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ABSTRACT
Neural activity unfolding over time can be modeled using
non-linear dynamical systems [1]. As neurons communicate
via discrete action potentials, their activity can be character-
ized by the numbers of events occurring within short pre-
defined time-bins (spike counts). Because the observed data
are high-dimensional vectors of non-negative integers, non-
linear state estimation from spike counts presents a unique set
of challenges. In this paper, we describe why the expectation
propagation (EP) framework is particularly well-suited to this
problem. We then demonstrate ways to improve the robust-
ness and accuracy of Gaussian quadrature-based EP. Com-
pared to the unscented Kalman smoother, we find that EP-
based state estimators provide more accurate state estimates.

1. INTRODUCTION

Consider the following dynamical system for modeling neural
spike counts:

xt | xt−1 ∼ N (f (xt−1) , Q) (1a)

yi
t | xt ∼ Poisson (λi (xt) · ∆) , (1b)

where xt ∈ R
p×1 is the state vector at time t = 1, . . . , T ,

and yi
t ∈ {0, 1, 2, . . .} is the corresponding observed spike

count for neuron i = 1, . . . , q taken in a time bin of width
∆. The functions f : R

p×1 → R
p×1 and λi : R

p×1 → R+

are, in general, non-linear. The initial state x1 is Gaussian-
distributed. For notational compactness, the spike counts for
all q simultaneously-recorded neurons are assembled into a
q × 1 vector yt, whose ith element is yi

t. Note that the obser-
vations are discrete-valued and that, typically, q � p.

Given sequences of observed spike counts from a group of
simultaneously-recorded neurons, we would like to estimate
both the state xt at each timepoint, and the model parame-
ters in (1). This goal can be naturally approached using the
Expectation-Maximization algorithm, as in [1]. Here, we fo-
cus on the first of the two objectives, namely state estimation.
In particular, we seek smoothed state estimates, conditioned
on all past, present, and future observations (denoted {y}T

1 ).
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The extended Kalman smoother is a common tool for non-
linear state estimation; unfortunately, it cannot be directly ap-
plied to our problem because the observation noise in (1b) is
not additive Gaussian. A possible alternative is the unscented
Kalman smoother (UKS) [2, 3], which employs quadrature
techniques to approximate multi-dimensional Gaussian inte-
grals that are analytically intractable. For smoothing, the UKS
requires that the state dynamics be run backwards in time, ei-
ther exactly, or approximately using, e.g., a neural network.
However, inverting non-linear state dynamics is generally dif-
ficult and may not be possible without altering the behavior of
the system. Furthermore, the UKS makes Gaussian approxi-
mations in the observation space. For discrete-valued obser-
vations as in (1b), this approximation may not be appropriate.

Another technique for non-linear state estimation was re-
cently developed [4, 5, 6] using the expectation propagation
(EP) framework [7]. By contrast to the UKS, the EP-based
approach i) does not require inverting the state dynamics, ii)
makes Gaussian approximations only in the state space and
not in the observation space, and iii) allows state estimates to
be refined iteratively using multiple forward-backward passes.
We generally observe tens to hundreds of neurons simultane-
ously, and the number of spikes emitted by a neuron in a sin-
gle time bin is most often 0 or 1. Thus, the observations are
high-dimensional and distinctly non-Gaussian. In such set-
tings, property ii) above is critical.

The EP framework requires estimating the moments of the
joint state posterior distribution P

(
xt−1,xt | {y}T

1

)
. This

can be done using either Gaussian quadrature (GQ-EP) [5] or
a modal Gaussian approximation (Laplace-EP) [6]. Whereas
Laplace-EP estimates moments based on a local region of the
distribution, GQ-EP takes into account more global properties
of the distribution. While promising, GQ-EP is known to be
sensitive to outlying observations [5] and can only be used
with quadrature rules that satisfy certain properties.

In the following, we first summarize the EP framework for
non-linear state estimation. We then show how the sensitivity
to outliers in GQ-EP can be overcome. Next, we demonstrate
how quadrature rules that are more accurate than existing ones
for GQ-EP can be derived. Finally, we compare the state es-
timation accuracy of the UKS, GQ-EP, and Laplace-EP tech-
niques for the model neural dynamical system (1).



