 2¢). We then used the maximal slope of the

psychometric functions as a measure of o, and inverted Equation 13 to recover the predicted optimal
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values of the centre i} for each cost asymmetry value a; (see Fig. 2d).

05 = @1+, " (ay)),
W = ®,'(0.5) — o, (ay),

W= =07 (ay). (14)

Fitting the Psychometric Function

The pattern of observers’ responses was modelled by a cumulative normal psychometric function incor-
porating a random lapse term (see, e.g., Wichmann & Hill, 2001), and binomially distributed response
counts. We used 20 different true offsets x;, and 5 different cost asymmetries «;, with N;; trials in
each condition. The number of trials n;; in which observers answer ‘right’ for stimulus offset x; and

cost distribution «;, is assumed to be drawn from a binomial distribution:
Ni; i s
P(nij) = (nz) pif (1= pig)o, (15)
ij

In the absence of lapses, the optimal probability p;; should be given by A, (z;, ;) in Equation 13, which
has a cumulative normal form. To fit the data, we therefore also assumed an underlying cumulative
Gaussian shape, parameterised in terms of the standard error function, such that the parameters p;

and p; gave the centre and maximal slope, respectively, of the curve under the jth value of a.

1+ erf(y/7 - p; - (@i — g 2 7 _
p;zjo lapse 1+ er (ﬁ g] (z :U’J)); erf(z) = / e tzdt. (16)
0
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However, it is likely that observers occasionally make errors due to stimulus-independent (but possibly
cost-structure-dependent) sources such as ‘decision noise’, motor response errors, or moments of inat-
tention (Green & Swets, 1989; Wichmann & Hill, 2001). In this case they might give either answer
with equal probability, effectively setting p;; in such cases to % rather than the value given above. We
took the probability of such an event occurring in any trial to be €; (the ‘lapse rate’ parameter referred
to above), leaving the probability that the response was instead based on the cumulative Gaussian
function as 1 — €j;

1+ erf(y/m - pj - (x5 — py))
2

pij = (L —¢)- teg (17

There are thus three parameters, all of which potentially depend on a: the centre u; and slope p; of
the cumulative Gaussian, and the random error or lapse rate €¢;. An estimate of the slope parameter

p; provides an estimate of the width of the underlying Gaussian, according to

1
V2mp

(18)

g =

When fitting the model to the data, we used Bayesian model comparison to determine whether the
slope and lapse rate parameters should be shared between different o conditions, or fit separately (see

below).

Shape of the Psychometric Curves

The Bayesian analysis predicts that, as the loss function varies, the psychometric curve will shift, but
will retain both the cumulative Gaussian shape, as well as the same maximal slope. We tested both of

these predictions.

To ask whether the cumulative Gaussian model with allowance for lapses (Equation 17) was appro-

priate for the data at all values of o, we examined the residual error between the measured response data
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and the best fit psychometric curve. Fig. 3 shows the deviance residuals (McCullagh & Nelder, 1989;
Wichmann & Hill, 2001) for all four participants, for each of the two sessions. The deviance residual is
used to measure discrepencies in terms of the underlying likelihood model; in effect, it rescales the error
by the locally predicted variance. Based on the total deviance, the cumulative normal model could
not be rejected by a degrees-of-freedom-adjusted y2-test, nor by a Monte-Carlo-based exact-binomial
test (Wichmann & Hill, 2001) (p > 0.3 and p > 0.8 respectively, after correcting for multiple tests; in
neither case could the distribution of p-values over the multiple tests be distinguished from uniform;

Kolmogorov-Smirnov test, p > 0.05).

There is also no systematic trend evident in Fig. 3 to suggest that the shape of the psychometric
function was inappropriate for any value of «, for any observer. This was confirmed using a runs test
for randomness of the sign of the residuals, by which the hypothesis that the scatter of residuals was
random could not be rejected (p > 0.7 after multiple-test correction, p-values uniform by K-S test,

p > 0.05).

