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consider the problem of extracting smooth, low-dimensional neural
trajectories that summarize the activity recorded simultaneously from
many neurons on individual experimental trials. Beyond the benefit of
visualizing the high-dimensional, noisy spiking activity in a compact
form, such trajectories can offer insight into the dynamics of the
neural circuitry underlying the recorded activity. Current methods for
extracting neural trajectories involve a two-stage process: the spike
trains are first smoothed over time, then a static dimensionality-
reduction technique is applied. We first describe extensions of the
two-stage methods that allow the degree of smoothing to be chosen in
a principled way and that account for spiking variability, which may
vary both across neurons and across time. We then present a novel
method for extracting neural trajectories—Gaussian-process factor
analysis (GPFA)—which unifies the smoothing and dimensionality-
reduction operations in a common probabilistic framework. We ap-
plied these methods to the activity of 61 neurons recorded simulta-
neously in macaque premotor and motor cortices during reach plan-
ning and execution. By adopting a goodness-of-fit metric that measures
how well the activity of each neuron can be predicted by all other
recorded neurons, we found that the proposed extensions improved the
predictive ability of the two-stage methods. The predictive ability was
further improved by going to GPFA. From the extracted trajectories,
we directly observed a convergence in neural state during motor plan-
ning, an effect that was shown indirectly by previous studies. We then
show how such methods can be a powerful tool for relating the spiking
activity across a neural population to the subject’s behavior on a single-
trial basis. Finally, to assess how well the proposed methods characterize
neural population activity when the underlying time course is known, we
performed simulations that revealed that GPFA performed tens of percent
better than the best two-stage method.

I N T R O D U C T I O N

Motivation for single-trial analysis of neural
population activity

Neural responses are typically studied by averaging noisy
spiking activity across multiple experimental trials to obtain
firing rates that vary smoothly over time. However, if the
neural responses are more a reflection of internal processing
rather than external stimulus drive, the time course of the
neural responses may differ on nominally identical trials. This

is particularly true of behavioral tasks involving perception,
decision making, attention, or motor planning. In such settings,
it is critical that the neural data not be averaged across trials,
but instead be analyzed on a trial-by-trial basis (Arieli et al.
1996; Briggman et al. 2006; Churchland et al. 2007; Czanner
et al. 2008; Horwitz and Newsome 2001; Jones et al. 2007;
Nawrot et al. 1999; Ventura et al. 2005; Yu et al. 2006).

The importance of single-trial analyses can be simply illus-
trated by considering a classic perceptual decision-making
study by Newsome and colleagues (Horwitz and Newsome
2001). In this study, they trained monkeys to report the direc-
tion of coherent motion in a stochastic random-dot display.
Especially in low-coherence conditions, they observed that
neurons in the superior colliculus appeared to jump between
low and high firing-rate states, suggesting that the subject may
have vascillated between the two possible directional choices.
For the same random-dot stimulus, the times at which the firing
rates jumped appeared to differ from one trial to the next. Such
vascillations may also underlie other perceptual and decision-
making tasks, including binocular rivalry (Leopold and Logo-
thetis 1996), structure-from-motion (Bradley et al. 1998; Dodd
et al. 2001), somatosensory discrimination (de Lafuente and
Romo 2005), and action selection (Cisek and Kalaska 2005).
Most of these studies provide indirect evidence that the time
course of the subject’s percept or decision differed on nomi-
nally identical trials. Such trial-to-trial differences cannot be
eliminated by additional monkey training, since the stimuli are
designed to be ambiguous and/or operate near the subject’s
perceptual threshold.

In the dot-discrimination (Horwitz and Newsome 2001) and
binocular rivalry (Leopold and Logothetis 1996) studies, the
authors attempted to segment single spike trains based on
periods of high and low firing rates. In general, it is very
difficult to accurately estimate the time or rate at which the
firing rate changes based on a single spike train. If one is able
to simultaneously record from multiple neurons and activities
of these neurons all reflect a common neural process (e.g., the
subject’s percept or choice), then one might be able to more
accurately estimate the time course of the subject’s percept or
choice on a single trial. Indeed, developments in multielectrode
(Kipke et al. 2008) and optical imaging (Kerr and Denk 2008)
technologies are making this a real possibility. However, it is
currently unclear how to best leverage the statistical power
afforded by simultaneously recorded neurons (Brown et al.
2004) to extract behaviorally relevant quantities of interest
(e.g., the time course of the subject’s percept or internal
decision variable) on a single-trial basis.
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In this work, we develop analytical techniques for extracting
single-trial neural time courses by leveraging the simultaneous
monitoring of large populations of neurons. The approach
adopted by recent studies is to consider each neuron being
recorded as a noisy sensor reflecting the time evolution of an
underlying neural process (Bathellier et al. 2008; Briggman
et al. 2005; Broome et al. 2006; Brown et al. 2005; Carrillo-
Reid et al. 2008; Levi et al. 2005; Mazor and Laurent 2005;
Sasaki et al. 2007; Smith and Brown 2003; Stopfer et al. 2003;
Yu et al. 2006). The goal is to uncover this underlying
process by extracting a smooth, low-dimensional neural
trajectory from the noisy, high-dimensional recorded activ-
ity. The activity of each neuron tends to vary significantly
between trials, even when experimental conditions are held
constant. Some of this variability is due to processes internal
to the neuron, such as channel noise in membranes and
biochemical noise at synapses (Faisal et al. 2008). However,
some portion of the variability reflects trial-to-trial differ-
ences in the time evolution of the network state, which may
in turn represent different computational paths and may lead
to different behavioral outcomes. Because it reflects the
network state, we expect this component of the variability to
be shared among many (or all) of the neurons that make up
the network. The techniques that we develop here seek to
embody this shared activity in a neural trajectory, which
represents our best estimate of the time evolution of the
neural state. The neural trajectory provides a compact rep-
resentation of the high-dimensional recorded activity as it
evolves over time, thereby facilitating data visualization and
studies of neural dynamics under different experimental
conditions. In principle, relative to the high-dimensional
recorded activity, such a parsimonious description should
bear clearer and stronger relationships with other experi-
mentally imposed or measurable quantities (e.g., the pre-
sented stimulus or the subject’s behavior; see the “bouncing
ball analogy” in Yu et al. 2006).

Figure 1 illustrates how such an approach may provide
insights into the neural mechanisms underlying perception,
decision making, attention, and motor planning. Figure 1A
considers the perceptual and decision tasks described earlier, in
which there are two possible percepts or choices. Applying the
analytical methods developed in this work to the activity of
multiple neurons recorded simultaneously may reveal different
switching time courses on different trials. In this example (Fig.
1A, bottom left), on trial 1, the subject’s percept switched from
one choice to another, then back to the first. On trial 2, the
percept began to switch, stopped between the two choices, then
completed its switch. These switching time courses can be
viewed in terms of single-neuron firing rates (Fig. 1A, bottom
right), where the two neurons are shown to have anticorrelated
firing rates. Note that these firing-rate profiles would be esti-
mated by leveraging the simultaneously recorded spike trains
across a neural population on a single-trial basis. In this case,
the time course obtained by averaging neural responses across
trials (gray) is not representative of the time course on any
individual trial (red and green traces). Beyond relating the
extracted trajectory (Fig. 1A, bottom left) to the subject’s
perceptual report or decision on a trial-by-trial basis, such
trajectories allow us to ask questions about the dynamics of
switching percepts across the neural population. For example,
how long does it take to switch between one percept and

another? Does it take longer to switch in one direction than the
other? Does switching in one direction follow the same path as
switching in the other direction? Can regions in firing-rate
space be defined corresponding to each percept or choice? If
so, what is the shape of these regions?

Figure 1B considers a different class of dynamics: rise-to-
threshold. Shadlen and colleagues (Roitman and Shadlen 2002)
previously showed that single neurons in lateral intraparietal
(LIP) cortex appear to integrate sensory evidence until a
threshold is reached, at which time a decision is made. By
grouping trials based on reaction time, they found that the
firing rates approached threshold more quickly on trials with
short reaction times than on trials with long reaction times.
Similar effects were found in frontal eye field prior to saccade
initiation (Hanes and Schall 1996) and middle temporal and
ventral intraparietal areas during motion detection (Cook and
Maunsell 2002). In other words, the time course of the neural
response differed on nominally identical trials in all of these
studies. To investigate trial-to-trial differences, correlations
were identified between single-trial estimates of firing rate and
reaction time (Cook and Maunsell 2002; Roitman and Shadlen
2002). However, due to the limited statistical power in a single
spike train, most analyses in these previous studies relied on
grouping trials with similar reaction times. If one is able to
simultaneously record from multiple neurons, one can then
leverage the statistical power across the neural population to
more accurately estimate single-trial response time courses.
This could potentially uncover even stronger relationships
between neural activity and behavioral measurements, such as
reaction time. Figure 1B shows two trials in which the decision
variable crosses threshold at similar times; thus, the subject
would be expected to show similar reaction times on these two
trials. However, the time course of the decision variable was
quite different on each trial. On trial 1, the decision variable
rose quickly toward threshold, then headed back toward base-
line (perhaps due to contrary evidence) before finally rising to
threshold. On trial 2, the decision variable rose slowly, but
steadily, toward threshold. Such subtle differences between
trials would be difficult to see based on single spike trains and
would be washed out had the neural activity been averaged
across trials (Fig. 1B, bottom right, gray trace). By leveraging
simultaneous recordings across a neural population, we may be
able to uncover such effects on a single-trial basis and gain
further insight into the dynamics of decision processes.1

Another potential application of the methods developed in
this work is to behavioral tasks that involve attention, which is
typically not tied to observable quantities in the outside world.
Using a GO/NOGO memory saccade task with visual distrac-
tors, Goldberg and colleagues (Bisley and Goldberg 2003)
showed that neural activity (averaged across trials and neurons)
in LIP indicates the attentionally advantaged part of the visual
field. For the same stimulus (target, distractor, and probe), the
subject showed different behavioral responses (GO or NOGO)
on different trials, where the proportion of correct responses

1 Although the concept of a threshold is well defined for a single neuron, it
is unclear how it generalizes for a population of neurons. Is the decision made
when any one of the neurons in the population reaches threshold (i.e., when the
neural trajectory first hits a dotted line in Fig. 1B, bottom left)? Or is it the sum
of the activity across the population that matters (i.e., when the neural
trajectory first hits the thick gray bar in Fig. 1B, bottom left)? It may be
possible to address such questions using the methods developed here.
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depended on the time, location, and contrast of the probe. If
multiple neurons could be monitored simultaneously in LIP,
the methods developed in this work could be used to track the
instantaneous state of the subject’s attention on a single-trial
basis, which in turn could be related to the subject’s behavioral
response. For example, it may be that the same distractor kicks
the neural state out farther on some trials (Fig. 1C, bottom left,
red trace) than others (green trace), thereby conferring a
longer-lasting attentional advantage at the distractor (see Fig. 2
in Ganguli et al. 2008, for a detailed explanation of the state
space trajectories shown in Fig. 1C, bottom left). Might it be
possible to map out the probability of a correct behavioral
response (GO or NOGO) for different neural states at the time
of the probe? Such an approach could shed light on the
dynamics of attentional shifts between different visual loca-
tions and how it influences behavior.

Finally, we consider the arm movement system, which serves
as our experimental testbed for exploring analytical methods for

extracting single-trial neural time courses. We previously showed
that the across-trial variability of neural responses in premotor
cortex drops during motor preparation (Churchland et al. 2006).
This finding suggested that single-trial neural trajectories might
converge during motor preparation, in attractor-like fashion, as
illustrated in Fig. 1D (bottom left). Although we previously hy-
pothesized such a convergence of trajectories (see Fig. 1 in
Churchland et al. 2006), we have not been able to directly view
this effect due to a lack of appropriate analytical methods for
extracting trajectories on a single-trial basis. By studying how the
neural state evolves from an initially variable baseline state toward
a consistent planning state, and relating aspects of the trajectory to
the subject’s behavior, we can gain insight into how movements
are prepared and executed. Although the analytical methods de-
veloped here are potentially applicable to many different experi-
mental settings, as exemplified in Fig. 1, we demonstrate the
utility of the developed methods in the context of motor prepara-
tion and execution in this work.
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FIG. 1. Conceptual illustration showing how the analytical methods presented in this work can be applied to different behavioral tasks, including those
involving perception, decision making, attention, and motor planning. The neural mechanisms underlying these behavioral tasks may involve A: switching
between two possible percepts or decisions, B: rising to threshold, C: decaying along a single slow mode, D: or converging to an attractor. Each panel includes
icons of the relevant behavioral tasks and brain areas (top), single-trial neural trajectories in the firing-rate space of 2 neurons (bottom left), and corresponding
firing-rate profiles (both single-trial and trial-averaged) for each neuron (bottom right).
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For each of the examples shown in Fig. 1, there are ways to
detect (or indirectly view) trial-to-trial differences in the neural
responses, including computing streak indices (Horwitz and
Newsome 2001), estimating firing rates from a single spike
train (Cook and Maunsell 2002; Roitman and Shadlen 2002),
and measuring the across-trial variability of neural responses
(Churchland et al. 2006). In all of these cases, however, what
one really wants is a direct view of the time evolution of the
neural response on single trials. In this report, we present
analytical methods that can extract such single-trial time
courses from neural population activity.