2. EXPECTATION PROPAGATION

The application of EP [7] to general dynamical models is
summarized in this section; for more details, see [4]. We seek
to compute the marginal P

(
xt | {y}T

1

)
and pairwise joint

P
(
xt−1,xt | {y}T

1

)
state posteriors. These distributions can

be expressed in terms of forward αt and backward βt mes-
sages as follows

P
(
xt | {y}T

1

)
=

1
P

({y}T
1

)αt (xt) βt (xt) (2)

P
(
xt−1,xt | {y}T

1

)
=

αt−1 (xt−1) P (xt | xt−1) P (yt | xt) βt (xt)
P

({y}T
1

) , (3)

where

αt (xt) = P
(
xt, {y}t

1

)
and βt (xt) = P

({y}T
t+1 | xt

)
.

The messages αt and βt are typically approximated by an ex-
ponential family density, in our case an unnormalized Gaus-
sian. These approximate messages are then iteratively up-
dated by matching the moments of the marginal posterior (2)
with the corresponding moments of the pairwise joint poste-
rior (3). The updates are usually performed sequentially via
multiple forward-backward passes. During the forward pass,
the αt are updated while the βt remain fixed. During the back-
ward pass, the βt are updated while the αt remain fixed.

Two different techniques have been proposed to estimate
the moments of (3). First, the moments can be expressed as∫∫

g (xt−1,xt) P
(
xt−1,xt | {y}T

1

)
dxt−1dxt (4)

for appropriate choices of the function g. For example, if
g (xt−1,xt) = xt, the mean of xt based on the pairwise
joint posterior is obtained. By introducing a proposal distri-
bution Q (xt−1,xt)1, (4) can be expressed as an integral over
a known “weighting” function

∫∫
g (xt−1,xt)

P
(
xt−1,xt | {y}T

1

)
Q (xt−1,xt)

Q (xt−1,xt) dxt−1dxt.

Gaussian quadrature [5, 8] approximates this integral by

n−1∑
j=0

wj · g
(
χj

t−1,χ
j
t

) P
(
χj

t−1,χ
j
t | {y}T

1

)
Q

(
χj

t−1,χ
j
t

) , (5)

where wj and [(χj
t−1)

′ (χj
t )′]′ are, respectively, the jth quad-

rature point and weight based on Q (xt−1,xt). An example of
a quadrature rule (i.e., a set of quadrature points and weights)
based on a Gaussian proposal will be given in Section 4. The

1Q (xt−1,xt) determines the distribution of quadrature points and so is
referred to as a proposal distribution by analogy to importance sampling.

EP-based state estimator that employs Gaussian quadrature to
compute moments is referred to as GQ-EP.

A second way to estimate the moments is to fit a Gaussian
to a mode of P

(
xt−1,xt | {y}T

1

)
, as in the Laplace approxi-

mation of an integral [6, 9]. The moments of this fitted Gaus-
sian are taken to be the approximate moments of (3). The
EP-based state estimator that computes moments in this way
is referred to as Laplace-EP.

3. PROPOSAL DISTRIBUTIONS FOR GQ-EP

Using the proposal distribution

Q (xt−1,xt) ∝ αt−1 (xt−1) βt−1 (xt−1) αt (xt) βt (xt) ,

with Gaussian messages αt and βt, Zoeter and colleagues
[5] reported that GQ-EP was sensitive to outlying observa-
tions. In particular, the quadrature points may lie in regions
where P

(
xt−1,xt | {y}T

1

)
has negligible density relative to

Q (xt−1,xt). As a result, covariance matrices estimated from
(5) may be ill-conditioned, and GQ-EP becomes largely un-
usable. Outlying observations are common in the early stages
of learning the model parameters, when the parameters are
not a good match with the observed data. Even without out-
lying observations per se, quadrature point locations can be
poorly chosen during the first forward pass if Q (xt−1,xt) is
determined without knowledge of the current observation yt.

To overcome this problem, we choose Q (xt−1,xt) to be
a Gaussian matched to the location and curvature of a mode
of P

(
xt−1,xt | {y}T

1

)
, as in the Laplace approximation of

an integral [9]. Note that this is the same Gaussian used to
estimate the moments of P

(
xt−1,xt | {y}T

1

)
in Laplace-EP,

but it is used here as a proposal distribution for GQ-EP. With
this choice of proposal distribution, the quadrature points are
centered on a mode of P

(
xt−1,xt | {y}T

1

)
, making GQ-EP

more robust to outlying observations.