The second prediction was that the slope of the psychometric curve is also independent of the
value of «; that is, the parameters p; in Equation 17 are, in fact, all the same. Visual inspection of
the data supported this assumption (see Fig. 2b for an example). To assess this quantitatively, we
employed Bayesian model selection to ask which of the various models with either shared or varying
slope and lapse parameters was more probable, given the data. Details of this procedure are given in
Appendix A.1, along with results in Table 2, and the fitted parameter values for the best model in
Table 3. As predicted, for all observers, the best model had a single slope parameter for all & conditions
within each session. However, lapse rates did vary with « for two observers, whilst being constant for
the other two. The lapse rate captures decision noise, motor errors, and moments of inattention, and
it seems reasonable that, whilst the internal uncertainty is the same for each « value, such random

lapses might depend on the costs.
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Figure 3: Deviance residuals between model and data. Deviance residuals between the model

fitted to the behavioural data and the data points, for each observer in each of the two sessions.
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Optimal and Observed Shifts

Consideration of the various models thus showed that the behaviour of each observer in each session
was best modeled by a family of curves of the same shape and slope, but with centres depending on
. We next asked whether the observed shifts in the curve centres were aligned with the predictions of

the ideal Bayesian observer model.

In at least one regard, observers were not optimal. The Bayesian prediction for the curve centre
in the a = 0.5 condition is always 0. However, for all observers, the curve centres for the a = 0.5
condition were non-zero. Two observers showed a rightward bias in both sessions, and two showed a
leftward bias in both sessions (see Table 3 in Appendix A.1), and we found no evidence that the bias
was absent in the asymmetric penalty conditions. A similar directional bias has been reported widely
in psychophysical studies (Green & Swets, 1989). In the analysis below we treat the directional bias as
a constant constraint on observers’ computations, and attempt to separate this form of non-optimality
from the novel question of whether observers were able to integrate correctly the loss function with an
estimate of internal uncertainty. Thus we compute shifts as relative to the biased centre for a = 0.5,

yielding ‘predicted relative shifts’ for the other four o conditions;

Ay = 5 —pos = O, (a) = ®,1(0.5) = B, (o). (19)

The comparison between observed and predicted relative shifts for the two sessions is shown in Fig. 4a
and b. Note that both observed and predicted shifts derive from the same set of data, as the predicted
shifts are based on an estimate of internal uncertainty derived from the slope of the psychometric
curve. Thus estimation errors due to limited sampling may be correlated, and independent error bars
for the two quantities cannot be drawn. Instead, we employed a bootstrap procedure to estimate the

covariance of the errors in the two derived quantities, shown by the ellipses in Fig. 4a and b. A linear
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fit to the observed shifts was computed by minimizing weighted squared error in the plane with respect

to these covariances, and is also shown in Fig. 4a and b.

There is a strong qualitative match between measured and predicted relative shifts. Observers shift
their psychometric curves in the right direction, and by an amount that is proportional to the size of
the penalty asymmetry. This is in contrast to the simple strategy verbally reported by all observers,
which was to give the answer with the lower penalty whenever they were unsure. Interference from this
cognitive strategy might help to explain the non-linearity of the observed shift plot in Fig. 4a and b —
the two leftward and two rightward shifts are more similar than in the quantitatively optimal scenario.
However, if observers’ behaviour was dictated by this simple strategy, we would expect the shifts to
be of the same magnitude regardless of the size of the penalty asymmetry. In fact the shifts are

significantly larger (p < 0.01 under a 2-tailed paired-samples t-test) for the greater cost asymmetries.

It has been observed previously that observers are reluctant to behave optimally when this entails
an extreme bias in their responses (Green & Swets, 1989). To try and avoid such psychological effects
we chose asymmetries which demanded a relatively small shift in the psychometric curve. In general,
observers tended to over compensate for the penalty asymmetry (see Fig. 4a,b), but for most sessions a
smaller over-compensation was seen for larger « values, as would be predicted by such an effect. This

could also have contributed to the non-linearity in the observed shifts plot.

Optimality of achieved score

Although all observers showed the predicted pattern of shifts, the quantitative match was not exact.
This is perhaps unsurprising given the requirement to integrate implicit knowledge of internal uncer-
tainty with high level cognitive instructions. This raises the issue of which behavioural measure should
be used to statistically test for optimality. In the present study, observers are asked to maximize their
point score, not to work out what the optimal shift of the curve should be. It is possible that the func-

tion relating curve shift to total score is relatively flat in the region of the maximum score obtainable,



(2]