Existing methods for extracting neural trajectories

Figure 2 shows conceptually how a neural trajectory relates
to a set of simultaneously recorded spike trains. Suppose that
we are simultaneously recording from three neurons, whose
spike trains are shown in Fig. 2A. Although the following ideas
hold for larger numbers of neurons, we use only three neurons
here for illustrative purposes. We define a high-dimensional
space, where each axis measures the instantaneous firing rate
of a neuron being monitored (Fig. 2B). At any given time, the
activity of the neural population is characterized by a single
point in this space. As the activity of the neural population
evolves over time, a noisy trajectory is traced out. The goal is
to extract a corresponding smooth neural trajectory that em-
bodies only the shared fluctuations (termed shared variability)
in firing rate across the neural population (Fig. 2C). Discarded
in this process are fluctuations particular to individual neurons
(termed independent variability), which presumably reflect
noise processes involved in spike generation that are internal to
the neuron.2 Due to the correlated activity across the neural
population, the neural trajectory may not explore the entire
high-dimensional space; in other words, the neural system may
be using fewer degrees of freedom than the number of neurons
at play. If this is true, then we would seek to identify a
lower-dimensional space (shown as a two-dimensional plane
denoted by grid lines in Fig. 2C) within which the neural
trajectory lies. The neural trajectory can then be directly
visualized in the low-dimensional space and be referred to
equivalently using its high-dimensional (N1, N2, N3) or low-
dimensional (S1, S2) coordinates (Fig. 2D).

A simple way to extract neural trajectories is to first estimate
a smooth firing-rate profile for each neuron on a single trial
(e.g., by convolving each spike train with a Gaussian kernel),
then apply a static dimensionality-reduction technique (e.g.,
principal components analysis [PCA]) (Levi et al. 2005;
Nicolelis et al. 1995). The signal flow diagram for these
so-called two-stage methods is shown in Fig. 3A. Smooth
firing-rate profiles may also be obtained by averaging across a
small number of trials (if the neural time courses are believed
to be similar on different trials) (Broome et al. 2006; Brown
et al. 2005; Mazor and Laurent 2005; Stopfer et al. 2003) or by
applying more advanced statistical methods for estimating
firing-rate profiles from single spike trains (Cunningham et al.
2008b; DiMatteo et al. 2001; Ventura et al. 2005). Numerous
linear and nonlinear dimensionality-reduction techniques exist,

2 Although the independent variability indeed feeds back into the network
and can affect the aggregate network state, we assume that such effects are
small.
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but to our knowledge only PCA (Levi et al. 2005; Mazor and
Laurent 2005; Nicolelis et al. 1995) and locally linear embed-
ding (LLE) (Broome et al. 2006; Brown et al. 2005; Roweis
and Saul 2000; Stopfer et al. 2003) have been used to extract
neural trajectories. Smoothed firing-rate trajectories based on
pairs of simultaneously recorded neurons without dimension-
ality reduction have also been studied (Aksay et al. 2003).

The two-stage methods have been fruitfully applied in stud-
ies of the olfactory system, where the presentation of an odor
sets off a time course of neural activity across the recorded
population. To understand how the population response varies
under different experimental conditions (e.g., different pre-
sented odors), one could attempt to directly compare the
recorded spike trains. However, this quickly becomes unman-
ageable as the number of neurons and the number of experi-
mental conditions increase. Instead, a neural trajectory can be
extracted for each trial condition (typically averaged across a
small number of trials) and compared in a low-dimensional
space. This approach has been adopted to study the population
response across different odor identities (e.g., Brown et al.
2005), concentrations (Stopfer et al. 2003), durations (Mazor
and Laurent 2005), and sequences (Broome et al. 2006).
Dynamical behaviors resembling fixed points (Mazor and Lau-
rent 2005) and limit cycles (Bathellier et al. 2008) have also
been identified. In these studies, hypotheses were generated
based on the visualized trajectories, then tested using the
high-dimensional recorded activity. Without the low-dimen-
sional visualizations, many of these hypotheses would have
remained unposed and thus untested.

Methodological advances proposed here

Although two-stage methods have provided informative
low-dimensional views of neural population activity, there are
several aspects that can be improved. 1) Because the smooth-
ing and dimensionality reduction are performed sequentially,
there is no way for the dimensionality-reduction algorithm to
influence the degree or form of smoothing used. This is
relevant both to the identification of the low-dimensional space
and to the extraction of single-trial neural trajectories. 2) PCA
and LLE have no explicit noise model and thus have difficulty
distinguishing between changes in the underlying neural state
(i.e., shared variability) and spiking noise (i.e., independent
variability). 3) For kernel smoothing, the degree of smoothness
is often arbitrarily chosen. We instead seek to learn the appro-
priate degree of smoothness from the data. With probabilistic
methods, a principled approach would be to ask what is the
degree of smoothness that maximizes the probability of having
observed the data at hand. Unfortunately, kernel smoothing,
PCA, and LLE are all nonprobabilistic methods, so such
standard parameter-learning techniques are not applicable. One
may try to get around this problem by applying kernel smooth-
ing, followed by a probabilistic dimensionality-reduction tech-
nique (e.g., probabilistic PCA [PPCA]; Roweis and Ghahra-
mani 1999; Tipping and Bishop 1999), which does assign
probabilities to data. However, the problem with this scheme is
that these probabilities correspond to the smoothed data (the
input to the probabilistic dimensionality-reduction technique),
rather than the unsmoothed data (the input to the kernel
smoother). Because the smoothed data change depending on
the degree of smoothness chosen, the resulting probabilities are

not comparable. 4) The same kernel width is typically used for
all spike trains across the neural population, which implicitly
assumes that the population activity evolves with a single
timescale. Because we do not know a priori how many time-
scales are needed to best characterize the data at hand, we seek
to allow for multiple timescales.

In this work, we first propose extensions of the two-stage
methods that can help to address issues 2) and 3) cited earlier.
We summarize these extensions here; details can be found in
METHODS. For 2) we explore dimensionality-reduction algo-
rithms possessing different explicit noise models and consider
the implications of the different noise assumptions. We find
that an effective way to combat spiking noise (whose variance
may vary both across neurons and across time) is to use the
square-root transform (Kihlberg et al. 1972) in tandem with
factor analysis (FA) (Everitt 1984). Taking the square root of
the spike counts serves to approximately stabilize the spiking
noise variance. FA is a dimensionality-reduction technique
related to PCA that, importantly, allows different neurons to
have different noise variances. Although nonlinear dimension-
ality-reduction techniques with explicit noise models have
been developed (for a probabilistic LLE-inspired algorithm,
see Teh and Roweis 2003), we consider only linear mappings
between the low-dimensional neural state space and the high-
dimensional space of recorded activity in this work for math-
ematical tractability. For 3), we adopt a goodness-of-fit metric
that measures how well the activity of each neuron can be
predicted by the activity of all other recorded neurons, based
on data not used for model fitting. This metric can be used to
compare different smoothing kernels and allows for the degree
of smoothness to be chosen in a principled way. An advantage
of this metric is that it can be applied in both probabilistic and
nonprobabilistic settings. In RESULTS, we will use this as a
common metric by which different methods for extracting
neural trajectories are compared.

Next, we develop Gaussian-process factor analysis (GPFA),
which unifies the smoothing and dimensionality-reduction op-
erations in a common probabilistic framework. GPFA takes
steps toward addressing all of the issues (1–4) described earlier
and is shown in RESULTS to provide a better characterization of
the recorded population activity than the two-stage methods.
Because GPFA simultaneously performs the smoothing and
dimensionality-reduction operations (Fig. 3B), rather than se-
quentially (Fig. 3A), the degree of smoothness and the rela-
tionship between the low-dimensional neural trajectory and the
high-dimensional recorded activity can be jointly optimized.
GPFA allows for multiple timescales, whose optimal values
can be found automatically by fitting the GPFA model to the
recorded activity. Unlike the two-stage methods, GPFA assigns
probabilities to the unsmoothed data, which allows the time-
scale parameters to be optimized using standard maximum
likelihood techniques. As with FA, GPFA specifies an explicit
noise model that allows different neurons to have different
noise variances. The time series model involves Gaussian
processes (GPs), which require only the specification of a
parameterized correlation structure of the neural state over
time.

A critical assumption when attempting to extract a low-
dimensional neural trajectory is that the recorded activity
evolves within a low-dimensional manifold. Previous studies
have typically assumed that the neural trajectories lie in a
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three-dimensional space for ease of visualization. In this work,
we investigate whether this low-dimensional assumption is
justified in the context of reach planning and execution. If so,
we will attempt to identify the appropriate dimensionality.
Furthermore, we will systematically compare different analyt-
ical methods for extracting neural trajectories.

We first detail the two-stage methods, GPFA, and dynamical
system approaches to extracting neural trajectories. Next, the
behavioral task and the neural recordings in premotor and
motor cortices are described. We then apply the different
extraction techniques to study the dimensionality and time
course of the recorded activity during reach planning and
execution.

Preliminary versions of this work were previously published
(Yu et al. 2008, 2009).

M E T H O D S

Two-stage methods

The two-stage methods involve first estimating a smooth firing-rate
profile for each neuron on a single trial, then applying a static
dimensionality-reduction technique. For the simplest two-stage
method, the firing-rate estimates are obtained by convolving each
spike train with a Gaussian kernel. These firing-rate estimates, taken
across all simultaneously recorded neurons, define a trajectory in the
high-dimensional space of recorded activity (Fig. 2B). This trajectory
is represented by a series of data points (dots in Fig. 2B). In the
simplest case, the data points of many such trajectories are then passed
to PCA, which identifies the directions of greatest variance in the
high-dimensional space. The high-dimensional data points are then
projected into the low-dimensional space defined by the principal
component axes (conceptualized by the S1S2 plane shown in Fig. 2C).
The projected data points can then be strung back together over time
to obtain a low-dimensional neural trajectory (Fig. 2D).

Although PCA is widely used and simple to apply, it is problematic
when applied to neural data because neurons with higher firing rates
are known to show higher count variability (i.e., their Poisson-like
behavior) (Dayan and Abbott 2001). Because PCA finds directions in
the high-dimensional space of greatest variance, these directions tend
to be dominated by the neurons with the highest firing rates. This is
illustrated in Fig. 4A using two neurons. In this simulation, the
underlying firing rates of the two neurons are perfectly correlated
(black line), representing the ground truth. What we are able to
observe, however, are noise-corrupted versions (blue dots) of the
underlying firing rates, where the noise is assumed to be independent
for each neuron. These blue dots are analogous to the dots in Fig. 2B.
The goal is to recover the true relationship between the activity of the
two neurons (black line) using only the noise-corrupted data points
(blue dots). Once this relationship is identified (i.e., an estimate of the
black line), the data points are then projected onto the estimated line,
yielding “denoised” firing-rate estimates for the two neurons. In this
case, identifying the true one-dimensional relationship between the
two neurons provides a succinct account of the noisy recorded
activity.

Compared with neuron 2, neuron 1 has a higher mean firing rate and
correspondingly higher firing-rate variability in Fig. 4A. The higher
variability leads to an elongation of the covariance ellipse (dashed
blue) along the horizontal direction. When PCA is applied to the data
points, the direction of highest variance (red line) is identified. In a
comparison of the red and black lines, it is apparent that PCA provides
a poor estimate of the true firing-rate relationship between the two
neurons. The reason for the mismatch is that PCA implicitly assumes
that the noise variance is isotropic (i.e., the same for all neurons
regardless of mean firing rate). PCA erroneously identifies a direction
that is biased in the direction of high noise variance, in this case along

the horizontal axis corresponding to neuron 1. The same incorrect
direction would be found by probabilistic PCA (PPCA) (Roweis and
Ghahramani 1999; Tipping and Bishop 1999), which explicitly as-
sumes isotropic noise.3

Here we propose to relax the assumption of isotropic noise by
applying factor analysis (FA) (Everitt 1984) instead of PCA/PPCA.
The only difference between FA and PPCA is that FA allows for each
neuron to have a different noise variance that is learned from the data.
Figure 4A shows that the direction recovered by FA (green line) is
much closer to the true relationship (black line) than that recovered by
PCA/PPCA (red line). The reason is that FA does not simply seek
directions of greatest variance; rather, it seeks directions of greatest
covariance while allowing for different noise variances along the
different observed dimensions.

Although FA better estimates the true firing-rate relationship com-
pared to PCA/PPCA, there remains a problem that is common to all
three techniques. In Fig. 4A, the underlying firing rates (black line) of
the two neurons lie within a relatively small range of 10 spikes/s.

3 PCA is the limiting case of PPCA as the noise variance goes to zero.
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FIG. 4. Simulation comparing principal components analysis (PCA), prob-
abilistic PCA (PPCA), and factor analysis (FA) in the two-neuron case. A: FA
(green line) is better able to uncover the true firing-rate relationship (black line)
between the two neurons than PCA/PPCA (red line). The noise-corrupted
observations (blue dots) and two SD covariance ellipse (dashed blue) are
shown. B: leave-neuron-out model prediction for PCA (red dot labeled
“PCA”), PPCA (red dot labeled “PPCA”), and FA (green dot). Each model
predicts the activity of neuron 1, given the activity of neuron 2 (blue dot).
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However, neurons can change their firing rate by many tens of
spikes/s, for example, in response to a stimulus or during movement
preparation and execution. As described earlier, the noise variance can
therefore also change drastically over time for a given neuron. This is
problematic because PCA, PPCA, and FA all assume that the noise
variance of each neuron is fixed over time, regardless of how the
neuron’s underlying firing rate fluctuates. A possible solution is to
replace the Gaussian observation noise model of PPCA and FA with
a point-process (Smith and Brown 2003; Truccolo et al. 2005; Yu
et al. 2006) likelihood model. Such an extension is challenging due to
issues of mathematical tractability and computational complexity
(Cunningham et al. 2008b). In this work, we consider a simpler
approach based on discrete time steps. The square-root transform is
known to stabilize the variance of Poisson-distributed counts (Kihl-
berg et al. 1972). By stabilizing the noise variance, dimensionality-
reduction techniques that assume stationary noise variance (such as
PCA, PPCA, and FA) can then be applied. Because the square-root
transform operates only on count data, we propose performing the
following sequence of preprocessing operations in lieu of kernel-
smoothing the spike trains directly: 1) spike counts are taken in
nonoverlapping time bins, 2) the counts are square-root transformed,4

and 3) the transformed counts are kernel-smoothed over time. The
resulting data points are then passed to PCA, PPCA, or FA.