4. QUADRATURE RULES WITH NON-NEGATIVE
WEIGHTS

Covariance matrices are formed in (5) by a sum of outer prod-
ucts. If one or more of the quadrature weights wj is nega-
tive, the resulting covariance matrix may have negative eigen-
values. It is important to emphasize that this appearance of
negative eigenvalues is not due to numerical instabilities; in
particular, if a square-root filter [2] is used, negative quadra-
ture weights may lead to invalid Cholesky updates. Thus
quadrature rules with non-negative wj are necessary to sta-
bilize quadrature-based EP.

Furthermore, evaluating P
(
xt−1,xt | {y}T

1

)
at the quad-

rature points in (5) requires computing the data likelihood

P
({y}T

1

)
=

∫∫
αt−1 (xt−1) P (xt | xt−1) ·

P (yt | xt) βt (xt) dxt−1dxt.

(6)



This integral is generally analytically intractable, and must
also be approximated by Gaussian quadrature (frequently us-
ing the same proposal distribution Q (xt−1,xt)). Once again,
negative quadrature weights may lead to instability, here in
the form of an impossible negative likelihood estimate.

Here, we consider two quadrature rules with non-negative
weights. For notational clarity, a Gaussian integral is approx-
imated by Gaussian quadrature as follows

∫
h(z) N (z; µ, Σ) dx ≈

n−1∑
j=0

wjh (zj) , (7)

where z ∈ R
r×1, µ ∈ R

r×1, Σ ∈ R
r×r, h is a deter-

ministic nonlinear function, z0, . . . , zn−1 are the quadrature
points, and w0, . . . , wn−1 are the quadrature weights. The
first quadrature rule is the classical precision 3 rule [2, 8, 10],
which prescribes the following points and weights

z0 = µ w0 = 1 − r

γ2

zi = µ + γ
(√

Σ
)

i
wi =

1
2γ2

(8)

zr+i = µ − γ
(√

Σ
)

i
wr+i =

1
2γ2

,

where i = 1, . . . , r and γ ∈ R is a free parameter.
(√

Σ
)

i
is

the ith column of R ∈ R
r×r, where RR′ = Σ. The number

of quadrature points is n = 2r + 1. This quadrature rule is
exact if h(z) in (7) is a monomial of degree 3 or less. Further-
more, as long as γ is chosen such that γ2 ≥ r, the quadrature
weights wj in (8) are non-negative.

The second quadrature rule is a custom “precision 3” rule
derived using Gaussian processes (GPs) under the constraint
of non-negative weights. Whereas the classical rule achieves
zero error for monomials of degree 3 or less and offers no
guarantees for monomials of higher degree, the custom rule
minimizes the average error across an entire family of func-
tions. In the GP approach, the task of selecting quadrature
points and weights is formulated as an optimization prob-
lem. The details of how to derive quadrature rules in this
way can be found in [11]; here, we describe how this tech-
nique was applied to derive the custom “precision 3” rule.
We first transformed the unconstrained optimization problem
into a constrained optimization problem by introducing a non-
negativity constraint on the quadrature weights. Assuming
the same constellation of quadrature points as in (8) up to the
scaling factor γ, the optimization problem was then solved
to obtain γ and a new set of quadrature weights w0, . . ., w2r.
Note that these optimized weights will not necessarily be the
same as the classical weights of (8). A GP requires the spec-
ification of a covariance function. We chose the commonly-
used radial basis function

K(zj , zk) = e−
b
2‖zj−zk‖2

, (9)

where the free parameter b sets the relative importance of
monomials of varying degree. As b → 0, monomials of lower
degree have priority. This GP approach is general and can
be used to derive other quadrature rules with non-negative
weights.