20

Session 1
a Session 1
e 40
observer 1 observer 2 observer 3 observer 4 = .
g - 6 8 , 4 / 6 / X 35 . SI
E0 |4 ’ 4 d 3
@ g 2 4 : 2 S 30 ?
salo 0 0 0 ]
Q4 |2 -4 -2 -2 o
cE |4 - -4 2 2 I
S |6l ) 4l 6L 4 ‘© 27
a® 6-4-20 2 4 6 -8 -4 0 4 8 -4 2 0 2 4 6-4-20 2 4 6 a ¥
o > O 20 %
Predicted relative shifts (pixels) 20 25 30 35 40
Predicted score (x103)
b d Session 2
Session 2
A 740 X
° observer 1 observer 2 observer 3 observer 4 mg I
25| K T S8 -
© = |4 7 o A4 o @ 1
- © 4 2 oo o
9 X 2 7 ¥ 2 o 4 I
2|0 0 0 W/ 0 g 30 ki3
O |2 . -4 ) ,f -2 -
cE |4 s o -4 o} 2
o |7 -8 4l ol £ 2
<D B 6 S B 6L/ T I
Q -6-4-20 2 4 6 8 -4 0 4 8 -4 -2 0 2 4 -6-4-20 2 4 6 o -
© O 2 )
7

Predicted relative shifts (pixels) ~"'20 T E—

Predicted score (x103)

Figure 4: Comparison of predicted and observed behaviour. a, b, Predicted and observed
relative shifts in the centres of the psychometric curves, for the first (a) and second (b) sessions. If
performance is quantitatively optimal (up to a constant bias), the data points (grey circles) should lie
on the dotted identity line. The ellipses show the 20 covariance expected due to sampling errors, and
the dashed line is a linear fit to the data points, computed by minimizing the weighted squared error in
the plane with respect to these covariances. All observers showed the predicted pattern of shifts, but
were not quantitatively exact. ¢, d, The mean and variance of the score that would be obtained if each
observer behaved optimally given the directional bias was calculated for the first (c) and second (d)
sessions (see Appendix A.2). Crosses plot predicted against observed score, with observers numbered
as in a and b. The identity line again represents optimal performance (given the directional bias), and
the vertical bars show one standard deviation from the mean. All points are within this range except
for one observer in the first session. Filled circles show the mean score expected if observers failed to
shift the centre of their psychometric curves from the biased centre of the curve for a = 0.5, and all
such points lie outside the predicted range.

such that there is little benefit from an exact quantitative match to the predicted curve shifts.

Our model of the psychometric curve was a composite function based on an underlying cumulative
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Gaussian, which gives the probability of answering ‘right’ for a particular value of the stimulus z and
« (see Equations 15 & 17). We used this model to compute the mean and standard deviation of the
score observers would have obtained had they shifted their psychometric curves by the optimal amount
from the biased mean of the curve for the & = 0.5 condition (see Appendix A.2 for details). We were

then able to ask whether the true score was statistically distinguishable from this predicted value.

Scores for all observers fell within one standard deviation of the predicted score in the second session
(Fig. 4d), as did all but one in the first session (Fig. 4c). The failure of this one observer to obtain a
score in this range in the first session could be due to cognitive interference or motivational issues. To
test the sensitivity of total score as a measure of optimality, we computed the mean score that would
have been obtained had participants failed to shift their psychometric curves from the biased central
point. All such points lay outside the predicted range, as shown in Fig. 4c and d. This analysis suggests
that, whilst not quantitatively optimal, the observed shifts were sufficient to obtain a score well within

the predicted range.

Changes in performance

As described above, each observer participated in two experimental sessions on different days. We
predicted that the level of observers’ internal uncertainty might have differed between the two sessions,
due to perceptual learning, consolidation or extrinsic factors. If true, this would provide a further test
of the hypothesis that observers’ behaviour is driven by internal beliefs that accurately reflect their
sensory noise. If that sensory noise were to change, their beliefs, and thus their behaviour under the

asymmetric loss function, should change concomitantly.

We first established that the level of observers’ sensory noise did, in fact, appear to change, as would
be reflected by a change in the slope of the psychometric curve. We used Bayesian model selection (see
Appendix A.1) to quantitatively compare models with the same slope in the two sessions to models in

which the slope could differ. Table 2 shows that the model with different slopes in the two sessions was
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overwhelmingly preferred in all cases, although, within each session, the model with the same slope
for different loss functions was still the most probable. Thus, despite the apparent change in sensory
noise, the basic prediction that the shape of the psychometric curve is unaffected by the loss function

is confirmed.