If the spike counts were indeed Poisson-distributed and if the
square-root transform were able to perfectly stabilize the variance of
Poisson-distributed counts, then the use of PCA/PPCA would be
justified, since the spiking noise (in the space of smoothed, square-
rooted counts) would be isotropic across different neurons and time
points. However, spike counts of real neurons are known to deviate
from a Poisson distribution (e.g., Churchland et al. 2006; Tolhurst
et al. 1983) and the square-root transform only approximately stabi-
lizes the variance of Poisson-distributed counts (Kihlberg et al. 1972).
This is the case both across neurons and across time points. To
compensate for unequal variances across neurons, we apply FA rather
than PCA/PPCA. In RESULTS, we show that two-stage methods based
on FA outperform those based on PCA/PPCA.

Leave-neuron-out prediction error

There are several modeling choices to be made when extracting
neural trajectories. First, for the two-stage methods involving kernel
smoothing, we seek to find the appropriate degree of smoothness by
comparing different smoothing kernel widths. Second, for the two-
stage methods, we seek to compare different dimensionality-reduction
techniques (in this work, PCA, PPCA, and FA). Third, we seek to
compare the two-stage methods with GPFA. Fourth, for all two-stage
methods and GPFA, we seek to compare different dimensionalities of
the low-dimensional state space. Such a comparison would help to
determine whether the high-dimensional recorded activity can indeed
be succinctly summarized by a low-dimensional neural trajectory and
help to select the appropriate dimensionality of the low-dimensional
space.

Such modeling choices are typically made either by comparing
cross-validated prediction errors (Hastie et al. 2001) or likelihoods, or
by comparing Bayesian marginal likelihoods (MacKay 2003), which
are often approximated using the Akaike information criterion or the
Bayesian information criterion. There are two reasons why the like-
lihood approaches are not applicable here. First, most of the two-stage
methods are partially or entirely nonprobabilistic. In particular, kernel
smoothing and PCA are nonprobabilistic operations. Second, even if

a probabilistic dimensionality-reduction technique (e.g., PPCA or FA)
is used, the likelihoods obtained are based on the smoothed data.
When the data are altered by different presmoothing operations (or
not, in the case of GPFA), the likelihoods are no longer comparable.
Here, we introduce a goodness-of-fit metric by which all of the
comparisons listed earlier can be made.

We describe the basic idea of the metric in this section; the
mathematical details are given in the APPENDIX. First, we select a
particular method for extracting neural trajectories for which we want
to evaluate goodness-of-fit. For the two-stage methods using kernel
smoothing, this involves specifying the smoothing kernel width and
the dimensionality-reduction technique (e.g., PCA, PPCA, or FA) to
be used. Next, the model parameters are fit to the training data. For
example, for the PCA-based two-stage method, the model parameters
are the principal directions and data mean found by applying PCA to
the smoothed square-rooted spike counts. Then, based on data not
used for model fitting, we leave out one neuron at a time and ask how
well the fitted model is able to predict the activity of that neuron,
given the activity of all other recorded neurons.

This leave-neuron-out model prediction is illustrated in Fig. 4B.
Consider the same situation with two neurons as in Fig. 4A. Here, we
leave out neuron 1 and ask each dimensionality-reduction technique
(PCA, PPCA, FA) to predict the activity of neuron 1 based only on the
activity of neuron 2 (blue dot). For PCA, this is a simple geometric
projection, yielding the red dot labeled “PCA.” Although PPCA finds
the same principal direction as PCA (as shown in Fig. 4A), it yields a
different model prediction (red dot labeled “PPCA”). The reason is
that PPCA has an explicit noise model, which allows deviations of
neuron 2’s activity away from its mean to be attributed partially to
noise, rather than entirely to changes in the low-dimensional state
(i.e., movement along the red line). Thus, the PPCA model prediction
is more robust to observation noise than the PCA model prediction.
One can use the PPCA intuition to understand the FA model predic-
tion (green dot). The only difference is that FA allows different
neurons to have different noise variances. Although PPCA and FA are
shown to give nearly identical model predictions in the two-neuron
case in Fig. 4B, their model predictions are generally different for
larger numbers of neurons (cf. Fig. 5A). The same ideas can be applied
to compute the model prediction for GPFA, which incorporates the
concept of time.

For all methods considered in this work, the model prediction can
be computed analytically because all variables involved are jointly
Gaussian, as detailed in the APPENDIX. We compute a prediction error,
defined as the sum-of-squared differences between the model predic-
tion and the observed square-rooted spike counts across all neurons
and time points. This prediction error can be computed for the
two-stage methods (using various smoothing kernel widths and di-
mensionality-reduction techniques) and GPFA, across different choices of
the state space dimensionality. The comparisons listed at the beginning of
this section can then be made by comparing the prediction errors.

Gaussian-process factor analysis

In this section, we provide motivation for GPFA before describing
it mathematically. Then, we detail how to fit the GPFA model to
neural data. Finally, we show how the extracted trajectories can be
intuitively visualized using an orthonormalization procedure and de-
scribe how this gives rise to a “reduced” GPFA model with fewer state
dimensions than timescales.

MOTIVATION FOR GPFA. PCA, PPCA, and FA are all static dimen-
sionality-reduction techniques. In other words, none of them takes
into account time labels when applied to time series data; the mea-
surements are simply treated as a collection of data points. In the
two-stage methods, the temporal relationships among the data points
are taken into account during kernel smoothing. There is then no
explicit use of time label information during dimensionality reduction.

4 Our data sets include multiunit activity, comprising the activity of single
neurons whose spike waveforms could not be discriminated through spike
sorting. We consider a multiunit spike count to be the summed spike counts of
its constituent single neurons. Because the sum of Poisson random variables is
Poisson, we apply the square-root transform to both single units and multiunits
in our data sets.
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Here we propose an extension of FA that performs smoothing and
dimensionality reduction in a common probabilistic framework,
which we term Gaussian-process factor analysis (GPFA). Unlike FA,
GPFA leverages the time label information to provide more powerful
dimensionality reduction for time series data. The GPFA model is
simply a set of factor analyzers (one per time point, each with
identical parameters) that are linked together in the low-dimensional
state space by a Gaussian process (GP) (Rasmussen and Williams
2006) prior. Introducing the GP allows for the specification of a
correlation structure across the low-dimensional states at different
time points. For example, if the system underlying the time series data
is believed to evolve smoothly over time, we can specify that the
system’s state should be more similar between nearby time points than
between faraway time points. Extracting a smooth low-dimensional
neural trajectory can therefore be viewed as a compromise between
the low-dimensional projection of each data point found by FA and
the desire to string them together using a smooth function over time.

MATHEMATICAL DESCRIPTION OF GPFA. As with the two-stage
methods, spike counts are first taken in nonoverlapping time bins and
square-rooted. However, unlike the two-stage methods, there is no
presmoothing of the square-rooted spike counts for GPFA, since the
smoothing and dimensionality reduction are performed together. Let
y:,t � �q�1 be the high-dimensional vector of square-rooted spike
counts recorded at time point t � 1, . . . , T, where q is the number of
neurons being recorded simultaneously. We seek to extract a corre-
sponding low-dimensional latent neural state x:,t � �p�1 at each time
point, where p is the dimensionality of the state space (p � q). For
notational convenience,5 we group the neural states from all time
points into a neural trajectory denoted by the matrix X � [x:,1, . . . ,
x:,T] � �p�T. Similarly, the observations can be grouped into a matrix
Y � [y:,1, . . . , y:,T] � �q�T. We define a linear-Gaussian relationship
between the observations y:,t and neural states x:,t

y:,t � x:,t � ��Cx:,t � d, R� (1)

where C � �q�p, d � �q�1, and R � �q�q are model parameters to
be learned. As in FA, we constrain the covariance matrix R to be
diagonal, where the diagonal elements are the independent noise
variances of each neuron. In general, different neurons can have
different independent noise variances. Although a Gaussian is not
strictly a distribution on square-rooted counts, its use in Eq. 1
preserves computational tractability (e.g., Wu et al. 2006).

The neural states x:,t at different time points are related through
Gaussian processes, which embody the notion that the neural trajec-
tories should be smooth. We define a separate GP for each dimension
of the state space indexed by i � 1, . . . , p

xi,: � ��0, Ki� (2)

where xi,: � �1�T is the ith row of X and Ki � �T�T is the covariance
matrix for the ith GP. The form of the GP covariance can be chosen
to provide different smoothing properties on the neural trajectories. In
this work, we chose the commonly used squared exponential (SE)
covariance function

Ki�t1, t2� � �f,i
2 exp��

�t1 � t2�
2

2�i
2 � � �n,i

2 ��t1,t2
(3)

where Ki(t1, t2) denotes the (t1, t2)th entry of Ki and t1, t2 � 1, . . . , T.
The SE covariance is defined by its signal variance �f,i

2 � ��,
characteristic timescale �i � ��, and GP noise variance �n,i

2 � ��.
The Kroneker delta �t1,t2

equals 1 if t1 � t2 and 0, otherwise. The SE
is an example of a stationary covariance; other stationary and nonsta-

tionary GP covariances (Rasmussen and Williams 2006) can be
applied in a seamless way.

Because the neural trajectories X are hidden and must be inferred
from the recorded activity Y, the scale of X (defined by the Ki in Eq.
2) is arbitrary. In other words, any scaling of X can be compensated
by appropriately scaling C (which maps the neural trajectory into the
space of recorded activity) such that the scale of Y remains un-
changed.6 To remove this model redundancy without changing the
expressive power of the model, we fix the scale of X and allow C to
be learned without constraints. By direct analogy to FA, we set the prior
distribution of the neural state x:,t at each time point t to be �(0, I) by
fixing Ki(t, t) � 1 (however, note that the x:,t are still correlated across
different t). This can be achieved by setting �f,i

2 � 1 � �n,i
2 , where

0 � �n,i
2 � 1.7 Because we seek to extract smooth neural trajectories,

we fixed �n,i
2 to a small value (10�3), as is often done for GPs

(Rasmussen and Williams 2006). In the APPENDIX, we consider learn-
ing �n,i

2 from the data. For all analyses described in RESULTS, the
timescale �i is the only parameter of the SE covariance that is learned.

FITTING THE GPFA MODEL. The parameters of the GPFA model
(Eqs. 1 and 2) can be fit using the commonly used expectation-
maximization (EM) algorithm (Dempster et al. 1977). The EM algo-
rithm seeks the model parameters � � {C, d, R, �1, . . . , �p} that
maximize the probability of the observed data Y. In the APPENDIX, we
derive the EM update equations for the GPFA model. Because the
neural trajectories and model parameters are both unknown, the EM
algorithm iteratively updates the neural trajectories (in the E-step) and
the model parameters (in the M-step), while the other remains fixed.
This algorithm is guaranteed to converge to a local optimum. The E-step
involves using the most recent parameter updates to evaluate the relative
probabilities of all possible neural trajectories given the observed spikes.
This Gaussian posterior distribution P(X � Y) can be computed exactly
because the x:,t and y:,t across all time points are jointly Gaussian, by
definition. In the M-step, the model parameters are updated using the
distribution P(X � Y) over neural trajectories found in the E-step. The
updates for C, d, and R can be expressed in closed form and are
analogous to the parameter updates in FA. The characteristic time-
scales �i can be updated using any gradient optimization technique.
Note that the degree of smoothness (defined by the timescales) and the
relationship between the low-dimensional neural trajectory and the
high-dimensional recorded activity (defined by C) are jointly opti-
mized. Furthermore, a different timescale is learned for each state
dimension indexed by i.

VISUALIZING TRAJECTORIES VIA ORTHONORMALIZATION. Once the
GPFA model is learned, we can use it to extract neural trajectories
E [X � Y] (Eq. A6) from the observed activity Y. These low-dimen-
sional neural trajectories can be related to the high-dimensional
observed activity using Eq. 1, which defines a linear mapping C
between the two spaces. The following is one way to understand this
mapping. Each column of C defines an axis in the high-dimensional
space. The ith element of x:,t (i � 1, . . . , p) specifies “how far to go”
along the axis defined by the ith column of C. The location in the
high-dimensional space corresponding to the neural state x:,t is given
by the summed contributions along each of the p aforementioned axes,
plus a constant offset d.

Although the relationship between the low- and high-dimensional
spaces is mathematically well defined, it is difficult to picture this
relationship without knowing the direction and scale of the axes
defined by the columns of C. For example, any point in two-
dimensional space can be represented as a linear combination of
arbitrary two-dimensional vectors w1 and w2, provided that the two

5 A colon in the subscript denotes all elements in a particular row or column.
For example, x:,t specifies all elements in the tth column of X, whereas xi,:

specifies all elements in the ith row of X.

6 This can be seen mathematically in Eq. A7, where K� defines the scale of
X. The scale of Y depends on the product C� K� C� �, not on K� and C� individually.
Thus any scaling on K� can be compensated by appropriately scaling C� .

7 The GP noise variance �n,i
2 must be nonzero to ensure that Ki is invertible.

If �n,i
2 � 1, there is no correlation across time and GPFA becomes FA.
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vectors are not scaled versions of each other. If w1 and w2 are neither
orthogonal nor of unit length, understanding how the two vectors are
linearly combined to form different points can be nonintuitive. Thus
points in two-dimensional space are typically referred to using their
(x, y) Cartesian coordinates. These coordinates specify how unit
vectors pointing along the x and y axes (i.e., orthonormal vectors)
should be linearly combined to obtain different points in the two-
dimensional space. This provides an intuitive specification of points in
the two-dimensional space. In GPFA, the columns of C are not
orthonormal, akin to the arbitrary w1 and w2. The following para-
graphs describe how to orthonormalize the columns of C in GPFA to
make visualization more intuitive. This is akin to expressing two-
dimensional points in terms of their (x, y) Cartesian coordinates.