In the classical precision 3 rule (8), only the central quad-
rature weight w0 can be negative. Julier and colleagues [12]
recognized that, if a covariance estimate is expanded about a
point away from the estimated mean, positive semidefinite-
ness can be guaranteed even though w0 < 0. To illustrate
this, let z ∼ N (µ, Σ) and h(z) be a column vector. The
estimated covariance of h(z) using Gaussian quadrature is

Ĉ =
n−1∑
j=0

wj [h (zj) − m̂] [h (zj) − m̂]′ , (10)

where m̂ is the estimated mean of h(z) from (7). Julier and
colleagues expanded Ĉ about h(z0) rather than m̂. As a re-
sult, the j = 0 term disappears and all remaining terms have
positive quadrature weights. The UKS tested in Section 5 uses
this expansion. While effective for the precision 3 rule, this
expansion doesn’t generalize to the precision 5 rule [8, 10],
where multiple quadrature weights can be negative. Further-
more, this technique cannot be used to estimate data likeli-
hoods.

Another way to ensure positive semidefiniteness is to use
a one-dimensional quadrature rule along each dimension of
z, rather than a multi-dimensional rule such as (8). How-
ever, the number of quadrature points required would grow
exponentially, rather than linearly, with r. In addition, Lerner
[8] showed how to project a covariance matrix with predom-
inantly known components to the positive semidefinite cone.
However, applying this technique to problems discussed in
this paper would require extension to covariance matrices
whose elements are entirely unknown.

5. RESULTS

We compare here the state estimation accuracy of the UKS,
GQ-EP, and Laplace-EP for state dimensionalities p = 3, 10
and observation dimensionality q = 100 (Table 1). We gener-
ated 50 state trajectories, each with 50 time points, and corre-
sponding spike counts from the models (1a) and (1b), where

f(x) = (1 − k)x + k · W · erf(x) (11)

λi(x) = log
(
1 + ec′

ix+di

)
. (12)

with the error function (erf) acting element-by-element on its
argument. The model parameters W ∈ R

p×p, ci ∈ R
p×1, and

di ∈ R were randomly chosen within a range that provided
biologically realistic spike counts (typically, 0 or 1 spike in
each bin). This procedure was repeated three times for each
state dimensionality. The time constant k ∈ R was set to 0.1.



p = 3 p = 10
UKS 1.94±0.02 4.10±0.03
GQ-EP, classical 0.93±0.01 2.62±0.02
GQ-EP, custom 0.93±0.01 2.35±0.02
Laplace-EP 0.94±0.01 2.22±0.01

Table 1. Root-mean-square error (mean±sem) between the
actual and estimated state trajectories.

For the UKS, we applied the classical precision 3 rule with
γ =

√
3, which yields quadrature points that match some

fourth order moments of a Gaussian distribution [12]. The
UKS requires computing and inverting a predicted observa-
tion covariance Pyy ∈ R

q×q [2, 3, 10]. Because the observa-
tions here are high-dimensional, with a large number of ele-
ments equal to 0, Pyy was usually ill-conditioned. Thus, to
make the inversion possible, we added a constant (0.5, which
was determined by a systematic sweep) to the diagonal el-
ements of Pyy , by analogy to ridge regression. For the UKS
backward pass, we defined an artificial state prior and approx-
imated the backward-time dynamics with a linear-Gaussian
system [3].

For the EP-based estimators, the results are based on a
single forward-backward pass. GQ-EP was tested using the
modal Gaussian proposal distribution from Section 3 in tan-
dem with each of the two quadrature rules from Section 4. For
the classical rule (8), we set γ2 = r to ensure non-negative
quadrature weights. Larger values of γ led to higher estima-
tion errors.

The UKS yielded higher estimation errors than the EP-
based estimators because i) it makes Gaussian approxima-
tions in the observation space where the data are distinctly
non-Gaussian, and ii) it approximates the backward-time dy-
namics of the non-linear system (1a) using a linear-Gaussian
system. For p = 3, the three EP-based estimators provide
comparable performance. However, for p = 10, Laplace-EP
is preferred and the custom quadrature rule that we derived
using Gaussian processes outperforms the classical rule.

Higher precision quadrature rules have been proposed
(e.g., precision 5 rules [8, 10]), but the techniques used to
guarantee positive semidefinite covariances and non-negative
data likelihoods for the classical precision 3 rule don’t apply.
In particular, there is no free parameter that can be chosen to
keep weights non-negative. Furthermore, because more than
one weight can be negative, it is not possible to guarantee
valid covariances by expanding about a different point. We
are currently developing quadrature rules that further improve
the estimation accuracy of GQ-EP, especially at higher state
dimensionalities.
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