In general, the slope of the psychometric curve was steeper in the second session, and observers’
behaviour altered in accordance with the predictions of the Bayesian analysis. This can be seen as a
trend towards smaller shifts in the second session (compare Fig. 4a and b), and towards higher scores
(compare Fig. 4c and d). In particular, the three observers whose scores were in the predicted range
in both sessions maintained this performance in the face of a clear change in apparent sensory noise.
Furthermore, had the three observers who showed substantial changes in accuracy between the two
sessions retained the same relative shifts in the second session as in the first, their expected scores would
have fallen outside the optimal ranges shown. This suggests that observers were indeed adopting an

efficient strategy, taking into account both the level of uncertainty and the external loss function.

As discussed in the Methods, we did not attempt to distinguish between stimulus-centred sensory
noise, and any stimulus-centred decision noise not modeled by the stimulus-independent lapse-rate
parameter. However, we assumed that the majority of this stimulus-centred variation was in fact due
to sensory noise, and treated it as such. If this assumption is incorrect, the measured slope may
incorporate stimulus-centred ‘decision’ noise associated with integrating the loss function with the true
uncertainty, and thus an increase in slope might reflect an improvement in task performance rather
than a change in internal uncertainty. However, inspecting Fig. 4a and b shows that for only one
observer did the slope of the linear fit to performance (the dashed line) get closer to the identity line
in the second session, supporting the assertion that the internal uncertainty was changing, rather than
the ability to perform the task. Indeed, the observer whose fit improved was the same observer who
obtained a score outside the predicted range in the first session, and it seems possible that she did

change her strategy.
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Controls for feedback

In order to use an ideal observer analysis to conclude that observers represent and compute with
the relevant uncertainty, it is crucial to rule out alternative strategies for obtaining near optimal
performance that do not require such knowledge. In the present task, it is possible that trial-by-trial
feedback, had we provided it, would have allowed observers to incrementally adjust a internal threshold
(perhaps in proportion to the size of the penalty) until their payoff was optimized. This could have led
to psychometric curves that looked very much like those we predict from the analysis above. Indeed,
classic Psychophysical studies have used a similar paradigm with trial-by-trial feedback to demonstrate

this kind of ‘optimal’ criterion selection (Green & Swets, 1989).

Previous studies of uncertainty that have used trial-by-trial feedback have dealt with a similar
potential confound by looking for evidence of incremental threshold adjustment in the data (Trom-
mershauser et al., 2003; Trommershauser et al., 2005). The alternative strategy, that of withholding
feeback, was adopted by Kording and Wolpert (2004) in a sensorimotor task, although without any
asymmetry in costs. Here, we chose to provide only occasional (every 15 trials) cumulative feedback
during the testing blocks (see Methods). This provided motivation, but did not allow observers to

behave optimally via trial-by-trial threshold adjustment.

However, even such scarce feedback does provide some limited information about sensory noise,
so we performed control analyses to confirm that the magnitude of the cumulative feedback had no
measurable effect on behaviour. First, we fit a psychometric curve to all data which followed ‘good’
feedback (i.e. a cumulative score for the preceding 15 trials which fell above the 75th percentile), and
to all data which followed ‘bad’ feedback (i.e. a cumulative score for the preceding 15 trials which fell
below the 25th percentile). There were no feedback-related trends in the data (data not shown). To test
for effects that might have been lost in averaging in this technique, we then examined whether ‘good’
feedback reinforced the direction of any changes in threshold, and whether ‘bad’ feedback reversed

the direction of any such changes. If observers were modifying their behaviour in this way, we would
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expect a positive correlation in threshold changes following ‘good’ feedback, and a negative correlation
following ‘bad’ feedback. However, we observed only a slight negative correlation in both cases (data

not shown).

DISCUSSION

Uncertainty inescapably affects almost all domains of brain function, arising due to variability in
external processes, due to the under-constrained nature of many problems of perceptual inference and
motor planning, from variability in motor execution, and due to noise in sensory processing. A long-
standing and fundamental question in neuroscience is whether, and if so how, the brain takes account

of this uncertainty in the course of perception, decision making, action and learning.