In the case of PCA, the identified principal directions are orthonor-
mal, by definition. It is this orthonormal property that yields the
intuitive low-dimensional visualization—i.e., the intuitive mapping
between the low-dimensional principal components space and high-
dimensional data space. Although the columns of C are not con-
strained to be orthonormal for GPFA, we can still obtain an intuitive
“PCA-like” mapping between the two spaces for ease of visualization.
The basic idea is to find a set of orthonormal basis vectors spanning
the same space as the columns of C. This is akin to finding the unit
vectors that point along the two Cartesian axes from the arbitrary w1

and w2, in the preceding example. This orthonormalization procedure
does not alter the GPFA model-fitting procedure nor the extracted
neural trajectories; it simply offers a more intuitive way of visualizing
the extracted trajectories.

The orthonormalization procedure involves applying the singular
value decomposition (Strang 1988) to the learned C. This yields C �
UDV�, where U � �q�p and V � �p�p each have orthonormal
columns and D � �p�p is diagonal. Thus, we can write Cx:,t �
U(DV�x:,t) � Ux̃:,t, where x̃:,t � DV�x:,t � �p�1 is the orthonormal-
ized neural state at time point t. Note that x̃:,t is a linear transformation
of x:,t. The orthonormalized neural trajectory extracted from the
observed activity Y is thus DV� E [X � Y]. Since U has orthonormal
columns, we can now intuitively visualize the trajectories extracted by
GPFA, in much the same spirit as for PCA.

There is one other important advantage of the orthonormalization
procedure. Whereas the elements of x:,t (and the corresponding col-
umns of C) have no particular order, the elements of x̃:,t (and the
corresponding columns of U) are ordered by the amount of data
covariance explained, analogous to PCA. Especially when the number
of state dimensions p is large, the ordering facilitates the identification
and visualization of the dimensions of the orthonormalized neural
trajectory that are most important for explaining the recorded activity.
The ordering is made possible by the singular value decomposition,
which specifies the scaling of each of the columns of U in the diagonal
entries of D (i.e., the singular values). If these diagonal entries are
arranged in decreasing order, then the columns of U specify directions
in the high-dimensional space in order of decreasing data covariance
explained. Overall, the orthonormalization procedure allows us to
view the neural trajectories extracted by GPFA using PCA-like
intuition.8 In particular, the low-dimensional axes are ordered and can
be easily pictured in the high-dimensional space. These concepts are
illustrated in Fig. 2, C and D, where S1 and S2 correspond to the first
two dimensions of the orthonormalized neural state x̃:,t.

REDUCED GPFA. According to Eq. 2, each neural state dimension
indexed by i has its own characteristic timescale �i. This implies that
a GPFA model with a p-dimensional neural state possesses a total of
p timescales. However, there may be cases where the number of

timescales needed to describe the data exceeds the number of state
dimensions. For example, it may be that a system uses only two
degrees of freedom (i.e., two state dimensions), but evolves over time
with a wide range of different speeds that cannot be well captured
using only two timescales. Here, we describe a way to obtain a GPFA
model whose number of timescales p exceeds the effective state
dimensionality p̃. First, a GPFA model with state dimensionality p is
fit using the EM algorithm. Next, the orthonormalization procedure
described earlier is applied, yielding the orthonormalized neural state
x̃:,t � �p�1. Note that, although each dimension of x:,t possesses a
single characteristic timescale, each dimension of x̃:,t represents a
mixture of p timescales. Because the dimensions of x̃:,t are ordered by
the amount of data covariance explained, we can choose to retain only
the top p̃ dimensions of x̃:,t (p̃ � 1, . . . , p) and to discard the
remaining lowest dimensions. This yields a p̃-dimensional neural
trajectory for the reduced GPFA model.

Dynamical systems approaches

Another way to extract neural trajectories is by defining a paramet-
ric dynamical model that describes how the low-dimensional neural
state evolves over time. A hidden Markov model (HMM) is a
dynamical model in which the state jumps among a set of discrete
values. HMMs have been fruitfully applied to study single-trial neural
population activity in monkey frontal cortex (Abeles et al. 1995; Gat
et al. 1997; Seidemann et al. 1996), rat gustatory cortex (Jones et al.
2007), monkey premotor cortex (Kemere et al. 2008), and songbird
premotor areas (Danóczy and Hahnloser 2006; Weber and Hahnloser
2007). In many experimental contexts, it is desirable to allow for a
continuous-valued state, rather than one that jumps among a set of
discrete values. Even in settings where the experimental paradigm
defines discrete states (e.g., Fig. 1A, one state per percept or decision),
there are advantages to using continuous-valued states. Whereas a
HMM would indicate when the switches occur in Fig. 1A, a dynamical
model with continuous-valued states would allow one to study the
details of how the switching is carried out—in particular, along what
path and how quickly. Although it is always possible to define the
HMM with a larger number of discrete states to approximate a model
with continuous-valued states, such an approach is prone to overfitting
and requires appropriate regularization (Beal et al. 2002).

A commonly used dynamical model with continuous-valued state is
a first-order linear autoregressive (AR) model (Kulkarni and Paninski
2007; Smith and Brown 2003), which captures linear Markovian
dynamics. Such a model can be expressed as a Gaussian process, since
the state variables are jointly Gaussian. This can be shown by defining
a separate first-order AR model for each state dimension indexed by
i � {1, . . . , p}

xi,t�1 � xi,t � ��aixi,t, �i
2� (4)

Given enough time (t3 	) and � ai� � 1, the model will settle into a
stationary state that is equivalent to Eq. 2 with

Ki�t1, t2� �
�i

2

1 � ai
2 ai

�t1�t2� (5)

as derived elsewhere (Turner and Sahani 2007). The first-order AR
model described by Eqs. 2 and 5, coupled with the linear-Gaussian
observation model Eq. 1, will henceforth be referred to as “LDS”
(linear dynamical system). Different covariance structures Ki can be
obtained by going from a first-order to an nth-order AR model. One
drawback of this approach is that it is usually not easy to construct an
nth-order AR model with a specified covariance structure. In contrast,
the GP approach requires only the specification of the covariance
structure, thus allowing different smoothing properties to be applied in
a seamless way. AR models are generally less computationally de-
manding than those based on GP, but this advantage shrinks as the

8 This orthonormalization procedure is also applicable to PPCA and FA. In
fact, it is through this orthonormalization procedure that the principal direc-
tions found by PPCA are equated with those found by PCA. In general, the
solutions found by PPCA and FA are unique up to an arbitrary rotation of the
low-dimensional space. The orthonormalization procedure resolves this ambi-
guity.
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order of the AR model grows. Another difference is that Eq. 5 does
not contain an independent noise term �n,i

2 ��t1,t2
as in Eq. 3. The

innovations noise �i
2 in Eq. 4 is involved in setting the smoothness of

the time series, as shown in Eq. 5. Thus, Eq. 4 would need to be
augmented to explicitly capture departures from the AR model.

One may also consider defining a nonlinear dynamical model (Yu
et al. 2006), which typically has a richer set of dynamical behaviors
than that of linear models. The identification of the model parameters
provides insight into the dynamical rules governing the time evolution
of the system under study. However, especially in exploratory data
analyses, it may be unclear what form this model should take. Even if
an appropriate nonlinear model can be identified, using it to extract
neural trajectories may require computationally intensive approxima-
tions and yield unstable model-fitting algorithms (Yu et al. 2006). In
contrast, the model-fitting algorithm for GPFA is stable, approxima-
tion-free, and straightforward to implement. The use of GPFA can be
viewed as a practical way of going beyond a first-order linear AR
model without having to commit to a particular nonlinear system,
while retaining computational tractability.

Relative to previously proposed models in the machine learning
literature, GPFA is most similar to the semiparametric latent factor
model (Teh et al. 2005), where the GPFA model can be obtained by
letting time indices play the role of inputs. Although GPFA involves
Gaussian processes and latent variables, it is quite different from the
Gaussian process latent variable model (GP-LVM) (Lawrence 2005).
The GP-LVM uses Gaussian processes to define a nonlinear relation-
ship between the latent and the observed variables. In that case, the
GP smoothing is defined by how close two points are in the latent
space. In contrast, GPFA defines a linear mapping between the latent
and observed variables; the GP smoothing is defined by how close two
points are in time (Lawrence and Moore 2007). GPFA is also quite
different from Gaussian process dynamical models (GPDM) (Wang
et al. 2006). Whereas GPDM extends Markovian linear AR models to
the nonlinear regime (while remaining Markovian), GPFA extends to
the non-Markovian regime (while remaining linear) with arbitrary
temporal covariance structures. As with GP-LVM, GPDM defines a
nonlinear relationship between the latent and observed variables.

Delayed-reach task and neural recordings

Animal protocols were approved by the Stanford University Insti-
tutional Animal Care and Use Committee. We trained an adult male
monkey (Macaca mulatta, monkey G) to perform delayed center-out
reaches for juice rewards. Visual targets were back-projected onto a
frontoparallel screen about 30 cm in front of the monkey. The monkey
touched a central target and fixated his eyes on a crosshair at the upper
right corner of the central target. After a center hold period of 1,000
ms, a pseudorandomly chosen peripheral reach target was presented at
one of 14 possible locations (directions: 0, 45, 90, 135, 180, 225,
315°; distances: 60, 100 mm).9 After a randomly chosen instructed
delay period, the “go” cue (signaled by both the enlargement of the
reach target and the disappearance of the central target) was given and
the monkey reached to the target. In the present work, we analyzed
data from two experiments that differ only in the distribution of delay
periods used. Whereas experiment G20040123 used delay periods in
the range 200–700 ms, experiment G20040124 used three discrete
delay periods of 30, 130, and 230 ms. Eye fixation at the crosshair was
enforced throughout the delay period. After a hold time of 200 ms at
the reach target, the monkey received a liquid reward.

During experiments, monkeys sat in a custom chair (Crist Instru-
ments, Hagerstown, MD) with the head braced and the nonreaching
arm strapped to the chair. The presentation of the visual targets was
controlled using the Tempo software package (Reflective Computing,

St. Louis, MO). A custom photodetector recorded the timing of the
video frames with 1-ms resolution. The position of the hand was
measured in three dimensions using the Polaris optical tracking system
(Northern Digital, Waterloo, Ontario, Canada; 60 Hz, 0.35-mm accuracy),
whereby a passive marker taped to the monkey’s fingertip reflected
infrared light back to the position sensor. Eye position was tracked
using an overhead infrared camera (Iscan, Burlington, MA; 240 Hz,
estimated accuracy of 1°).

A 96-channel silicon electrode array (Cyberkinetics, Foxborough,
MA) was implanted straddling dorsal premotor (PMd) and motor
(M1) cortex in the right hemisphere, contralateral to the reaching arm.
Surgical procedures have been described previously (Churchland et al.
2006). An intraoperative photo showing the exact location of array
implantation can be found in Batista et al. (2007). We manually
discriminated spike waveforms at the start of each session using two
time–amplitude window discriminators on each channel. Isolations
were tagged as either single unit or multiunit based on visual inspec-
tion of their quality during the experiment. On this particular electrode
array, we found several groups of electrodes that yielded nearly
identical (or highly similar) spike trains. Although the source of this
electrode “cross talk” is currently unclear, we speculate that it may be
due to faulty electrical isolation among the channels either in the
pedestal connectorization, in the wire bundle leading out of the array,
or in the array itself. It is unlikely that two adjacent electrodes
recorded from the same neuron(s), given the distance between adja-
cent electrodes (400 	m). We have observed such cross talk on a few
different electrode arrays. For prosthetic decoding (e.g., of arm tra-
jectories), this is typically not a major concern, since it simply gives
the repeated unit(s) a greater influence on the decoded result. For
extracting neural trajectories, this is a major problem, since the goal is
to identify structure in the correlated activity across the neural pop-
ulation. If two units have identical (or nearly identical) activity, one of
the dimensions of the neural trajectory is likely to be dedicated to
describing this spurious, strong correlation between the pair of units.
Thus, before analyzing the data, we checked all pairs of the 96
electrodes for cross talk by computing the percentage of coincident
spikes (allowing for 
1-ms jitter) for each pair. Across all pairs, this
yielded a clear, bimodal distribution. On this electrode array, we
found cross talk in three electrode pairs, two triplets, and one qua-
druplet. We thus removed 10 of the 96 channels before any of the
analyses described in this paper were performed.

The analyses in the present work are concerned primarily with
the neural activity during the delay period. However, many of our
isolations showed the strongest modulation during the movement
period and/or showed weakly modulated delay-period activity. A
single unit or multiunit was thus included in our analyses only if
1) it possessed tuned (P � 0.1) delay-period activity with reason-
able modulation (
5 spikes/s difference between the most and
least responsive conditions) and 2) the delay-period firing rate
averaged across all conditions was 
20% of the movement-period
firing rate averaged across all conditions. For these assessments,
the delay-period firing rate was computed in a 200-ms window
starting 150 ms after reach target presentation, whereas the move-
ment-period firing rate was computed in a 300-ms window starting
100 ms this paper movement onset.

In total, we analyzed 784 (910) trials for experiment G20040123
(G20040124), comprising 18 (18) single units and 43 (44) multiunits.
The distribution of reaction times, defined as the time between the go
cue and movement onset, had mean 
 SD of 293 
 48 ms (329 
 54
ms). The arm movement durations were 269 
 40 ms (280 
 44 ms).
Both data sets have previously appeared (Churchland et al. 2006). We
have explicitly chosen to analyze the same data sets here to uncover
the single-trial substrates of the trial-averaged effects reported in our
previous studies.