Our results address one aspect of this question. We show that observers possess an internal model
of the visual processing uncertainty that affects their Vernier judgments, and that they use this model
to guide their decisions. Crucially, observers’ decisions are sensitive to uncertainty even when they
do not receive significant feedback about their accuracy or score. This indicates that the uncertainty-
sensitive decision strategy is not learnt during the experiment itself, but is instead based on a pre-
existing, implicit model of current internal uncertainty, that is presumably available at all times. In
addition, observers’ decisions, and thus their models of internal uncertainty, track the changes in
uncertainty which are associated with varying levels of sensory noise in different experimental sessions.
Taken together, these observations suggest that the processing of uncertainty is a fundamental aspect
of sensory computation. Furthermore, in our experiment observers must combine knowledge of this
uncertainty, rather than simply a modal estimate of the stimulus, with an externally imposed loss
function to perform well. Our results therefore also indicate that information about early sensory
uncertainty, at least in the form of a two-alternative likelihood ratio between the models for left and
right displacement, is preserved and made available to decision areas. This implies that the relevant

information is propagated across multiple cortical layers.
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Our new results join a growing body of work showing how uncertainty in its various forms affects
behaviour (see introduction and Knill & Pouget, 2004, for a review). In the task reported here we aimed
to show a ‘minimal context’ in which Bayesian optimality can be demonstrated, and in which alternative
strategies that don’t require the representation of uncertainty can be ruled out. We therefore used a
purely visual stimulus, and asked observers to make a simple Vernier offset judgement (Westheimer,
1979). We chose a Vernier task, as the requisite sensory processing is most likely to occur early
in the visual pathway, perhaps principally in the relatively well-understood primary visual cortex.
Combined with the existing evidence for optimality in crossmodal, motor, and visual cue combination
experiments, our results support the claim that uncertainty is processed throughout the brain, even for
simple, low-level visual quantities. Furthermore, such a task is a strong candidate for future integration
with physiological data and with theoretical work concerning how neuronal populations represent and

compute with uncertainty (Pouget, Dayan, & Zemel, 2003; Knill & Pouget, 2004).

Another key property of our task is that the set of visual stimuli was fixed, so that all stimulus-
related uncertainty arose exclusively from visual processing, corresponding to ‘internal noise’ in psy-
chophysical experiments (Green & Swets, 1989). This is in contrast to many previous studies of sensory
uncertainty, where variability was driven by external manipulations, such as the random placement of
dots or the addition of corrupting noise (but see Stocker & Simoncelli, 2006). Using a fixed stimulus set
thus strengthens the conclusion that the mechanisms exposed are fundamental to sensory processing,

rather than being limited to strategies for dealing with uncertainty in the external world.

There are many technical issues with Bayesian optimality experiments, which can obscure optimal
behaviour and limit conclusions about the underlying computation. For example, with monetary loss
functions observers often demonstrate over compensation, a reluctance to make extreme shifts, and
failure to keep track of the current loss function (Green & Swets, 1989; Landy et al., 2007). We
therefore used values of o that demanded relatively small shifts, and used practice trials and a blocked

design with regular reminders of the current cost values.
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Recent work using a similar loss function approach in an unspeeded visual orientation estimation
task (Landy et al., 2007) found evidence for optimality, but also for a variety of suboptimal strategies.
In psychological ‘betting’ paradigms failures of probabilistic reasoning characterise human behaviour,
and it may be that unspeeded adjustment tasks are more vulnerable to such influences. Our task is very
simple, and requires a forced-choice categorization response that observers performed very quickly. It
seems likely that we therefore avoid some of these cognitive effects, making it easier to model observers’
use of information about their own uncertainty. However, as discussed above we do see evidence for

over-compensation, and for relatively smaller over-compensation for larger cost asymmetries.

In our analysis we did not attempt to distinguish between stimulus-centred sensory noise, and
any stimulus-centred decision noise not modeled by the lapse-rate parameter. However, we assumed
that the majority of this stimulus-centred variation was due to sensory noise. This assumption was
supported by examining the results across sessions — the ability of observers to choose optimally in
the face of asymmetric costs did not change as their ability on the task, measured by the slope of the
psychometric function, did (see Fig. 4a and b). Using external manipulations to produce randomly
intermixed uncertainty levels on each trial would allow us to separate more explicitly any stimulus-
centred decision noise from uncertainty due to sensory processing. However, Landy et al. (2007) found
more suboptimality when levels of uncertainty were randomly intermixed rather than blocked as in our
experiment, and it is not clear why this should be the case. It could reveal limits on the ability to
perform online Bayesian processing, or alternatively arise from corrupting cognitive or psychological
factors. In the present study we were not interested in trying to delineate these factors, and so
used a blocked design. In addition, we wanted to retain the property of all stimulus uncertainty
arising internally. Future investigations of the effect of task and experimental design on optimality are

important to pull apart optimal sensory processing from cognitive reasoning effects.

In the present study we aimed to demonstrate minimal conditions for Bayes optimal behaviour
under uncertainty. We showed that observers approach the quantitatively optimal strategy given a

directional bias, and score within the predicted range, in a simple unimodal visual task that requires
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them to integrate a model of their internal uncertainty with an external loss function. The assumptions
of the model, and the predictions that arise from them, were tested, and we took care to rule out
alternative strategies for achieving the observed behaviour. Our results therefore support the assertion
that the processing of uncertainty is a fundamental aspect of sensory computation, and can be used to

inform subsequent decision-making processes.

APPENDICES

A.1 Bayesian Model Comparison

A different psychometric function was obtained for each observer, for each value of «, in each session.
In principle, each such function might have entirely different parameters. Our expectation, however,
based on the Bayesian observer analysis, is that the slope parameter should remain constant as « varies
within one session, although it may change between sessions. We used Bayesian model comparison
to determine which group of shared parameters was best supported by our data, by evaluating an
approximation to the marginal likelihood or ‘evidence’ for a number of different models. This approach
to choosing an appropriate model originates with Jeffreys (Jeffreys, 1939), and incorporates an Occam’s
razor-type penalty for models with more parameters (Gull, 1988; Kass & Raftery, 1995; Mackay, 2004).
In the absence of prior bias towards any particular model, the marginal likelihoods are proportional to

the probabilities of each model being the one from which the data arose.

For each observer we fit models that shared parameters between sessions (Supplementary Table 2,
lower half), and models that had independent parameters for each session (Supplementary Table 2,
upper half). In the latter case the total log evidence was the sum of the log evidences obtained for
each session. For each case, we fit models with individual p; and €; parameters for each «, models

with the values of p; and ¢; restricted to have the same value for all v, and models with one parameter
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restricted while the other was allowed to vary. The centres y; always varied with «, as all data sets

showed very clear shifts.

A gradient ascent procedure was used to find the most probable or maximum a posteriori (MAP)
parameter values, given the data, under a non-informative prior. As the exact evidence could not be
calculated, these MAP parameters for each model were then used to compute a Laplace approximation
to the marginal likelihood in each case. The Laplace approximation results from taking the first three
terms of a Taylor expansion about the MAP parameters (Mackay, 2004). In the equations below, D
refers to the data, m to the model, 8 to the vector of all parameters, #* to the MAP parameters, and
d to the number of parameters in the model. The matrix A is the Hessian of the log posterior, i.e. the

matrix of second partial derivatives of log P(0|D,m) with respect to 6, evaluated at 6*.

log P(D|m) = 10g/d0P(D,9|m), (20)

d 1
log P(D|m) =~ log P(D|#",m) + log P(0*|m) + 3 log 2m — 3 log |Al. (21)

The values of the Laplace approximation for each of the four models are shown in Table 2. The highest
evidence, corresponding to the ‘best model’, is highlighted in bold for each observer and each case. In
accordance with our assumption, the best model had a single p parameter for all o, whether or not this
slope was the same or different between sessions. A single lapse parameter was best for two observers
and separate lapse parameters for the other two. As mentioned above, the lapse rate is incorporated
in the model to account for decision noise, motor errors, and moments of inattention, and it seems
reasonable that, whilst the internal uncertainty is the same for each « value, such random lapses might

vary.

In addition, the model with different parameters for the two sessions was always preferred, suggest-

ing that observers’ sensory noise changed between the two experimental sessions. The values of the
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Summed Laplace approximation for individual session models

single p separate p
observer single € separate € single € separate €
1 1995 1997 1970 1975
2 1602 1638 1613 1619
3 2351 2338 2346 2335
4 2061 2033 2055 2041

Laplace approximation for pooled session model

single p separate p
observer single € separate € single € separate €
1 1851 1841 1827 1830
2 1433 1487 1446 1441
3 2200 2185 2197 2181
4 1944 1948 1941 1929

Table 2: Results of Bayesian Model Selection: Laplace approximation to marginal log likelihood for
each of four models for each observer. Bold text shows the model with the highest log likelihood for
each participant. It should be noted that each unit difference in log likelihood corresponds to an e-fold
ratio of model probabilities.

parameters fit to the best model for each observer, in each session, are given in Table 3.