9 Reach targets were not presented directly below the central target (i.e.,
direction: 270°) since they would be occluded by the monkey’s hand while he
is touching the central target.
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R E S U L T S

We considered neural data for one reach target at a time,
ranging from 200 ms before reach target onset to movement
end. This period comprised the randomly chosen delay period
following reach target onset, the monkey’s reaction time, and
the duration of the arm reach. Spike counts were taken in
nonoverlapping 20-ms bins, then square-rooted.10 For the two-
stage methods, these square-rooted counts were first smoothed
over time using a Gaussian kernel before being passed to a
static dimensionality-reduction technique: PCA, PPCA, or FA.
LDS and GPFA were given the square-rooted spike counts
with no kernel presmoothing.

Using the goodness-of-fit metric described in METHODS, we can
compare different degrees of smoothness, dimensionality-reduc-
tion techniques (PCA, PPCA, and FA), and state dimensionalities
for the two-stage methods. Figure 5A shows the prediction error
for PCA (dashed red), PPCA (solid red), and FA (green) across
different state dimensionalities (p � 3, 5, 10, 15) with a kernel
width of 50 ms. Alternatively, we can fix the state dimensionality
(p � 10 in Fig. 5B; p � 15 in Fig. 5C) and vary the kernel width.
There are two primary findings for the two-stage methods. First,
PCA, PPCA, and FA yielded progressively lower prediction error
(Wilcoxon paired-sample test, P �0.001). Statistical significance
was assessed by looking across the 14 reach targets; for each reach
target, we obtained the prediction error for each method at its
optimal state dimensionality and kernel width. FA outperforms
PCA and PPCA because it allows different neurons to have
different noise variances. Recall that prediction errors were eval-
uated based on data not used for model-fitting (i.e., cross-vali-
dated), so this result cannot simply be due to FA having more

parameters. PCA has the worst performance because it has no
explicit noise model and is thus unable to distinguish between
changes in the underlying neural state and spiking noise. Second, for
these data, the optimal smoothing kernel width was approximately 40
ms for both PPCA and FA, as indicated by Fig. 5, B and C.

The same metric can be used to compare the two-stage
methods with LDS and GPFA. As indicated in Fig. 5, LDS
(blue) yielded lower prediction error than the two-stage meth-
ods (Wilcoxon paired-sample test, P �0.001). Furthermore,
GPFA (dashed black) outperformed LDS and the two-stage
methods (Wilcoxon paired-sample test, P �0.001). As before,
statistical significance was assessed by looking across the 14
reach targets; for each reach target, we obtained minimum
prediction error for each method (LDS and GPFA) at its
optimal state dimensionality. The prediction error was further
reduced by taking only the top p̃ orthonormalized state dimen-
sions of a GPFA model fit with p � 15 (reduced GPFA, solid
black). Among the methods for extracting neural trajectories
compared in this work,11 reduced GPFA produced the lowest
prediction error (Wilcoxon paired-sample test, P �0.001).
Further insight regarding the performance of the reduced
GPFA model is provided in the following text.

Based only on Fig. 5, it is difficult to assess the benefit of
GPFA relative to competing methods in terms of percentage
improvement in prediction error. The reason is that we do not
know what the theoretical lower limit on the prediction error is
for real neural data. It would be incorrect to compute the
percentage improvement in terms of distance from zero error.
Thus, we performed a simulation (described in the APPENDIX

and Fig. A2) in which the error floor can be computed. Based

10 All major trends in Fig. 5 were preserved without the square-root
transform. We also considered smoothing spike trains directly (i.e., without
binning) for the two-stage methods, which yielded results nearly identical to
those of smoothing (non-square-rooted) spike counts. In the present work, the
spikes are binned because this allows the square-root transform to be used, as
described in METHODS.

11 For comparison, one may also consider computing the prediction error
using the trial-averaged neural responses from the training data. However,
trial-averaging is possible only if the experimental timing is identical on
different trials. For the data being analyzed here, across-trial averaging is not
possible because different trials have different delay periods, reaction times,
and arm movement durations.
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FIG. 5. Prediction errors of two-stage methods (PCA, dotted red; PPCA, solid red; FA, green), linear dynamical system (LDS, blue), GPFA (dashed black),
and reduced GPFA (solid black), computed using 4-fold cross-validation. A: prediction errors for different state dimensionalities. For two-stage methods,
prediction errors shown for 50-ms kernel width (SD of Gaussian kernel). For reduced GPFA, the horizontal axis corresponds to p̃ orthonormalized dimensions
of a GPFA model fit with p � 15. Star indicates minimum of solid black curve. Denser sampling of kernel widths shown for B: p � 10 and C: p � 15. Note
that the dashed and solid black lines are overlaid in C, by definition. Analyses in this figure are based on 56 trials and q � 61 units for the reach target at distance
100 mm and direction 45°, Experiment G20040123.
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on this error floor (which was far above zero), we found that
GPFA provided tens of percent improvement in prediction
error relative to that of the best two-stage method. This sug-
gests that GPFA may have a similar percentage improvement
for the real neural data shown in Fig. 5.

Figure 6 shows the neural trajectories E [X � Y] (Eq. A5)
extracted by GPFA with p � 15. Each panel corresponds to a
different neural state dimension, which evolves over time
according to its own characteristic timescale �i that is learned
from the data. For example, the timescales for the first five
dimensions in Fig. 6 are 54, 160, 293, 173, and 111 ms.
Although we have obtained a substantial reduction in dimen-
sionality in going from the 61-dimensional recorded neural
responses to the 15-dimensional neural trajectories, it is still
difficult to gain intuition about how the neural responses are
evolving over time based solely on Fig. 6, for two reasons.
First, the dimensions of the neural state are not ordered; thus,
we do not know whether certain state dimensions are more
important than others for explaining the activity across the
neural population. Second, although each state dimension cor-
responds to a column of C, one cannot readily picture how the
low-dimensional neural trajectories would appear if mapped
out into the high-dimensional space using Eq. 1. The reason is
that the columns of the learned C may have different scalings
and are not guaranteed to be mutually orthogonal.

These difficulties can be overcome by applying the orthonor-
malization procedure described in METHODS based on the sin-
gular value decomposition of C. The resulting orthonormalized
neural trajectories are shown in Fig. 7, where each panel
corresponds to an orthonormalized state dimension and in-
volves a mixture of timescales. Importantly, the panels are
arranged in decreasing order of data covariance explained. This
ordering is apparent in Fig. 7 if one considers the range of
values explored by the orthonormalized neural trajectory along

each of its dimensions. The top orthonormalized dimensions
indicate fluctuations in the recorded population activity shortly
after target onset (red dots) and again after the go cue (green
dots). Furthermore, the neural trajectories around the time of
the arm movement are well aligned on movement onset. These
observations are consistent with previous analyses of the same
data (Churchland et al. 2006), as well as other studies of neural
activity collected during similar tasks in the same cortical
areas. Note that the neural trajectories in Fig. 7 are remarkably
similar (but not identical) on different trials, even though 1) the
spike timing differs across repeated trials and 2) there is no
constraint built into GPFA requiring that neural trajectories
should trace out similar paths on different trials. The orthonor-
malized dimensions x̃1,: and x̃2,: are analogous to S1 and S2,
respectively, in Fig. 2. Unlike in Fig. 2D, where the trajectory
is plotted in the space of S1 versus S2, each orthonormalized
dimension is plotted versus time in Fig. 7 to show more than
just the top two (or three) dimensions.

The range of values explored by the trajectories in each
orthonormalized dimension is analogous to the variance ex-
plained by each principal component in PCA. A common way
to estimate the data dimensionality with PCA is to look for an
“elbow” in the residual variance curve. Such an “elbow,” if it
exists, is typically considered to separate the signal dimensions
from the noise dimensions. Similarly, we can obtain a rough
estimate of the data dimensionality with GPFA by counting the
number of top orthonormalized dimensions showing “mean-
ingful” time-varying structure in Fig. 7. Although the top six
dimensions show strong temporal structure, it is unclear by eye
whether the lower dimensions are needed to describe the
population response. The number of “meaningful” dimensions
can be rigorously quantified by computing the prediction error
based only on the top p̃ orthonormalized dimensions (reduced
GPFA), as described in METHODS. In Fig. 5A (solid black), we

FIG. 6. Neural trajectories for GPFA with p � 15. Each panel corresponds to one of the 15 dimensions of the neural state, which is plotted vs. time. The neural
trajectory for one trial comprises one black trace from each panel. Dots indicate time of reach target onset (red), go cue (green), and movement onset (blue).
Due to differing trial lengths, the traces on the left/right half of each panel are aligned on target/movement onset for clarity. However, the GPFA model was fit
using entire trials with no gaps. Note that the polarity of these traces is arbitrary, as long as it is consistent with the polarity of C. Each trajectory corresponds
to planning and executing a reach to the target at distance 100 mm and direction 45°. For clarity, only 10 randomly chosen trials with delay periods �400 ms
are plotted. Experiment G20040123, q � 61 units.
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found that the prediction error continued to decrease as more
orthonormalized dimensions (x̃1,:, x̃2,:,. . .) were included, up to
x̃10,:. This indicates that dimensions x̃1,: to x̃10,: contain mean-
ingful structure for explaining the population response. Beyond
x̃10,:, adding additional dimensions increased the prediction
error, indicating that the weak temporal structure seen in these
lowest orthonormalized dimensions is primarily “noise.” Thus,
the solid black line reaches its minimum at p̃ � 10 (referred to
as p*). By definition, the solid and dashed black lines coincide
at p̃ � 15.

Figure 5A also shows that prediction error using only the top
10 orthonormalized dimensions (solid black, p̃ � 10) is lower
than that obtained by directly fitting a GPFA model with a
10-dimensional neural state (dashed black, p � 10). This can
be understood by recalling that each panel in Fig. 7 represents
a mixture of 15 characteristic timescales. Thus, the top 10
orthonormalized dimensions can make use of up to 15 time-
scales. In contrast, a GPFA model fit with p � 10 can have at
most 10 timescales. By fitting a GPFA model with a large
number of state dimensions p (each with its own timescale) and
taking only the top p̃ � p* orthonormalized dimensions, we
can obtain neural trajectories whose effective dimensionality is
smaller than the number of timescales at play.

Based on the solid black line in Fig. 5A we consider the
effective dimensionality of the recorded population activity to be
p* � 10. In other words, the linear subspace within which the
recorded activity evolved during reach planning and execution for
this particular target was 10-dimensional. Across the 14 reach
targets, each considered separately, the effective dimensionality
ranged from 8 to 12, with a mode of 10. All major trends seen in
Fig. 5 were preserved across all reach targets.

Having developed a method for extracting low-dimensional
neural trajectories that yields lower prediction error than existing
methods, we sought to apply it to study neural population activity
on a trial-by-trial basis. We previously showed that the across-trial
neural variability decreased during reach planning (Churchland

et al. 2006), which led to the conception that the underlying neural
trajectories (indexing the process of motor planning) may be
converging over time. However, this effect could only be inferred
indirectly by collapsing over many neurons and trials. Using the
methods described in the present work, we can now track the
progress of motor planning on single trials and directly view their
convergence over time. Figure 8 shows neural trajectories plotted
in the space of the top three orthonormalized state dimensions
(corresponding to the first three panels of Fig. 7). The extent to
which these trajectories converged during reach planning can be
quantified by comparing the spread of neural states at target onset
(red dots) to that at the go cue (green dots). These spreads are
described by the covariance ellipsoids about the scatter of neural
states at each of these time points, shown as shaded ellipses in Fig.
8. Formally, we computed the volume of the covariance ellipsoid,
defined by the square root of the determinant of the covariance
matrix. To compare the spreads at two different time points, we
took the ratio of volumes of the two covariance ellipsoids. We
computed the ratio of volumes using the top p* orthonormalized
dimensions (in this case, 10), rather than just the top three
orthonormalized dimensions shown in Fig. 8. It is essential to
compute volumes (and perform other analyses) in the space of
optimal dimensionality p*, since important features of the trajec-
tories can be lost by using only a subset of its dimensions. To
compare this result across different reach targets that may have
different p*, we then took the p* th root of this ratio to obtain a
“ratio per dimension.” Only trials with delay periods �400 ms,
for which there is enough time for the motor planning process to
come to completion, were included in this analysis.

For the reach target considered in Figs. 7 and 8, the ratio per
dimension from target onset to the go cue was 1.34.12 Across

12 If computed improperly using only the top three orthonormalized dimen-
sions rather than the top p* orthonormalized dimensions, the ratio per dimen-
sion would be 1.01. In other words, there is nearly no decrease in volume
between the spread of the red dots and that of the green dots in the top three
orthonormalized dimensions shown in Fig. 8.

FIG. 7. Orthonormalized neural trajectories for GPFA with p � 15. These are the same 10 trials shown in Fig. 6. Each panel corresponds to one of the 15
dimensions of the orthonormalized neural state, which is plotted vs. time. The orthonormalized neural trajectory for one trial comprises one black trace from
each panel. Note that the polarity of these traces is arbitrary, as long as it is consistent with the polarity of U. Figure conventions identical to those in Fig. 6.
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the 14 reach targets, the ratio per dimension was 1.31 
 0.13
(mean 
 SD). The mean of this distribution was greater than
unity (one-sided t-test, P �0.001), indicating that the neural
state converged during reach planning. From the go cue (green
dots) to movement onset (blue dots), the neural state further
converged (one-sided t-test, P �0.001), a finding that is also
consistent with that of Churchland et al. (2006). In this case,
the ratio per dimension was 1.17 
 0.14 (mean 
 SD) across
the 14 reach targets. Since the columns of U are orthonormal, the
same volumes can be obtained by first mapping the neural
trajectories into the high-dimensional space using U (yielding
denoised high-dimensional data) and computing the volumes
there. Because firing rates and the associated spiking noise
variances tend to rise after target onset (Churchland et al.
2006), the spread of raw spike counts (with no smoothing or
dimensionality reduction) in the high-dimensional space at the
time of the go cue would be larger than that at the time of target
onset.