A.2 Computation of Optimal Score Range

To assess whether observers’ performance was significantly different from optimal, we computed the
mean and standard deviation of the scores that they would have obtained under the optimal strategy,
given their apparent internal uncertainties and their observed biases. The total score (‘reward’) for one

session is obtained by summing the scores for each « value;
Rtotal = ZRJ (22)
J

The score for each « value is given by the sum, over the different possible stimulus offsets x;, of the

number of trials on which the observer answers ‘right” and ‘left’ correctly and incorrectly, multiplied by
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Session 1 Session 2
observer | « I ) o € I p o) €
(pixels) | (1/pixels)| (pixels) (prob.) (pixels) | (1/pixels)| (pixels) (prob.)

0.7 -4.0 0.052 -3.8 0.031
0.6 -3.5 0.025 -3.3 0.00002

1 0.5 -1.9 0.072 5.6 0.13 -2.1 0.086 4.6 0.017
0.4 2.5 0.16 0.55 0.031
0.3 3.1 g 0.045 0.63 g 0.072
0.7 -7.2 0.019 -7.3 \ 0.013
0.6 -7.5 0.0019 -5.1 0.00012

2 0.5 -2.1 0.049 8.2 0.11 -1.8 0.055 7.2 0.10
0.4 2.0 0.021 3.1 0.10
0.3 4.2 0.0098 5.8 g 0.016
0.7 -2.3 -0.92
0.6 -0.79 -0.60

3 0.5 0.82 0.087 4.6 0.017 0.28 0.13 3.1 0.011
0.4 1.6 0.44
0.3 4.5 7 0.76 g 7
0.7 -3.5 -3.6
0.6 -2.3 -2.1

4 0.5 0.45 0.075 5.3 0.0069 1.3 0.079 5.1 0.042
0.4 4.3 4.2
0.3 4.8 7 7 5.0

Table 3: Results of Model Fitting to Experimental Data: centre (1), slope (p), and lapse (¢) parameters
for each observer in each « condition and each session (values given to 2 significant figures). For each
observer there is a separate u for each o condition, representing the centre of the psychometric function
in pixels. However, there is only a single p for all a conditions, representing the fact that the observer’s
internal uncertainty is the same regardless of the value of a. The Gaussian standard deviation in pixels
corresponding to these values of p is given in the next column. Two observers have a single € for all
«, and two have separate e for each «. These constraints on parameter values were determined via

Bayesian model comparison (see Table 2)
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the appropriate reward or cost parameter. Using the same definitions of N;; and n;; as in Equation 15,

this is

Rij= > (Ri(Nij—nij)+Conij) + > (Reni+Ci(Nij —nij)). (23)

i| ;<0 i|zi>0
Under our model, n;; is binomially distributed with mean N;; p;;, where p;; is given by the psychometric
function (Equation 17). To obtain the expected score under the optimal strategy (constrained by the
observed bias), we evaluated Equation 16 for each offset, using the measured value of p, but using the
optimal relative value of u; obtained by adding the optimal relative shift to the observed bias in the
symmetric condition (i.e., uo5 + AMJ*). Calling these optimal relative values p;;, the expected score

under the constrained optimal strategy is,

<Rt0tal> = Z<Rj>a (24)

with

(Rj) = Z Nij (Ri (1 = pj;) + Crpy) + Z Nij (Re pij + Ci (1 = pjj)- (25)

i ;<0 iz >0

To compare the measured scores to this value, we must also calculate the variance in the score that
is to be expected as decisions vary due to sensory noise. As the score in each condition is independent,

this variance is given by

Var (Reotar) = »_ (R3) — (R;)?, (26)

J
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The second moment above can also be computed in closed form, using the expression for R; in Equa-

tion 23, the binomial mean as before, and the binomial second moments:
(nignig) = Nij Niry pi; 0y + i Nig pi; (1= pj;) (27)
where 9;; is the Kronecker delta. We obtain

<R§> = <R]> C _Rl Z NZ]plj p;k]) _Cl Z Nljpzj pjj)? (28)

i | z;<0 i|z;>0

and so the expected variance in score is

Var(Rtotal) = Z < C - Rl Z Nzg pz] p;f(j) - Cl Z Nzg sz p;}’)) . (29)

J 1] x;<0 i]x;>0

The corresponding standard deviation is shown in Figure 4.
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