Previous reports have shown that reaction times tend to be
shorter on trials with longer delay periods, suggesting that
some time-consuming motor preparatory process is given a
head start during the delay (Churchland et al. 2006; Crammond
and Kalaska 2000; Riehle and Requin 1989). In these studies,
evidence is provided by the trial-averaged response of single
neurons or a one-dimensional time course (e.g., the average
firing rate or the Fano factor) collapsed across the neural

population. The methods presented in this work allow us to
view such effects in a multidimensional neural state space on
single trials. We applied GPFA to a data set with three discrete
delay periods of 30, 130, and 230 ms. With these short delay
periods, we can visualize the effect of the go cue arriving at
different times during the early stages of motor preparation.
The GPFA model with p � 15 was fit to trials of all delays
periods together. Figure 9 shows the extracted orthonormalized
neural trajectories with trials grouped by delay period. Recall
that the orthonormalized dimensions are ordered; within each
row, the panels are arranged in decreasing order of data
covariance explained. The panels in the first column (x̃1,:)
appear to be largely capturing the movement-related neural
activity (the ramp to the right of the green dots). The panels in
the second column (x̃2,:, left dotted box) suggest that, prior to
movement onset, the orthonormalized neural state must move
from a baseline state (red dots) to a state appropriate for
movement (blue dots) along this dimension. With a 30-ms
delay period, nearly the entire traversal from baseline state to
movement state occurs after the go cue (green dots). In con-
trast, with a 230-ms delay, the neural state performs part of the
traversal during the delay period and appears to hold while
waiting for the go cue. When the go cue arrives, the remainder
of the traversal is carried out. If there is a limit on how quickly
firing rates (and therefore the neural state) can change over
time, then one would expect the reaction times (i.e., the time
between the green and blue dots) to be longer for the 30-ms
delays than for the 230-ms delays. Indeed, we found that the
reaction times for the 30-ms delays were greater than those for
the 230-ms delays (P �0.01, t-test) (Churchland et al. 2006).
Comparing the panels in the fourth column (x̃4,:, right dotted
box), the neural state appears to trace out a similar path along
that orthonormalized dimension following target onset, regard-
less of when the go cue arrives. Kalaska and colleagues
(Crammond and Kalaska 2000) previously reported single
PMd neurons with similar response properties, whereby a
phasic response was emitted only after the first signal with
instructional value in reaction-time (analogous to 30-ms delay)
and instructed-delay (analogous to 230-ms delay) reach trials.
The phasic response was interpreted as information processing
that would not need to occur after the go cue if given enough
time to be carried out during the delay period. Although we
cannot rule out that the “phasic response” seen in the fourth
column of Fig. 9 is primarily a sensory response (to the
appearance of the reach target) rather than motor processing,
such visualizations provide invaluable intuition for the re-
corded activity and suggest tantalizing hypotheses that can be
further investigated in future studies.

The methods developed here provide a concise summary of
the activity recorded across a neural population on a single
trial. By extracting such a summary (i.e., the neural trajectory)
for each trial, we can readily compare how the neural activity
observed on one trial differs from that observed on other trials
and possibly link such differences to the subject’s behavior.
Such a comparison would be onerous based solely on the raw
spike trains recorded simultaneously from tens to hundreds of
neurons. The power of this approach is illustrated in Fig. 9.
Among the trials with 30-ms delay, one particular trial was
readily identified as an outlier, whose neural trajectory (red
traces) appeared very different from the trajectories on other
trials. Note that the visualization is extracted from neural

FIG. 8. Top 3 dimensions of orthonormalized neural trajectories for GPFA
with p � 15. Each gray trace corresponds to a single trial (same 10 trials as
in Figs. 6 and 7). Small gray dots are time points separated by 20 ms. Larger
dots indicate time of reach target onset (red), go cue (green), and movement
onset (blue). Ellipses (two SD around mean) indicate the across-trial variability
of neural state at reach target onset (red shading), go cue (green shading), and
movement onset (blue shading). These ellipses can be obtained equivalently in
two ways. One can either first project the neural states from the optimal
10-dimensional space into the 3-dimensional space shown, then compute the
covariance ellipsoids in the 3-dimensional space; or, one can first compute the
covariance ellipsoids in the 10-dimensional space, then project the ellipsoids
into the 3-dimensional space. The covariance ellipsoids were computed based
on all 45 trials with delay periods �400 ms for this reach target.
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activity alone, with no experimental timing or behavioral
information provided. Can we relate this outlying trajectory to
the subject’s behavior? Indeed, when we labeled the neural
trajectories with experimental timing markers (red, green, and
blue dots), it became clear that the reaction time (i.e., the time
between the green and blue dots) on the outlying trial was
much longer than that on the other trials. However, the neural
activity around the time of the arm movement on the outlying
trial matched well with that on the other trials (seen by aligning
the trajectories in time based on the blue dots). This neural
activity is presumably related to generating the arm movement
and it is thus sensible that it is time-locked to movement onset
(blue dots). Such visualizations are invaluable when screening
large volumes of neural data and during exploratory data
analyses. While this outlying trial provides a particularly illus-
trative example of how differences in the neural trajectories
can be indicative of differences in single-trial behavior, we
hope to relate more subtle properties of the neural trajectories
to the subject’s behavior in future studies.

D I S C U S S I O N

In this work, we have extended existing two-stage methods
and developed a new method (GPFA) for extracting single-trial
neural trajectories from neural population activity. For the
two-stage methods, we introduced 1) dimensionality-reduction
techniques PPCA and FA, which explicitly account for spiking
noise; 2) the square-root transform, which approximately sta-
bilizes the spiking noise variance across neurons and across
time; and 3) a goodness-of-fit metric, which allows for the
degree of smoothing to be chosen in a principled way and for
different extraction methods to be objectively compared. We
then presented GPFA, which unifies the smoothing and dimen-

sionality-reduction operations in a common probabilistic frame-
work without any loss in predictive power compared to the best
two-stage method. We applied these methods to neural activity
recorded during a delayed-reach task in premotor and motor
cortices. We found that 1) the 61-dimensional recorded activity
could be succinctly captured by neural trajectories that evolve
within a far lower dimensional (8- to 12-dimensional) space;
2) the single-trial trajectories converged over time during
motor planning, an effect that was shown indirectly by previ-
ous studies; and 3) properties of the trajectories could be
related to the subject’s behavior on a single-trial basis.

One of the advantages of GPFA over the two-stage methods
is that the degree of smoothing (defined by the characteristic
timescales �i) and the relationship between the low-dimen-
sional neural trajectory and the high-dimensional recorded
activity (defined by C in Eq. 1) can be jointly optimized. For
the two-stage methods, the relationship between the low- and
high-dimensional spaces is optimized given that the neural data
have already been presmoothed in some way (e.g., using a
Gaussian kernel with a predetermined kernel width). This
suggests a “brute-force” approach to joint optimization by
presmoothing the neural data in different ways, then optimiz-
ing the relationship between the two spaces in each case.
However, the brute-force approach can be carried out only if
the search space of different ways to presmooth the neural data
is not too large. For example, allowing each neuron to have its
own smoothing kernel width would only be tractable for small
numbers of neurons. In Fig. 5, B and C (red and green lines),
we were able to carry out this brute-force search for the
two-stage methods by assuming that all neurons have the same
smoothing kernel width, effectively collapsing 61 parameters
down to one parameter. Despite this brute-force approach to
joint optimization and restricting all neurons to the same
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FIG. 9. Orthonormalized neural trajectories for trials with discrete delay periods of 30 ms (top row), 130 ms (middle row), and 230 ms (bottom row). The
red traces in the top row correspond to a single trial with an outlying reaction time (reaction time: 844 ms, trial ID 68). The top 5 orthonormalized dimensions
of a GPFA model fit with p � 15 are shown for each delay period; the remaining orthonormalized dimensions are qualitatively similar to dimensions 6 to 15
in Fig. 7. Dotted boxes highlight the 2nd and 4th orthonormalized dimensions, which are referred to in RESULTS. For clarity, only 10 randomly chosen trials of
each delay period are plotted, aligned on target onset. All trials shown correspond to the reach target located at distance 100 mm and direction 45°. Figure
conventions are otherwise identical to those in Fig. 6. There is a small amount of temporal jitter in the green points due to the refresh rate of the visual display
projector. Experiment G20040124, q � 62 units.

Innovative Methodology

628 YU, CUNNINGHAM, SANTHANAM, RYU, SHENOY, AND SAHANI

J Neurophysiol • VOL 102 • JULY 2009 • www.jn.org

 on January 26, 2010 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


smoothing kernel width, the best two-stage method (FA with a
40-ms smoothing kernel width) was able to extract neural
trajectories that look qualitatively similar to those extracted by
GPFA, shown in Figs. 7–9. It is reassuring that different
methods produce similar trajectories when applied to the same
data. However, when compared quantitatively, the best two-
stage method still yielded higher prediction error than that of
GPFA (Fig. 5). It remains to be seen how important this
difference in prediction error is in terms of one’s ability to
relate features of the neural trajectories to the subject’s behav-
ior. The leave-neuron-out prediction error is a general and
fundamental criterion for measuring how well a neural trajec-
tory captures the correlated firing rates across a neural popu-
lation. Depending on the goals of the visualization and scien-
tific questions being asked, there may be other reasonable
criteria for comparing different methods for extracting neural
trajectories.

It is tempting to try to relate the smoothing kernel width (40
ms) of the best two-stage method to the timescales �i learned
by GPFA, since the SE covariance has the same shape as the
Gaussian smoothing kernel. However, as shown in Fig. A1,
nearly all of the timescales learned by GPFA are �40 ms. This
apparent mismatch can be understood by considering the
equivalent kernel of the SE covariance (Sollich and Williams
2005), which takes on a sinc-like13 shape whose main lobe is
generally far narrower than a Gaussian kernel with the same
width parameter. It is therefore reasonable that the timescales
learned by GPFA are larger than the optimal smoothing kernel
width.

Because only the GP covariance structure needs to be
specified, GPFA is particularly attractive for exploratory data
analyses, where the rules governing the dynamics of the system
under study are unknown. Based on the trajectories obtained by
GPFA, one can then attempt to define an appropriate dynam-
ical model that describes how the neural state evolves over
time. Such an approach will allow us to reexamine, and
potentially advance, the dynamical systems approach we pre-
viously proposed (Yu et al. 2006). Compared with the two-
stage methods, the choice of GP covariance allows for more
explicit specification of the smoothing properties of the low-
dimensional trajectories. This is important when investigating
(possibly subtle) properties of the system dynamics. For ex-
ample, one may seek to ask whether the system exhibits
second-order dynamics by examining the extracted trajectories.
In this case, it is critical that second-order effects not be
built-in by the smoothness assumptions used to extract the
trajectories. With GPFA, it is possible to select a triangular GP
covariance that assumes smoothness in position, but not in
velocity. In contrast, it is unclear how to choose the shape of
the smoothing kernel to achieve this in the two-stage methods.

Whether a two-stage method or GPFA is used to extract
neural trajectories, one should critically evaluate the assump-
tions made by the extraction method before using it to answer
scientific questions. No method is assumption-free and one
must verify that the assumptions made by the method are not
trivially producing the observed effect (e.g., when studying
second-order dynamics). This often requires looking at the
same data with related methods that apply different assump-
tions to see whether the observed effect holds up. Even with

the same data, different scientific questions may call for the use
of different methods. Examples of such assumptions include
the choice of smoothing kernel or GP covariance, the use of the
square-root transform, the observation noise model, the linear
mapping between the low- and high-dimensional spaces,14 and
edge effects when estimating finite-duration neural trajectories.
To avoid possible artifacts introduced by the extraction
method, one may consider first generating hypotheses by
visualizing the low-dimensional neural trajectories, then test-
ing the hypotheses using the raw high-dimensional recorded
activity (e.g., Mazor and Laurent 2005). Although this ap-
proach is in principle “safer,” the high-dimensional recorded
activity is noisy and may mask subtle relationships that are
revealed only in the (denoised) low-dimensional neural trajec-
tories.

While being mindful of these caveats, based on our findings
described in this report, we believe that the GPFA framework
offers better single-trial characterization of population activity
and greater flexibility for testing different scientific hypotheses
relative to competing methods. Given a new data set with
neural activity recorded simultaneously across a neural popu-
lation, we suggest taking the following steps to extract and
visualize single-trial neural trajectories.

1) Signal conditioning: identify and remove electrode chan-
nels with cross talk (see METHODS), then spike sort remaining
channels.

2) Apply square-root transform to binned spike counts.
3) Fit the parameters of the GPFA model using the EM

algorithm, as detailed in the APPENDIX.
4) Using these parameters, extract neural trajectories

E [X � Y] (Eq. A6) from the observed activity Y.
5) Apply the orthonormalization procedure described in

METHODS to the neural trajectories. This step is critical for
visualization because it orders the dimensions of the low-
dimensional trajectory by the amount of data covariance ex-
plained.

6) Plot each dimension of the orthonormalized neural tra-
jectory versus time, as in Fig. 7. These time courses should be
inspected for qualitative agreement with prior analyses of the
same or related data sets. For example, one may expect firing
rates, and thus the neural state, to change shortly after stimulus
presentation. A rough estimate of the data dimensionality can
be obtained by counting the number of orthonormalized di-
mensions showing time-varying structure; the data dimension-
ality can be formally computed using the leave-neuron-out
prediction error described in METHODS.

7) Plot the top three (or any three) dimensions of the
orthonormalized neural trajectories in a three-dimensional state
space, as in Fig. 8.

Taken together, we consider steps 2 through 7 to be part of
the GPFA framework for extracting and visualizing neural
trajectories. Step 1 is necessary “best practices” when asking
scientific questions about electrode array data.

For visualization in three dimensions, Fig. 5 shows that it
is still better to fit a GPFA model with a large number of

13 The sinc function is defined as sinc(x) � sin(x)/x.

14 PCA, PPCA, FA, and GPFA all assume a linear relationship between the
low-dimensional state space and the high-dimensional space of square-rooted
spike counts. However, because the square-root transform is a nonlinear
operation, the identified manifold is nonlinear in the original high-dimensional
space of firing rates (or raw spike counts).
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state dimensions (in this case, p � 15) and take the top three
orthonormalized dimensions, rather than to fit a GPFA
model directly with p � 3. This allows the neural trajecto-
ries to make use of a large number of timescales, rather than
just three timescales. Although such a visualization is intu-
itively appealing, it is able to show only three selected
dimensions and thus may be missing important structure
contained in the dimensions not plotted. This can be par-
tially overcome by plotting different sets of three dimen-
sions, but we are seeking better ways to visualize higher-
dimensional trajectories.

The ability of the methods developed here to concisely
summarize the neural events on a single trial offers a powerful
tool for studying the time course of neural population activity.
We intend to apply these methods to data recorded during other
behavioral tasks and in other brain areas, as schematized in Fig.
1. This is enabled by the development and increasing adoption
of large-scale neural recording technologies, including multi-
electrode arrays and optical imaging techniques. Such analyses
should provide insights into the neural mechanisms underlying
cognitive processes (such as perception, decision making, at-
tention, and motor planning), which are not directly yoked to
observable quantities in the outside world and whose time
course may differ substantially from trial to trial. More gener-
ally, these methods can be applied in experimental settings
with no trial structure, such as in freely behaving animals
(Chestek et al. 2009; Eliades and Wang 2008; Jackson et al.
2007; Santhanam et al. 2007). In such settings, traditional data
analysis methods relying on trial-averaging are not applicable.
Instead, if large-scale neural recordings are available, the
methods presented here can be applied to track the subject’s
instantaneous neural state during a recording session.15 An-
other potential application of the developed methods is in
studies of learning. Whereas analyzing the activity of single
neurons can detect the presence of learning in neural activity,
it is often unclear how the activity across a neural population
is changing during the learning process and why such changes
might be advantageous. By tracking the subject’s instantaneous
neural state using the methods developed here, we may be able
to further our understanding of the neural mechanisms under-
lying learning.

Several extensions to the GPFA methodology can be envis-
aged. It may be possible to 1) couple the covariance structure
of the one-dimensional GPs, which would provide for a richer
description of the multidimensional neural state x:,t evolving
over time; 2) apply nonstationary GP covariances, since the
neural activity can be nonstationary; 3) allow for nonlinear
relationships between the low- and high-dimensional spaces;
and 4) incorporate point-process likelihood models (Truccolo
et al. 2005) with appropriate stimulus and spike history depen-
dence.

A P P E N D I X

GPFA model fitting

This section details how the parameters of the GPFA model are fit
using the EM algorithm, as well as the associated computational
requirements.

E-STEP. The E-step computes the relative probabilities P(X � Y) of all
possible neural trajectories X given the observed activity Y, using the
most recent parameter estimates. We will first find the joint distribu-
tion of X and Y, which is Gaussian by definition. The desired
conditional distribution P(X � Y) is therefore also Gaussian and can
then be obtained using the basic result of conditioning for jointly
Gaussian random variables.

Equations 1 and 2 can be reexpressed as

x� � ��0, K� � (A1)

y� � x� � ��C� x� � d� , R� � (A2)

where x� � [x�:,1 . . . x�:,T]� � �pT�1 is a concatenation of the
columns of X, and y� � [y�:,1 . . . y�:,T]� � �qT�1 is a concatenation of
the columns of Y. The block diagonal matrices C� � �qT�pT and
R� � �qT�qT comprise T blocks of C and R, respectively. The vector
d� � �qT�1 is a concatenation of T copies of d. The covariance matrix

K� � � K� 11 . . . K� 1T
···

· · ·
···

K� T1 . . . K� TT
� � �pT�pT (A3)

comprises blocks K� t1 t2
� diag {K1(t1, t2), . . . , Kp(t1, t2)} � �p�p,

where the diag operator returns a diagonal matrix whose nonzero
elements are given by its arguments, K� i (t1, t2) is defined in Eq. 3, and
t1, t2 � 1, . . . , T. One can interpret K� t1t2

as the covariance of the
neural states at time points t1 and t2. From Eqs. A1 and A2, the joint
distribution of x� and y� can be written

�x�
y�� � ���0

d��, � K�

C� K�
K� C� �

C� K� C� � � R��� (A4)

Using the basic result of conditioning for jointly Gaussian random
variables16

x� � y� � ��K� C� ��C� K� C� � � R� ��1�y� � d� �, K� � K� C� ��C� K� C� � � R� ��1C� K� �

(A5)

Thus, the extracted neural trajectory is

E�x� � y�
 � K� C� ��C� K� C� � � R� ��1�y� � d� � (A6)

From Eq. A4, the data likelihood P(Y) can be easily computed since

y� � ��d� , C� K� C� � � R� � (A7)

M-STEP. The M-step involves maximizing �(�) � E [log P(X, Y � �)]
with respect to the parameters � � {C, d, R, �1, . . . , �p}. The
expectation in �(�) is taken with respect to the distribution P(X � Y)
found in the E-step, given in Eq. A5. Although this is a joint
optimization with respect to all parameters in �, it turns out that their
optimal values are dependent on only a few or none of the other
parameters, as shown in the following text. For clarity, we first define
the following notation

�x:,t� � E �x:,t � Y
 � �p�1 for t � 1, . . . , T

�x:,tx�:,t� � E �x:,tx�:,t � Y
 � �p�p for t � 1, . . . , T15 Due to computational considerations (cf. the APPENDIX), it may be desir-
able to segment a recording session into multiple nonoverlapping intervals
before applying GPFA. The methods presented here can then be applied
unchanged, even though the segments are not multiple realizations of an
experimental trial.

16 Since x� is obtained by reshaping X, they contain the same elements. The
same is true for y� and Y. Thus P(x� � y�) is equivalent to P(X � Y).
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�x�i,:xi,:� � E �x�i,:xi,: � Y
 � �T�T for i � 1, . . . , p

where these expectations can be obtained from Eq. A5.
Maximizing �(�) with respect to C and d yields

�C d
 � �	
t�1

T

y:,t � ��x:,t��1
��	
t�1

T ��x:,tx�:,t� �x:,t�
�x:,t�� 1 ���1

(A8)

which does not depend on any of the other parameters. The update for
R is

R �
1

T
diag 
	

t�1

T

�y:,t � d��y:,t � d��

� �	
t�1

T

�y:,t � d��x:,t���C� � (A9)

where the diag operator zeros all off-diagonal elements of its argu-
ment. The new values of C and d found in Eq. A8 should be used in
Eq. A9. Note that the updates for C, d, and R have the same analytic
form as for FA, except that the sums here are taken over different time
points rather than different data points in the case of FA.

Although there is no analytic form for the timescale updates, they
can be obtained using any gradient optimization technique. The
gradient of �(�) with respect to �i (i � 1, . . . , p) is

�����

��i

� tr �������

�Ki
�� �Ki

��i
� (A10)

where

�����

�Ki

�
1

2
��Ki

�1 � Ki
�1�x�i,:xi,:�Ki

�1�

�Ki�t1, t2�

��i

� �f,i
2 �t1 � t2�

2

�i
3 exp�� �t1 � t2�

2

2�i
2 �

As in METHODS, Ki(t1, t2) denotes the (t1, t2)th entry of Ki and t1, t2 �
1, . . . , T. Note that Eq. A10 does not depend on the other p � 1
timescales, nor on the other model parameters. Thus, each of the
timescales can be optimized individually. Because the timescales must
be nonnegative, the optimization should be performed under the
constraint that �i 
 0. This constrained optimization problem can be
converted into an equivalent unconstrained optimization problem by
optimizing with respect to log �i (which can be positive or negative)
rather than �i using a change of variable.

The derivations in this section assume a single time series (corre-
sponding to a single experimental trial) with T time points. We

typically want to learn the model parameters � based on multiple time
series, each with a possibly different T. The preceding parameter
update equations can be extended in a straightforward way to accom-
modate multiple time series. Instead of optimizing �(�) for a single
time series, we optimize their sum ¥n �n(�) across all time series
indexed by n. Equations analogous to Eqs. A8–A10 can be derived by
considering �[¥n �n(�)]/�� rather than ��(�)/��. This assumes that
the time series are independent, given the model parameters. In other
words, there is no constraint built into the model that similar neural
trajectories should be obtained on different trials. However, the neural
trajectories are assumed to lie within the same low-dimensional state
space with the same timescales.

PARAMETER INITIALIZATION AND LOCAL OPTIMA. Because EM is
an iterative algorithm that is guaranteed to converge to a local
optimum, the values at which the parameters are initialized are
important. Recall that the neural trajectories extracted by GPFA can
be viewed as a compromise between the low-dimensional FA projec-
tion of each data point and the desire to string them together using a
smooth function over time. Under this view, we initialized the param-
eters C, d, and R using FA, which provides dimensionality reduction,
but no smoothness over time. We then allowed GPFA to refine these
estimates to obtain smooth neural trajectories. The degree of smooth-
ness is defined by the timescales �i, which also need to be initialized.
We fit the GPFA model starting at four different timescales: 50, 100,
150, and 200 ms. In each case, all p � 15 timescales were initialized
to the same value. Figure A1 shows the resulting learned timescales
for each initialization. Although the learned timescales were initial-
ization dependent, their distributions were similar. In each case, there
was one learned timescale around 525 ms, one or two around 300 ms,
and the others in the range 40–180 ms. As indicated by the arrows in
Fig. A1, the mean of the 15 learned timescales ranged from 125 to 155
ms. Furthermore, the resulting training data likelihoods, as well as the
extracted orthonormalized neural trajectories, were very similar in the
four cases (results not shown). Unless otherwise specified, all results
in this work are based on initializing the timescales to 100 ms and
running EM for 500 iterations. We also reran the analysis in Fig. A1
using 2,000 EM iterations to verify that there are true local optima in
the space of timescales. Although other parameter initializations are
possible (e.g., starting at random values with multiple restarts), we
found that FA provided a sensible and effective initialization.

Because we seek to extract smooth neural trajectories, we fixed the
GP noise variances �n,i

2 to a small value (10�3) for all results shown
in this work. Larger values of �n,i

2 generally yield neural trajectories
that are less smooth. We also considered learning �n,i

2 from the data,
where each state dimension indexed by i can have a different GP noise
variance. This involves finding the gradient of �(�) with respect to
�n,i

2 (similar to Eq. A10) and taking gradient steps in the joint space of

FIG. A1. Learned GPFA timescales �i

(i � 1, . . . , 15) after 500 EM iterations
starting at 4 different initial values: 50, 100,
150, 200 ms. Arrows denote how the mean
of the 15 timescales changed between their
initial and learned values. These results are
based on the same data used in Figs. 5–8.
For the 100-ms initialization, each of the
learned timescales corresponds to a different
panel in Fig. 6.
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�n,i
2 and �i for each i during the M-step. If the �n,i

2 are initialized to
10�3, their learned values (after 2,000 EM iterations) remain on the
order of 10�3, yielding a similar training data likelihood and predic-
tion error as when the �n,i

2 are fixed to 10�3.

COMPUTATIONAL REQUIREMENTS. This section details the compu-
tation time required to fit the GPFA model parameters and to extract
neural trajectories. The computation time is a function of the state
dimensionality p, the number of neurons q, the number of trials, the
number of time steps T in each trial, and the number of EM iterations.
Although fitting a GPFA model is generally computationally demand-
ing, extracting a single neural trajectory can be very fast, as described
in the following text.

Table A1 lists the computation time required for fitting a GPFA
model for different state dimensionalities p and time bin widths. The
values are based on q � 61 neurons, 56 trials, and 500 EM iterations.
Because the absolute time duration of each trial is fixed, a larger time
bin width means a smaller number of time steps T, whose range across
the 56 trials is shown in Table A1. A naïve implementation scales as
O(q3T3) due to the matrix inversion in Eq. A5. The matrix inversion
lemma can be applied to reduce the computational load to O(p3T3).
Overall, the most costly operations in fitting the GPFA model are the
matrix inversion and multiplications in Eq. A5, as well as the iterative
gradient optimization (Eq. A10) of the timescales.

There are several ways in which computation time can be reduced
for the same state dimensionality p, number of neurons q, and number
of trials. First, if different trials have the same T, the costly matrix
inversion and multiplications in Eq. A5 can be reused. The compu-
tation time can be drastically reduced if all or many trials have the
same T. In Table A1, many trials had different T and thus did not take
full advantage of this savings. Second, depending on how crucial time
resolution is, one might consider using a larger time bin width,
thereby reducing T. Increasing the time bin width has the additional
benefit that it increases the number of trials with the same T. As shown
in Table A1, increasing the time bin width from 20 to 50 ms reduced
the computation time from 9 h to 45 min for p � 15. Third, depending
on how quickly the data likelihood Eq. A7 converges, one may need
fewer (or more) than 500 EM iterations. The computation time scales
linearly with the number of EM iterations. Fourth, approximate
techniques can be applied to reduce computation time (Cunningham et
al. 2008a; Teh et al. 2005). In this work, we perform all computations
exactly, without the potential speedups of approximate techniques.

Once the GPFA model parameters are learned, extracting a single
neural trajectory (Eq. A6) can be very fast, given the appropriate
precomputation. In particular, the expensive matrix inversion and
multiplications in Eq. A6 can be precomputed for each T. Depending
on the values of p and T, the time required for this precomputation
ranges from a few milliseconds to a few seconds for each T. Once the
precomputation is finished, extracting a single neural trajectory takes
2.5 ms for p � 15 and T � 71 (the most computationally demanding
trajectory in our data set), and less time for smaller values of p and T.
It is readily possible to envision having single-trial, low-dimensional
visualizations (as extracted by GPFA) appear during the inter-trial
interval (�1 s) of behaving animal experiments using standard PC
hardware and Matlab.

Computing prediction error

For GPFA, we first fit the model parameters � � {C, d, R, �1, . . . ,
�p} using the EM algorithm to the training data. We show here how
to evaluate model goodness-of-fit by applying these learned parame-
ters to data not used for model fitting. As described in METHODS, we
seek to predict the activity of a neuron given the activity of all other
(q � 1) recorded neurons. Let y� j � �T�1 be the activity of neuron j
and y��j � �(q�1)T�1 be the activity of the other (q � 1) neurons
across all T time points, where j � 1, . . . , q. In other words, y� j is equal
to the transpose of the jth row of Y, whereas y��j comprises all but the
jth row of Y. The model prediction ŷj � �T�1 for neuron j is defined
as E [y� j � y��j]. Because y� j and y��j are jointly Gaussian by definition,
the model prediction can be computed analytically.

We first define sparse binary matrices Bj � {0, 1}T�qT and B�j �
{0, 1}(q�1)T�qT such that y� j � Bjy� and y��j � B�jy� . Multiplication by
Bj and B�j can be viewed as picking out the elements in y� corre-
sponding to neuron j and to all other neurons, respectively. Using
Eq. A7

� y� j

y��j
� � ��� Bjd�

B�jd�
� , � Bj�B�j

B�j�B�j

Bj�B��j

B�j�B��j
�� (A11)

where � � C� K� C� � � R� is introduced for notational clarity. Applying
the basic result of conditioning for jointly Gaussian random variables

ŷj � E �y� j � y��j
 � Bjd� � �Bj�B��j��B�j�B��j�
�1�y��j � B�jd� � (A12)

The prediction error is defined as the sum-of-squared differences
between the model prediction and the observed square-rooted spike
counts across all neurons and time points

Prediction error � 	
j�1

q

� ŷj � y� j �2 (A13)

For the two-stage methods using PCA, PPCA, or FA, the model
prediction is analogous to Eq. A12, but has a simpler form because
these static dimensionality-reduction techniques have no concept of
time. It is important to note that the training data and the data used to
compute the model prediction must be presmoothed in the same way
(e.g., using the same kernel) for the two-stage methods. However,
when evaluating the prediction error, the model prediction must be
compared to unsmoothed square-rooted spike counts, as in Eq. A13
for GPFA. Thus, for both the two-stage methods and GPFA, a smooth
model prediction is compared to unsmoothed square-rooted spike
counts.

To compute the model prediction for the reduced GPFA model,
we cannot simply apply Eq. A12. Instead, we must consider an
alternate approach to computing the model prediction via the
orthonormalized state space. The basic idea is that a p-dimensional
orthonormalized neural trajectory is first estimated using all but the
jth neuron. Then, the activity of the jth neuron is predicted using
the only the top p̃ dimensions (p̃ � 1, . . . , p) of the orthonormal-
ized neural trajectory. The following equations formalize these
concepts

ŷj � E �y� j � y��j
 (A14)

� EX �E �y� j � X, y��j
 � y��j
 (A15)

� EX ��c�jX � dj �11�T�� � y��j
 (A16)

� �c�jEX �X � y��j
 � dj �11�T�� (A17)

� �u�jDV�EX �X � y��j
 � dj �11�T�� (A18)

Equation A15 is obtained from Eq. A14 by conditioning on X. In Eq.
A16, we use the fact that y�j is independent of y��j conditioned on X.

TABLE A1. Time required for fitting GPFA model

Time Bin Width

20 ms 50 ms

p � 3 50 min 8 min
p � 15 9 h 45 min
T range 47–71 19–28

Results were obtained on a 2006-era Linux (FC4) 64-bit workstation with
2–4 GB of RAM running MATLAB (R14sp3, BLAS ATLAS 3.2.1 on AMD
processor).
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A
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C

FIG. A2. Simulated data with known error floor. Each row corresponds to a different independent noise variance: A: 0.5, B: 2, C: 8. Left column: prediction
errors for two-stage method with FA (green) and reduced GPFA (black), along with error floor (orange), at different state dimensionalities. Each green curve
corresponds to a different kernel width (numbers of time steps are labeled). Star indicates minimum of black curve. Middle column: denser sampling of kernel
widths for p � 3. Minimum of green curved denoted by green dot. Right column: each panel corresponds to an observed dimension. The same 2 observed
dimensions are used in A, B, and C. Shown are the activity level of each neuron before noise was added (orange curves), noisy observations (orange dots),
leave-neuron-out prediction using best two-stage method (green), and leave-neuron-out prediction using reduced GPFA (black).
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Furthermore, c�j � �1�p is the jth row of C, dj � � is the jth element of
d, and 11�T is a 1 � T vector of all ones. Equation A18 uses the singular
value decomposition of C � UDV�, as described in METHODS. Note that
u�j � �1�p is the jth row of U, and that DV� EX [X � y��j] is the
orthonormalized neural trajectory estimated using all but the jth neuron.

Equation A18 is an alternate approach to computing the GPFA
model prediction and yields the same result as Eq. A12. Equation
A18 says that the model prediction for neuron j can be obtained by
projecting the orthonormalized neural trajectory estimated using
all but the jth neuron onto the jth axis in the high-dimensional
space. Although Eq. A18 tends to be more computationally de-
manding than Eq. A12, it allows us to compute the model predic-
tion for the reduced GPFA model. For the reduced GPFA model,
Eq. A18 is computed using only the top p̃ elements of uj (since its
elements are ordered due to orthonormalization) and setting all
other elements of uj to zero.

Simulation with error floor

In Fig. 5, the benefit of GPFA over competing methods appears to
be small (in percentage terms) if measured in terms of distance from
zero prediction error. However, zero prediction error is unachievable
due to the noise present in the data to be predicted. Thus, we
conducted a simulation to determine the benefit of GPFA relative to a
known error floor. This must be done in simulation, since the error
floor is unknown for real neural data.

The simulated data were generated using a three-dimensional state
space, where each state dimension evolved in time according to a
sinusoid with a different frequency. These sinusoids were then lin-
early combined and mapped out into a 61-dimensional observation
space according to Eq. 1. The independent noise was assumed to be
isotropic and Gaussian across the 61 dimensions. We simulated 56
trials, each with 50 time steps. We then applied the two-stage methods
and GPFA using four-fold cross-validation, as we did for the real
neural data.

As shown in Fig. A2 (left column), all methods correctly indicated
that the data are three-dimensional, since all curves reach their
minimum at p � 3. Since the data were generated with isotropic noise,
the results for two-stage methods using PPCA and FA were nearly
identical. We then more densely sampled the kernel width for p � 3
to find the optimal smoothing kernel width, shown in Fig. A2 (middle
column). Depending on the level of independent noise, we found that
GPFA (black) yielded prediction errors that were tens of percent (A:
58.5%; B: 47.9%; C: 33.9%) lower than that of the best two-stage method
(green dot), relative to the error floor (orange). The error floor was
computed based on the level of activity of each neuron before noise was
added, shown in Fig. A2 (right column, orange curves). The orange
curves provide the theoretical limit for how well the leave-neuron-out
model prediction can come to the observed data on average.
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Kipke DR, Shain W, Buzsáki G, Fetz E, Henderson JM, Hetke JF, Schalk
G. Advanced neurotechnologies for chronic neural interfaces: new horizons
and clinical opportunities. J Neurosci 28: 11830–11838, 2008.

Kulkarni JE, Paninski L. Common-input models for multiple neural spike-
train data. Network 18: 375–407, 2007.

Lawrence N. Probabilistic non-linear principal component analysis with
Gaussian process latent variable models. J Mach Learn Res 6: 1783–1816,
2005.

Lawrence ND, Moore AJ. The hierarchical Gaussian process latent variable
model. In: Proceedings of the 24th Annual International Conference on
Machine Learning (ICML 2007), edited by Ghahramani Z. East Sussex, UK:
Omnipress, 2007, p. 481–488.

Leopold DA, Logothetis NK. Activity changes in early visual cortex reflect
monkeys’ percepts during binocular rivalry. Nature 379: 549–553, 1996.

Levi R, Varona R, Arshavsky YI, Rabinovich MI, Selverston AI. The role
of sensory network dynamics in generating a motor program. J Neurosci 25:
9807–9815, 2005.

MacKay D. Information Theory, Inference, and Learning Algorithms. Cam-
bridge, UK: Cambridge Univ. Press, 2003.

Mazor O, Laurent G. Transient dynamics versus fixed points in odor
representations by locust antennal lobe projection neurons. Neuron 48:
661–673, 2005.

Nawrot M, Aertsen A, Rotter S. Single-trial estimation of neuronal firing
rates: from single-neuron spike trains to population activity. J Neurosci
Methods 94: 81–92, 1999.

Nicolelis MAL, Baccala LA, Lin RCS, Chapin JK. Sensorimotor encoding
by synchronous neural ensemble activity at multiple levels of the somato-
sensory system. Science 268: 1353–1358, 1995.

Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning.
Cambridge, MA: MIT Press, 2006.

Riehle A, Requin J. Monkey primary motor and premotor cortex: single-cell
activity related to prior information about direction and extent of an intended
movement. J Neurophysiol 61: 534–549, 1989.

Roitman JD, Shadlen MN. Response of neurons in the lateral intraparietal
area during a combined visual discrimination reaction time task. J Neurosci
22: 9475–9489, 2002.

Roweis S, Ghahramani Z. A unifying review of linear Gaussian models.
Neural Comput 11: 305–345, 1999.

Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear
embedding. Science 290: 2323–2326, 2000.

Santhanam G, Linderman MD, Gilja V, Afshar A, Ryu SI, Meng TH,
Shenoy KV. HermesB: a continuous neural recording system for freely
behaving primates. IEEE Trans Biomed Eng 54: 2037–2050, 2007.

Sasaki T, Matsuki N, Ikegaya Y. Metastability of active CA3 networks.
J Neurosci 27: 517–528, 2007.

Seidemann E, Meilijson I, Abeles M, Bergman H, Vaadia E. Simulta-
neously recorded single units in the frontal cortex go through sequences of
discrete and stable states in monkeys performing a delayed localization task.
J Neurosci 16: 752–768, 1996.

Smith AC, Brown EN. Estimating a state-space model from point process
observations. Neural Comput 15: 965–991, 2003.

Sollich P, Williams CKI. Using the equivalent kernel to understand Gaussian
process regression. In: Advances in Neural Information Processing Systems,
edited by Saul LK, Weiss Y, Bottou L. Cambridge, MA: MIT Press, 2005,
vol. 17, p. 1313–1320.

Stopfer M, Jayaraman V, Laurent G. Intensity versus identity coding in an
olfactory system. Neuron 39: 991–1004, 2003.

Strang G. Linear Algebra and Its Applications. Philadelphia, PA: Elsevier/
Saunders, 1988.

Teh YW, Roweis S. Automatic alignment of local representations. In: Advances
in Neural Information Processing Systems, edited by Becker S, Thrun S,
Obermayer K. Cambridge, MA: MIT Press, 2003, vol. 15, p. 841–848.

Teh YW, Seeger M, Jordan MI. Semiparametric latent factor models. In:
Proceedings of the Tenth International Workshop on Artificial Intelligence
and Statistics (AISTATS), edited by Cowell RG, Ghahramani Z. Hacken-
sack, NJ: Society for Artificial Intelligence and Statistics, 2005, p. 333–340.

Tipping ME, Bishop CM. Probabilistic principal component analysis. J R Stat
Soc Ser B 61: 611–622, 1999.

Tolhurst DJ, Movshon JA, Dean AF. The statistical reliability of signals in
single neurons in cat and monkey visual cortex. Vision Res 23: 775–785,
1983.

Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN. A point
process framework for relating neural spiking activity to spiking history,
neural ensemble and extrinsic covariate effects. J Neurophysiol 93: 1074–
1089, 2005.

Turner RE, Sahani M. A maximum-likelihood interpretation for slow feature
analysis. Neural Comput 19: 1022–1038, 2007.

Ventura V, Cai C, Kass RE. Trial-to-trial variability and its effect on
time-varying dependency between two neurons. J Neurophysiol 94: 2928–
2939, 2005.

Wang J, Fleet D, Hertzmann A. Gaussian process dynamical models. In:
Advances in Neural Information Processing Systems, edited by Weiss Y,
Schölkopf B, Platt J. Cambridge, MA: MIT Press, 2006, vol. 18, p.
1441–1448.

Weber AP, Hahnloser RHR. Spike correlations in a songbird agree with a
simple Markov population model. PLoS Comput Biol 3: 2520–2531, 2007.

Wu W, Gao Y, Bienenstock E, Donoghue J, Black M. Bayesian population
decoding of motor cortical activity using a Kalman filter. Neural Comput 18:
80–118, 2006.

Yu BM, Afshar A, Santhanam G, Ryu SI, Shenoy KV, Sahani M.
Extracting dynamical structure embedded in neural activity. In: Advances in
Neural Information Processing Systems, edited by Weiss Y, Schölkopf B,
Platt J. Cambridge, MA: MIT Press, 2006, vol. 18, p. 1545–1552.

Yu BM, Cunningham JP, Santhanam G, Ryu SI, Shenoy KV, Sahani M.
Gaussian process factor analysis for low-dimensional single-trial analysis of
neural population activity. Soc Neurosci Abstr 319.9, 2008.

Yu BM, Cunningham JP, Santhanam G, Ryu SI, Shenoy KV, Sahani M.
Gaussian-process factor analysis for low-dimensional single-trial analysis of
neural population activity. In: Advances in Neural Information Processing
Systems, edited by Koller D, Schuurmans D, Bengio Y, Bottou L. Cam-
bridge, MA: MIT Press, 2009, vol. 21, p. 1881–1888.

Innovative Methodology

635GAUSSIAN-PROCESS FACTOR ANALYSIS

J Neurophysiol • VOL 102 • JULY 2009 • www.jn.org

 on January 26, 2010 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org



